CALD: Computer-Aided Logic Design System

Géry Bioul, Daniel Simonelli*, Valeria Otaegui y Susana Heineke
Facultad de Ciencias Exactas
Universidad Nacional del Centro de la Provincia de Buenos Aires
INCA Institute – TE: +54 2293 432466 - Paraje Arroyo Seco, (7000) Tandil, Argentina
e-mail: dsimonel@exa.unicen.edu.ar

* - Supported by CIC (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires)

Abstract: This paper presents a new design tool (CALD) for logical circuit design. This system is shown to be powerful because of its relationship with an HDL language and thanks to a user friendly drawing interface which allows both automatic and manual connection drawing processes.

The system is limited to circuit drawing generation while actual physical simulation is not considered.

This paper carries out a comparative analysis of the CALD along with classic similar tools from the market, such as B²Logic, EWB, Circuit Maker.
The discussion is illustrated through Windows environment applications.

The CALD is mainly an education-oriented tool; so synthesis oriented design systems such as Viewlogic, Orcad, Altera or Xilinx Foundation are not dealt with.

Introduction

The starting point of CALD has been the analysis of classic tools for generating logical circuits. From this analysis, good features have been pointed out in order to preserve or improve them, while bad features have been identified with the purpose of elimination or, as far as possible, impact alleviation.

Routing and visualization processes have been improved while intermediate code generation is reviewed for its extension to simulation and synthesis applications.

The CALD system is providing effective interface for capturing circuit schemes with both didactical and industrial applications. In this context, the system is addressed to educational institutions as well as technological design groups.

The innovative CALD feature rests upon the following:

- circuit drawings can be generated from a custom CALD-HDL hardware description language mixed with manual user operations,
- from any compatible circuit drawing CALD automatically generates an HDL description.

CALD-HDL is a structural subset of the VHDL language. As such it is fully portable as a front-end of standard design tools [HEI99][BIO2000].

Standard design tools reviewed in this paper are the following:

Friendly interfaces

Nowadays computer systems are available to an increasing number of people. One of the main tasks for the designer is to cope with abilities and needs of the potential users so that fulfilling needs ends in enhancing abilities.

Friendly interface refers to something more powerful than a simple help feature. Actually it consists of an environment in which the user can handle tasks with minimum effort and maximum profit.

Within this context the first step for the tool designer is to identify functional requirements and to define a task set in the most
straightforward way. In this respect, using environments familiar to the user (Windows, Unix, ...) eases both understanding/learning and operating the tool. The final goal is to provide an interface with a classic basic structure in its appearance. Outstanding examples are Microsoft tools: each of them are generally complying with a set of menus with standard commands to which are added specific ones such as state bar or tool bar. Menu systems are attractive for eliminating needs for tedious training and memorizing complex command sequences.

MDI versus SDI applications

A SDI application (Single Document Interface) only allows a single active document, i.e. a single opened window. On the other hand, a MDI application (Multiple Document Interface) allows multiple simultaneous working documents. This implies several simultaneous opened windows. The two reviewed EWB versions together with CircuitMaker are SDI applications. B²Logic is MDI (fig. 1).

B²Logic (fig. 1), provides independent windows with individual floating tools bar and components libraries. This feature yields a non-negligible space consumption drawback, for this reason it is not included in CALD: only one shared set of bars is available, nevertheless different component libraries can be simultaneously opened (fig. 2).

Fig. 1: B²Logic, MDI application.

An important feature of MDI application is the interactive edition between several working spaces (windows). This powerful feature has been included in CALD.

Fig. 2: CALD, MDI application.

Available help

Help systems included in the tools offer several alternatives. As matter of fact, B²Logic lacks of any kind of help. CircuitMaker help presents a table of contents, search indexes (alphabetical and thematic) and also a "help on help" item. EWB and CALD helps basically hold the same structure. CALD shares all those help features.

Tools under review present reduced help with respect to graphic interface components and library items. Circuit Maker does not bring information about components on screen but does provide help on library items. Nevertheless, a main drawback comes from the fact that information on any library item is only available when this item is inserted in the layout on screen. EWB does not bring information on items on screen but does it on library items.

CALD does bring help on both library mode and screen layout mode items.
EDIT FUNCTIONS.

In what concerns usual edit functions the four tools under review share cut, copy, paste, delete, select and move basic operations.

EWB holds a one-level undo function while CircuitMaker as well as B2 Logic the (one-level) undo function only allows undoing basic edit functions such as cut, paste, delete, move. Only B2 Logic allows undoing the last created wire. Functions such as rotate, text insert, ... cannot be undone neither in B2 Logic nor in CircuitMaker.

There is a variety of ways for eliminating elements according to the tool.

In EWB, a wire is deleted through a point, drag and drop operation performed on any wire end while other circuit components are eliminated through select and delete key or menu option.

CircuitMaker uses a standard delete operation: screen button then clicking the element or wire to be deleted.

Drawing wires in EWB is achieved through a similar drag and drop procedure. B2 Logic and CircuitMaker need a previous mode selection then proceed basically in the same way.

CircuitMaker and B2 Logic allow inserting comment texts in any place, while EWB restricts text to labels and titles.

For drawing clarity purposes, CALD adopted EWB concept for text. Labels versatility provides suitable descriptions of components and wire ends. Any other comment may be inserted off the circuit layout.

Series of useful characteristics, shared by the four tools under review, have been improved in CALD.

In what follows, those features are reviewed.

- Components labeling.
 CALD moves elements and labels jointly. Independent movements, such as CircuitMaker does, make the operation more tedious.
 Gate labeling in B2 Logic needs library modifications.
- Rotating gates.
 As well as any other tool, CALD allows gate rotating. Moreover, as doing so, CALD recalculates optimized wire layout. B2 Logic neither recalculates nor move connections related to rotated elements. This implies a new connection drawing procedure. EWB does move wires while rotating gates but does not optimize drawing legibility.
- Font selection.
 CALD allows full font selection (including color). EWB provide standard font while neither B2 Logic nor CircuitMaker allow color selection.
- Color selection for wire distinction.
 CALD and EWB share wire coloring feature. Nevertheless, CALD provide user-friendly procedure with extended color set. Other tools under review do not allow wire coloring.
- Grid selection.
 As well as B2 Logic and CircuitMaker, CALD provides grid support for layout building. So is doing EWB, but the system imposes discrete locations on screen, according to the grid size. Other tools respect user's choice.
- Remarks editing.
 Excepting B2 Logic, other tools provide dedicated space for text editing. CALD provides a system generated information space together with a user defined one.

ROUTING FEATURES

As a matter of fact, one of the central points of this kind of tools is legibility. As far as possible, EWB and CircuitMaker avoid crossing elements but allow it whenever no other solution is available.

B2 Logic only provides manual drawing facilities, neither automatic routing nor optimization processes are at hand (fig. 3c).

In what concerns wires overlapping EWB avoids it, as far as possible. Whenever components are overloading workspace, the system selects straight crosswise route as default option but keeps avoiding overlapping (fig. 3a).
CircuitMaker does not forbid it; actually, CircuitMaker currently generates overlapping wire section (fig. 3b). CALD adopted EWB concept but it also allows manual editing. This feature let the user the possibility of moving components and rebuilding wiring (fig. 4).

Tools under review do not optimize wire drawing. They do not minimize wire crossings or avoid overlapping. This can jeopardize the legibility. CALD has been bringing special care to this aspect when designing routing algorithms.

Fig. 3a - Avoiding gate crossing and wire overlapping in EWB

Fig. 3b - Wire overlapping in CircuitMaker

Fig. 3c - Gate crossing in B² Logic

Fig. 3 - Routing Features
CircuitMaker does not make difference between pin-to-pin or pin-to-wire connections. B² Logic drawing process, for being exclusively manual, allows any kind of layout connections; this does not prevent inconsistencies such as several outputs connected to a same input, input connected to another input only, unconnected wire end (fig. 5).

EWB does demarcate pin-to-wire or wire-to-wire connections. Actually a contact point element (four-pin dot) has to be dragged from the library and inserted to any wire to be further connected (fig. 6 a,b).

CALD allows all connection types; moreover it does not need contact points for wires to be connected. Wire-to-wire linkage is a straightforward process.
VALIDATION

The designer has to avoid endless wires, redundancies and all physically inconsistent connections: short circuit, critical loop a.s.o.. Deleting wires in B^2 Logic does not eliminate eventual wire links or disconnected elements (fig.6 e,f). EWB automatically cancel wires connected to deleted gates or modules but leaves eventual contact dots in the layout. CircuitMaker strictly eliminates what the designer without validating leftovers, allowing e.g. loose wire fragments (fig. 6 c, d) requests. EWB deals with connection dots as library elements; as so, they can be located anywhere (fig. 6 a,b).
MACROS

EWB as well as B^2 Logic offer handy procedures for creating sub-circuits or Macros, while CircuitMaker is poorer in this respect. Based on EWB concept, CALD environment let the designer locate the external pins of the macro. Moreover CALD demands a full pin set description. Inconsistencies could result from a non-complete pin assignment (fig.7) each free gate output or input has to be related to an external pin.

CONCLUSIONS

This paper has reviewed some of the most popular design tools for logical layout design. CALD system, designed by the authors, has been compared to these tools, within an extended set of quality and performance criteria. Details on CALD are available in [HEI99] and [BIO00]. In what follows, synthetic comparison tables are presented as a synthesis of the comparative analysis.
SUMMARY INFORMATION

Table I - Comparative features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Tool</th>
<th>EWB</th>
<th>EWB EDA</th>
<th>Circuit Maker</th>
<th>B² Logic</th>
<th>CALD</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERFACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classic look and feel structure</td>
<td>Partial (No tool bar, No state bar)</td>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Partial (No tool bar, No state bar)</td>
</tr>
<tr>
<td>Menu organization</td>
<td>Good</td>
<td>Good</td>
<td>Regular</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Items info (“tips”)</td>
<td>No</td>
<td>Partial</td>
<td>Partial</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Advanced user shortcuts</td>
<td>Good</td>
<td>Good</td>
<td>Regular</td>
<td>Poor</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>LIBRARY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add new library component</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Easy access</td>
<td>Yes</td>
<td>Yes</td>
<td>Regular</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Easy localization</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Quantity of user libraries</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>∞</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Quantity of predefined libraries</td>
<td>10</td>
<td>13</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Document-library linkage</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>MDI vs. SDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple windows</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>HELP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table of contents</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Search indexes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Contextual help</td>
<td>Partial (Only document and libraries items)</td>
<td>Partial (Only document and libraries items)</td>
<td>Partial (Only document items)</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>EDITION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy, paste, cut, delete, move and select</td>
<td>Partial (No available for menu and bar items)</td>
<td>Partial (Only document items)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Undo</td>
<td>Yes (1 operation)</td>
<td>Yes (1 operation)</td>
<td>Partial (Just a few operations)</td>
<td>Partial (Just a few operations)</td>
<td>Yes (5 operations)</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>Tool</td>
<td>EWB</td>
<td>EWB EDA</td>
<td>Circuit Maker</td>
<td>B² Logic</td>
<td>CALD</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>-----</td>
<td>---------</td>
<td>---------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Text editing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labels</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Document</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CONNECTION MODES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obstacle avoiding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gates</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Wires (as far as possible)</td>
<td>Yes (as far as possible)</td>
<td>Yes (as far as possible)</td>
<td>No</td>
<td>No</td>
<td>Yes (as far as possible)</td>
<td></td>
</tr>
<tr>
<td>EDITION VALIDATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endless wires allowed</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Unnecessary connections allowed</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No connections</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>MACRO CREATION SUPPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Macro</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Clear Process</td>
<td>Partial (Pin layout)</td>
<td>Partial (Pin layout)</td>
<td>No</td>
<td>-</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

[SHE96] Charles Shelor. “VHDL Designer”. Revista de Internet VHDL Times N°1

