
Multiplatform Application Development with
HTML5 for Smartphones

Luis Vivas, Mauro Cambarieri, Nicolás García Martínez,

Horacio Muñoz Abbate, Marcelo Petroff

Laboratorio de Informática Aplicada - Universidad Nacional de Río Negro
{lvivas, mcambarieri, ngarcia, hmunoz, mpetroff}@unrn.edu.ar

Abstract. This paper presents an architecture for the development of software for
smartphones. It explains the advantages of web application development with
respect to native applications - those installed on mobile devices that were
developed using a programming language compatible with the operating system
used by the device. It also describes frameworks and software development kits
currently available under the free software paradigm. Alternatives are presented for
developing the user interface with support for HTML5 and cloud computing
through which we can expose the data service and application. It explains the
contributions of HTML5 for mobile applications and platforms that currently
Android, iPhone OS and BlackBerry - as a distinguished group based on the number
of devices and network traffic.

Keywords: Smartphone, multiplatform, Free software, Web applications,
HTML5

1. Introduction

Smart phones are fundamental characteristics a computing capability and greater than
the conventional [1] mobile connectivity. These make the phone in some cases replace the
personal computer and lead the consumption of Internet data [2].

Currently the dominant devices are: Android, iPhone and BlackBerry. They have
several functional features, such as: camera, high-definition touch screens, also called
capacitive screens, Wi-Fi and 3G connectivity of long-range communication of short
range (Near Field Communication - NFC) that is used for payments for services and is
known under the name of digital wallet. The devices also have global positioning (GPS)
for the geolocation system; several types of sensors such as gyroscope, accelerometer,

mailto:hmunoz@unrn.edu.ar
mailto:hmunoz@unrn.edu.ar
mailto:hmunoz@unrn.edu.ar
mailto:hmunoz@unrn.edu.ar
mailto:hmunoz@unrn.edu.ar
mailto:hmunoz@unrn.edu.ar

light sensor and proximity. The heart of the hardware consists of a machine Advanced
RISC (ARM) and graphics processing unit (GPU) powerful and low power consumption,
thanks to the advances of current manufacturing processes, by means of which can
support the range of characteristics mentioned [3].

Counting with the described functionality, hardware is not sufficient for the proper
management of the resources and capabilities of smart phones. Specially designed
operating systems are needed. Currently, the operating systems most relevant are Google's
Android, Apple iOS and BlackBerry RIM OS [2]. Android is based on Linux is open
source software, while iOS is based on Mac OS X, which is proprietary software, as well
as BlackBerry OS.

Android, iOS and BlackBerry 10 without QWERTY keyboard (keyboard layout that
refers to the first six letters), are based on a concept of direct manipulation, using multi-
touch gestures. The controls are based on: components sliding, switches and buttons.
Interaction with the OS includes gestures such as lapses, touches and, which have
different functions depending on the context of the interface. This new way of interacting
with the operating system is mainly due to capacitive screens - those who have better
picture quality, response time and allow the use of several fingers at once.

The increased use of these devices, their features and multiple existing platforms,
poses a problem: how to build software for multi-platform smart phones? Looking for a
solution, this paper proposes a software architecture based on HTML5 standards,
discusses the advantages of the development of web applications, and explains
frameworks for the development of applications for these devices. The work is structured
in the following way. Section 2 presents the related concepts that allow you to understand
the proposed solution. Section 3 explains the proposed methodology to develop cross-
platform applications. Finally, section 4 summarizes conclusions, lessons learned and
lines of research for future work.

2. General concepts

2.1. Web and native applications

Development for mobile devices has two distinct paradigms: native and web [4]. A

mobile web application is what you need from a web browser or browser to run. The
application data can be hosted or consume from a remote server, as well as also obtained
from the mobile device. Native applications are those that are installed on mobile devices
and are developed using the programming language compatible with the operating system,
embedded software development kits (software development kit - SDK). The most
prominent are Android SDK, iOS SDK and BlackBerry Java SDK.

Both the SDK of Android and BlackBerry using Java as a programming language,
instead of iOS using the Objective-C language (programming language used in Mac OS X
and iOS) [5] [6] [7]. Each of these development platforms has its peculiarities, not only
for the programming language but also for development framework.

Basically, web applications are delivered as markup language hypertext (HTML)
interpreted by a browser, which provides a range of features that increase the performance
of applications.

Mobile web for the development of applications exist today a number of frameworks
that make use of the advantages of HTML5 and WebKit platform [8], incorporated in all
major Web browsers, such as for example: Safari, Chrome, and the BlackBerry browser;
achieving very fluid applications using, among other features, touch screens and GPS for
the georeferencing. The most important features of HTML5 are explained in the following
section.Among the most outstanding frameworks include: Sencha Touch [9], [10] jQuery
and Gwt Mobile [11]. Sencha Touch and jQuery are composed of a series of libraries
written in JavaScript and styles Cascading Style Sheets (CSS). Some of the advantages of
Sencha Touch with jQuery is a new Model View Controller (MVC) architecture. MVC is
a design pattern that separates data from an application, the user interface, and the logic of
business in three components [12]. Another advantage of Sencha Touch is the very
complete documentation with many examples to download and very accomplished
components both functional and visually. In contrast, JQuery has a faster learning curve.
GWT Mobile, unlike the above-mentioned frameworks, is programmed in Java.

2.2 HTML5 [13]

On any web site, the user interface and data reside on a specific server, and they must
return to download each time it is requested, this creates a performance problem as well as
an insurmountable obstacle when a user connection is weak. HTML5 is intended to solve
this kind of problem, and may keep the data and/or user interface online.
HTML5 provides cache application that allows you to store the HTML, CSS and
javascript code on the mobile device in the first charge, as if it were a facility, allowing us
to access the application over the line as if it were a native application.

One of the new features is the call: local storage, which allows you to store any
variable that you want to in a manner similar to cookies, persistent (data sent from a web
site and are stored in a user's web browser while the user is browsing a web site). This
ease of local storage is easier and more flexible to manage.
HTML5 also provides database SQLite (open source database) relevant characteristic .as,
HTML5 includes integration with an application programming interface (API)

geolocation, allowing access to the position of the mobile through the available devices
GPS data. This tool allows you to do a wide range of applications where it is required to
know the position of the user, for example: calculate routes, nearby landmarks, etc.

HTML5 incorporates new types of input form fields with a property named type
(type), which allows you to differentiate between different types of data entry as text,
email, phone, number, colors, numbers and date range. The virtual keyboard changes its
behavior depending on the type of data. Example: If the type is numeric, the keyboard
features the digits to enter.

2.3 Cloud Computing

Computing in the cloud (internet metaphor), is a paradigm that can offer computing
services through Internet development of applications for mobile devices, web or native,
need to consume data that feed it.

We can mention an application that will give us the climate in the city where the user
is currently located. In this type of service would be impossible to have the information
stored in the user's device because such information is dynamically created with climatic
variables. In these cases the cloud computing allows us to create services and applications
available all the time in any place where you have access to Internet to carry out an
architecture using Cloud Computing we can use appEngine of Google, which gives us a
SDK for software development, being able to choose some choices of programming
languages such as Python, Ruby or Java.

Working with this architecture leave the common infrastructure problems that have an
application or service of high availability, connectivity to power. It is also an option for
SMEs that do not have an infrastructure to provide a service with the scalability and
performance which gives us appEngine.

El hardware that is used using appEngine is the datacenter of Google, i.e., thousands
and thousands of computers located throughout the world. In addition to the hardware,
google provides a virtualization system based on Linux, modified with a system of its own
file distributed (Google File System - GFS). For data, will have access to BigTable
(database engine created by Google with the characteristics of being: distributed and high
efficiency), the google storage system. This system is not a database, is a distributed
system that has the particularity that nothing is deleted. With this system, google gives us
all his knowledge in searches to access data quickly and efficiently [14] [15].For the
management of data use Objectify [16], mapping object relational (ORM) which allows us
to work with BigTable, which provides us with simple and elegant handling of data, such
as operations: get, put, delete and query.

The following code defines the persistent entity Car, as initiates a transaction using
begin, creates, obtains, and deletes a Car.

class Car {
 @Id String vin;

String color;}

Objectify ofy = ObjectifyService.begin();
ofy.put(new Car("206", "azul"));
Car c = ofy.get(Car.class, "206");
ofy.delete(c);

3. Proposed methodology to develop cross-platform applications

To run a native application on all platforms, we must build an application for each
platform. All platforms have your SDK development and programming language. Then
we can say that web applications are the alternative for cross-platform development
through the standard.

For the construction of web software development process is based on the MVC
pattern, which is a design pattern very studied and used in software engineering, which
separates into three layers model, the controller and the view. For the view, we opted for
using Sencha Touch 2 and the java SDK's appEngine with Spring (framework of open
source in developing applications for the Java platform) for the model and controller.

Fig. 1. Pattern Model View Controller - MVC

Communication between controller and view is through objects serialized using the

json format (javascript object notation, is a lightweight format for data exchange) through
Representational State transfer services (REST or RESTful) [16].

This new form of communication has meant a new option to web services. REST
consists of using the HTTP specification (HyperText Transfer Protocol) [17]. This gained
widespread adoption on the web as an alternative simpler to SOAP (Simple Object Access
Protocol, is a standard protocol that defines how two objects in different processes can
communicate through XML data exchange) [18] and WSDL (Web Services Description

Language or web services based on the web services description language), describes the
public interface to web services) [19]. Large companies in the web 2.0 (Yahoo, Google
and Facebook, etc.) are using REST, who marked obsolete to your SOAP and WSDL
services and went on to use an easier to use, resource-oriented model.

The last implementation of Spring and other alternatives such as Java Server Faces
(framework for Java based applications web that simplifies the development of user
interfaces in Java EE - JSF2 applications), have full support with Restful in addition to an
elegant and easy implementation.

Below we describe how to integrate Spring and Objectify [20]. The example searches
for a list of Car objects. In principle we have to import the library to our project
objectify.jar, which has the class com.googlecode.objectify.util.DAOBase [21], which
will be the basis of our data access objects (DAO, it is a software component that provides
a common interface between the application and one or more data storage devices). This
class provides access to the data connection through the instance of the ofy() method.

public class ObjectifyDao<T> extends DAOBase
{ public Query<T> listAll()

 {Query<T> q = ofy().query(clazz);
 return q;

The second step is to create the CarDao extending from ObjectifyDao to handle the
persistent class Car. With the annotation @Repository can put the services that we use in
the context of Spring.

@Repository
public class CarDao extends ObjectifyDao<Car> {
 static { ObjectifyService.register(Car.class);}
 public CarDao() {
 super(Car.class);

The next step is to generate the CarService service using the annotation @ Service, in

the services of Spring inject all of the Dao that we need, in our case only CarDao. The
annotation @Autowired is responsible for making the injection of controls in our service.

@Service
public class CarService {
 @Autowired
 private CarDao carDao;
 public List<Car> findAll() {
 return this.carDao.listAll().list();

The last layer that we use with Spring is the controller, this layer communicates

directly with the user interface. With this controller we could provide services to web
technologies but also native like Android or iOS technologies:

@Controller
@RequestMapping(value = "/car")
public class CarController {

@Autowired
private CarService carService;
@RequestMapping(method = RequestMethod.GET,
value = "/list", produces = "application/json")

 public @ResponseBody
 List<Car> carList() {
 return carService.findAll();

This code fragment highlights the RequestMapping annotation, and the /car and/list of
the carList method values. Using HTTP accessing the url http://server:8888/car/list the
customer can access the resource without having to configure or Exchange a
communication contract. The parameter produce = "application/json" indicates that the
result is transformed to json format.The outcome of appeal:

[{"vin":"206","color":"amarillo"},
{"vin":"ka","color":"rojo"},
{"vin":"mondeo","color":"blanco"}]

The last layer is the view that will consume the list of Car in json format. The only
project we have to add libraries of javascripts, images and styles that are available from
the site of Sencha. This framework has a number of components to consume local or
remote data. The component that will be used in this case will be an Ext.data.Store [22],
which allows us to configure the url of the resource previously created.

Ext.create('Ext.data.Store', {
 fields: ['vin', 'color'],
 sorters: 'vin',
 groupField: 'color',

 autoLoad: true,
 proxy:{type: 'ajax',
 url : '/car/list',

 reader: { rootProperty: 'data',
 totalProperty: 'total',
 successProperty: 'success',
 type: 'json'}

Code shows the storage type (Store), the attributes that we consume in the fields

property defined, that attribute I want to sort and group information, I also define the url
of the resource, in this case as the view and the controller are on the same server the
resource is consumed with a relative path /car/list, but only the case, and this application
would be on another server or view this packaged with a mobile device, the url would be
liaproyect.appspot.com/car/list. Finally it is explicit that our store expects a json with the

type property: 'json'. With the configured store we can only define a list component with
can draw the Car list. Sencha has a component Ext.dataview.List [23].

xtype: 'list',
itemTpl: '<div class="contact">{vin}
{color}</div>',
store: this.getStore(),
grouped: true,
emptyText: '<div>No tiene elementos</div>',

The list that is defined with the property xtype: 'list' with the itemTpl property defines
the fields that you want to display and store property define you the instance of the store
that you created earlier.

The result of the above is available in http://liaproyect.appspot.com and the sources of
the project in https://liamobileweb.googlecode.com/svn/liaProyect.

4. Conclusion and future work

This work presented an architecture platform for the development of software for
smart phones with web technology. It was based on the standards of HTML5 that are
widely supported by all major mobile platforms; this was proven in the
http://liaproyect.appspot.com application. It was explained the difference between the
development of web and native applications, this last is developing an application for each
platform which increases costs and times, according to the results obtained in our lab
through the realization of applications.

Another point of study has been consumption by data services REST alternative that
can be used for web and native applications remain a fundamental part in the optimization
of the agile performance of applications that consume data from Internet, based on the
results obtained in the laboratory.
Opened us different paths of research the future possibility of access to other resources on
smart phones, such as: the contacts in the phonebook, get pictures using the camera of
photos, as the ringtone alert or vibration of the device, to provide other types of features
related to the ubiquitous computing or augmented realities. Applications such as these are
so-called hybrid [24] that would allow web applications access to the APIs system and
digital stores.

https://liamobileweb.googlecode.com/svn/liaProyect

References

1. Wikipedia. 2012. Teléfono inteligente. http://es.wikipedia.org/wiki/
Teléfono_inteligente (accedido 10/07/2012).

2. Cisco Visual Networking index, Global mobile data traffic forecast update. 2011.
3. Proceso de Fabricación ARM Cortex 28nm. http://www.tsmc.com/tsmcdotcom/

PRListingNewsAction.do?action=detail&newsid=6781&language=E (accedido
12/07/2012).

4. 2012. Mobile HTML5 java developer. http://www.jboss.org/webinars (accedido
20/06/2012).

5. JBossCommunitty. 2012. SDK BlackBerry. https://developer.BlackBerry.com
/java/ (accedido 10/06/2012).

6. Appe.2012. SDK iPhone. https://developer.apple.com/ (accedido 11/05/2012).
7. Google. 2012. SDK Android. http://developer.android.com/sdk/index.html

(accedido 02/04/2012).
8. Apple, Kde. 2006. http://www.webkit.org/ (accedido 19/07/2012)
9. The jQuery Foundation. 2012. Framework Jquery para Móviles.

http://jquerymobile.com/ (accedido 01/06/2012).
10. Gwtmobile. 2012. Framework Gwt mobile (Google web Toolkit) http://code.

google. com/p/gwtmobile/ (accedido 21/02/2012)
11. Sencha Inc. 2012. Framework Sencha para móviles http://www.sencha.

com/products/touch/ (accedido 10/11/2011).
12. Wikipedia. 2012. Patrón MVC. http://es.wikipedia.org/wiki/Modelo_

Vista_Controlador (accedido 10/07/2012).
13. HTML5rocks.2012. HTML5 lo nuevo y características slider. HTML5rocks.

com (accedido 13/03/2012).
14. Google Developers. 2012. AppEngine. http://code.google.com/intl/es-

ES/appengine/ (accedido 2/05/2012)
15. Google España. 2012. AppEngine Campus Party. http://www.youtube.com/

watch?v=9Ocjqxhh3RQ. (acedido 10/05/2012).
16. Google App Engine. 2012. Objectify. http://code.google.com/p/objectify-

appengine/wiki/IntroductionToObjectify (accedido 28/05/2012).
17. Navarro Marset, R. 2006. Servicios REST http://users.dsic.upv.es/~rnavarro/

NewWeb/docs/RestVsWebServices.pdf (1/07/2012).
18. W3C. 2010. Estandar HTML http://www.w3.org/MarkUp/ (accedido

10/07/2012)
19. W3C. 2007. SOAP http://www.w3.org/TR/soap/ (accedido 11/07/2012)
20. W3C. 2001 WSDL http://www.w3.org/TR/wsdl (accedido 11/07/2012)
21. Matías Molinas. 2012. Integración de Spring y Objectify

http://fuse21.blogspot.com.ar/2012/04/spring-mvc-y-objectify-en-google-
app.html (10/06/2012).

http://developer.android.com/sdk/index.html
http://www.webkit.org/
http://code.google.com/p/gwtmobile/
http://code.google.com/p/gwtmobile/
http://code.google.com/p/gwtmobile/
http://code.google.com/p/gwtmobile/
http://code.google.com/p/gwtmobile/
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.youtube.com/watch?v=9Ocjqxhh3RQ
http://www.w3.org/MarkUp/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl

22. Google. 2011. Clase DAOBase http://objectify-appengine.googlecode.com/svn-
history/r635/trunk/javadoc/com/googlecode/objectify/helper/DAOBase.html.
(accedido 2/07/2012).

23. Sencha Inc. 2012. Ext.data.Store. http://docs.sencha.com/touch/2-
0/#!/api/Ext.data.Store (accedido 10/07/2012).

24. Sencha Inc. 2012.Ext,dataview.list. http://docs.sencha.com/touch/2-
0/#!/api/Ext.dataview.List (accedido 10/07/2012).

25. Kaiser, C. 2011. Aplicaciones móviles Hibridas. How to Develop Mobile
Applications with Web-Technologies. Université the Fribourg Suisse.
http://diuf.unifr.ch/main/is/sites/diuf.unifr.ch.main.is/files/documents/student-
projects/eBiz_2011_Christian_Kaiser.pdf (accedido 21/04/2012).

