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1. Introduction

Significant research has been done in the last few decades in regard to the
relationship between finite model theory and computational complexity theory.
There is a close relationship between computational complexity, the amount of
resources we need to solve a problem over some Turing machine, and descriptive
complexity, the logic we need to describe the positive instances of the prob-
lem. The most important result about this relationship was the result of Fagin
[3]. This result establishes that the properties of finite relational structures (or
relational database instances) which are defined by existential second order sen-
tences coincide with the properties that belong to the complexity class NP. This
result was extended by Stockmeyer [10] establishing a close relationship between
second order logic and the polynomial hierarchy.

In [7] we introduced the logic SOF and proved that the logic SOω defined
by A. Dawar [2] and further studied by F. Ferrarotti and the second author [6],
which is a fragment of the infinitary logic Lω∞,ω, is strictly included in SOF .
In SOω the second order quantifiers range over k′-ary relations closed by the
equivalence relation ≡k for k′ ≤ k, whereas in SOF the second order quantifiers
range over k-ary relations closed by the equivalence relation ≡FO (see section 2
for definitions of ≡k and ≡FO). We showed that in SOF the rigidity query can
be expressed. This property means that the structures only has one automor-
phism which is the identity function. Rigidity belongs to co-NP. In [7] we also



characterize the existential fragment Σ1,F
1 of SOF with a modified version of the

relational machine defined in [1].
In [8] we added oracles to our version of relational machine, and we intro-

duced the polynomial time hierarchy PHF. We then showed the correspondence
between the fragments Σ1,F

i of SOF and the levels of the polynomial time hier-
archy PHF. That result is analogous to the L. Stockmeyer’s characterization of
polynomial time hierarchy on Turing machine [10] and also to the F. Ferrarotti
and the second author’s characterization of the relational polynomial time hier-
archy on relational machines [6].

Using the semantics of SOF and fixing a σ-structure A it is possible to assign
an FO formula equivalent to each SOF formula. In this reduction lies the idea
to define, for a fixed σ-structure A, each possible k-ary relation closed under
FO types for k-tuples using an FO formula. This match between sentences of
SOF and sentences of FO can be established for classes of structures which have
a finite number of isolating formulae for FO types. This property holds for the
class of structures with unary vocabulary.

As a consequence, the expressive power of SOF collapses to FO over classes
with a finite number of isolating formulae including the case of structures with
unary vocabulary. It is well known that parity is expressible in SO but is not
expressible in FO, then parity over sets is not expressible in SOF . Therefore,
SOF is strictly included in SO.

2. Preliminaries

We only consider finite relational structure.
A vocabulary σ is a set of relational symbols {P1, . . . , Ps} with associated

arities, r1, . . . , rs ≥ 1. A σ-structure (also called model or relational database
instance) A = 〈A,PA1 , . . . , PAs 〉 consists of a non empty set A called domain of
A and a relation PAi ⊆ Ari for each relation symbol Pi in σ for 1 ≤ i ≤ s. The
domain of A is denoted with A or dom(A).

An m-ary query q, for m ≥ 1 is a function which maps structures of a
fixed vocabulary σ to m-ary relations on the domain of the structures, and
which preserves isomorphisms, i. e., when f is an isomorphism from A to B
then t̄ ∈ q(A) iff f(t̄) ∈ q(B). A 0-ary query, also called Boolean query, is a
function from a class of σ-structures to {0,1} and can be identified with a class
of σ-structures. By a class of structures in Bσ we means a class closed under
isomorphism.

For the definitions of syntax and semantics of FO see [9] among others.
The truth value of a formula ϕ, A |= ϕ(x1, . . . , xn)[v], with free variables

x1, . . . , xn, only depends on the values assigned by the valuation v to the free
variables. Therefore, we denote with A |= ϕ[a1, . . . , an] the truth value of the ϕ
in the structure A for a valuation that assigns to the free variable xi the value
ai for 1 ≤ i ≤ n. Then a formula ϕ(x1, . . . , xn) with n free variables defines an
n-ary relation on A, ϕA = {(a1, . . . , an) ∈ An|A |= ϕ(x1, . . . , xn)[a1, . . . , an]}.

FOk is the fragment of FO where we use up to k different variables.



In second order logic we add a set of second order variables which range over
relations instead of elements of the structure domain.

Another way to extend the logic FO is by allowing conjunction and disjunc-
tion over sets of formulae with arbitrary cardinality, then we have the infinitary
logic L∞,ω. The logic Lk∞,ω is the fragment of L∞,ω where we use up to k different
variables. The logic Lω∞,ω is the union of the fragments Lk∞,ω for k ≥ 1.

2.1. Element Types

Let A be a structure and ā be an l-tuple of elements of A for l ≥ 1, we define
the FO type of ā in A, denoted by typeFOA (ā), as the set of FO formulae, ϕ,
with free variables among x1, . . . , xl such that A |= ϕ[a1, . . . , al]. A set τ of FO
formulae is an FO type iff τ is the FO type for some tuple in some structure. If
τ is an FO type, we say that the tuple ā realize τ in A iff τ = typeFOA (ā).

Let A and B be σ-structures and ā, b̄ be two tuples of the same length in the
structures A and B respectively. (A, ā) ≡FO (B, b̄) iff typeFOA (ā) = typeFOB (b̄).
That is, two tuples of possibly different structures have the same FO type when
they satisfy the same (maximally consistent) set of FO formulae. Let k ≥ 1, and
τ be an FO type, a formula ϕ(x̄) ∈ τ is called an isolating formula of FO type τ
for k-tuples when for all pairs of structures A, B in Bσ and tuples ā ∈ Ak, b̄ ∈ Bk
it holds that A |= ϕ(x)[ā] and B |= ϕ(x)[b̄] iff τ = typeFOA (ā) = typeFOB (b̄).

In a similar way we can define typekA(ā) and ≡k for the logic FOk.

Fact 1 Let l ≥ 1, A a finite σ-structure and ā and b̄ be two l-tuples on A.
(A, ā) ≡FO (A, b̄), if and only if, there is an automorphism f such that f(ai) = bi
for 1 ≤ i ≤ l.

3. Semantic Restrictions of SO

A. Dawar in [2] introduced a restriction on second order logic (SOω)by re-
stricting the class of relations that the quantified second order variables can be
assigned to by valuations. In SOω, the second order variables can only contain
relations which are closed under the equivalence relation ≡k for some k ≥ 1. This
implies that we cannot assign arbitrary relations to the variables. The relations
have to be unions of FOk types, i.e., they have to be unions of equivalence classes
of ≡k.

In [7] we introduced the logic SOF as a restriction of the second order logic
where the second order quantifiers range over relations closed under the equiva-
lence relation ≡FO, i.e., the quantifiers range over relations which are unions of
FO types. These relations are redundant in the sense of [5].

Let k ≥ 1. For a k-ary relation variable R, we define the second order quan-
tifier ∃FR with the following semantics: A |= ∃FRϕ[v] if and only if there exists
a relation S ⊆ Ak such that S is closed under the equivalence relation ≡FO in
A for k-tuples, and A |= ϕ[v SR ]. As usual ∀FRϕ is an abbreviation of ¬∃FR¬ϕ.

We add the following formation rules to the FO formation rules to obtain
the formulae of SOF : 1) If R is a k-ary second order variable, for k ≥ 1, and



x1, . . . , xk are first order variables, then R(x1, . . . , xk) is a formula (atomic) of
SOF . 2) If ϕ is an SOF formula, and R is a k-ary second order variable, then
∃FRϕ and ∀FRϕ are formulae of SOF . The fragment Σ1,F

i of SOF consists of
the formulae of SOF which have a prefix of i alternated blocks of second order
quantifiers followed by an FO formula. The prefix must begin with an existential
quantifier block. Then, we can define: SOF=

⋃
iΣ

1,F
i .

4. Collapse of SOF to FO

Before we show the reduction to FO we will see that the FO types for r-tuples
realized in a particular structure can be expressed by means of FO formulae with
r free variables.

When we use second order quantification we extend the structure with rela-
tions. In SOF we extend the structure with redundant relations in the sense that
has been studied in the work of F. Ferrarotti, A. Paoletti and the second author
in [5]. In the extended structure 〈A, R〉 where R is an r-ary relation closed un-
der FO types for r-tuples for r ≥ 1, the equivalence relation ≡FO for r-tuples is
the same for the original structure and the extended structure. That is, for all
ā, b̄ ∈ Ar, (A, ā) ≡FO (A, b̄) iff (〈A, R〉, ā) ≡FO (〈A, R〉, b̄). This is not true in
SO where the quantified relations can break the FO types. The following lemma
is from [5].

Lemma 1. Let A be a σ-structure. Let R be a r-ary relation closed by FO types
for r-tuples in A. Let ā ∈ R and b̄ ∈ Ar. There is formula ϕā(x1, . . . , xr) of
FO(σ) such that A |= ϕā(x1, . . . , xr)[b̄] iff tpFOA (ā) = tpFOA (b̄).

The proof uses the diagram, ∆A, of the structure A. Let |dom(A)| = n
and v : {x1, . . . , xn} −→ dom(A) be an injective valuation such that v(xi1) =
a1, . . . , v(xir ) = ar for 1 ≤ i1, . . . , ir ≤ n, then ϕā(y1, . . . , yr) ≡ ∃x1 . . . ∃xn (δA∧
(
∧

1≤i<j≤n xi 6= xj) ∧ ∀xn+1(
∨

1≤i≤n xn+1 = xi) ∧ (xi1 = y1 ∧ · · · ∧ xir = yr))
where

δA =
∧
R∈σ
{R(xi1 , . . . , xir ) : A |= R(xi1 , . . . , xir ) y 1 ≤ i1, . . . , ir ≤ n}∧∧

R∈σ
{¬R(xi1 , . . . , xir ) : A 6|= R(xi1 , . . . , xir ) y 1 ≤ i1, . . . , ir ≤ n}

that is, δA is the conjunction of the atomic formulae and negated atomic formulae
that hold in A.

The formula above, without the conjunction (xi1 = y1∧· · ·∧xir = yr), is the
diagram of A. It is known that for all structure B, B |= ∆A iff B is isomorphic
to A.

The Lemma below is well known and holds for many logic used in Finite
Model Theory. We include a proof for Σ1,F

k because we will make use of the
construction later.



Lemma 2. Let A be σ-structure and ψ be a sentence in Σ1,F
k for k ≥ 1. There

exists a sentence ψ̂A in FO(σ) such that A |= ψ iff A |= ψ̂A.

Proof. Let ψ ≡ ∃FX11 . . . ∃FX1s1∀FX21 . . . ∀FX2s2 . . . QXk1 . . . QXksk

ϕ(X11, . . . , X1s1 , X21, . . . , X2s2 , . . . , Xk1, . . . , Xksk
) where Q = ∃F when k is odd

or Q = ∀F when k is even.
Let RA1 , . . . , R

A
nr

be all the r-ary relations closed by FO types for r-tuples
on A, then we can define each relation with an FO formula using the formulae
defined in the Lemma 1.

(A, RAj ) |= Rj(y1, . . . , yr)[b1, . . . , br] iff A |=
∨
ā∈RAj

ϕā(y1, . . . .yr)[b1, . . . , br] ,

for 1 ≤ j ≤ nr. We define φ̂j ≡
∨

ā∈RAj

ϕā(y1, . . . .yr).

Then A |= ∃FX11 . . . ∃FX1s1 ∀FX21 . . . ∀FX2s2 . . . QXk1 . . . QXksk
ϕ(X11,

. . . , X1s1 , X21, . . . , X2s2 , . . . , Xk1, . . . , Xksk
) iff A |= ψ̂A, with

ψ̂A ≡
∨

1≤j11≤nr11

· · ·
∨

1≤j1s1≤nr1s1

∧
1≤j21≤nr21

· · ·
∧

1≤j2s2≤nr2s2

. . .
(∨

/
∧)

1≤jk1≤nrk1

. . .
(∨

/
∧)

1≤jksk
≤nrksk

ϕ(φ̂j11/X11, . . . , φ̂j1s1
/X1s1 , . . . φ̂j21/X21, . . . ,

φ̂j2s2
/X2s2 , . . . , φ̂jk1/Xk1, . . . , φ̂jksk

/Xksk
),

where nrtu
, for 1 ≤ t ≤ k and 1 ≤ u ≤ st, is the number of different rtu-ary

relations closed by FO types for rtu-tuples.
In this way the second order existential quantifiers are replaced by disjunc-

tions over all rtu-arity relations RAjtu
closed by FO types for rtu-tuples. Theses

relations are definible by the formulae φ̂jtu
belonging to FO(σ). Similarly, the

second order universal quantifiers are replaced by conjunctions. ut

Looking at the proof of Lemma 2, note that the formula ψ̂A depends on the
σ-structure A. That is, given the set of formulae Ψ̂ = {ψ̂A ∈ FO(σ)|A ∈ Bσ},
if we fix the σ-structure A, then the formula ψ ∈ SOF (σ) is equivalent to the
formula ψ̂A ∈ Ψ̂ .

We will see now a property that we can define over a class C in order to reduce
a formula ψ ∈ SOF (σ) to an equivalent formula ψ̂C ∈ FO(σ) that holds for every
structure in C, not only for a single structure A ∈ C (module isomorphism).

Definition 1. Let C ⊆ Bσ be a class of structures and k ≥ 1. A finite set of
formulae Φk is a set of intra-isolating formula for FO types for k-tuples over C
when:

i) For every structure A ∈ C, every ā, b̄ ∈ Ak and ϕk ∈ Φk it holds: if A |=
ϕk(x1, . . . , xk)[ā] and A |= ϕk(x1, . . . , xk)[b̄] then typeFOA (ā) = typeFOA (b̄)

ii) For every structure A ∈ C, and every ā, b̄ ∈ dom(A)k, if typeFOA (ā) =
typeFOA (b̄) then there exists ϕi ∈ Φk such that A |= ϕi(x1, . . . , xk)[ā] and
A |= ϕi(x1, . . . , xk)[b̄], and for all ϕj ∈ Φk with j 6= i it holds A 6|=
ϕj(x1, . . . , xk)[ā] and A 6|= ϕj(x1, . . . , xk)[b̄].



iii) For every structure A ∈ C, and every ā ∈ dom(A)k there exists ϕk ∈ Φk

such that A |= ϕk(x1, . . . , xk)[ā].

A formula ϕk ∈ Φk can express that two k-tuples over a structure in C have
the same FO type even if ϕk is not an isolating formula for FO type for k-tuples.
Note that Def. 1 is based on tuples of the same structure and does not consider
the case when the tuples belong to two different structures. Then, it may happen
that the same intra-isolating formula is satisfied by two tuples from two distinct
structures with different FO types. For example over the class of r-ary full trees
with depth h (see example 1), for r ≥ 1, the elements in the same level have
the same FO type. One intra-isolating formula ϕ1(x1) can just express that the
element x1 has depth d with 0 ≤ d ≤ h. Given elements a and b with the same
depth from full trees Tr (r-ary )and Tr+1 ((r + 1)-ary) respectively, then a and
b satisfy the intra-isolating formula ϕ1(x1), but they don’t have the same FO
type, i.e., typeFOTr

(a) 6= typeFOTr+1
(b). They have different FO type because, for

example, they have a different number of siblings.
Then, if a class C has a set Φk, we can define each k-ary relation closed by

FO types for k-tuples over all structures in C. We recall that a relation closed
by FO types over A is the union of FO types realized in A. And by making
the disjunction of different intra-isolating formulae of Φk we have unions of FO
types.

Lemma 3. Let C be a class of structures, k ≥ 1 and Φk be a set of intra-isolating
formulae for FO types for k-tuples over C. Then every k-ary relation closed by
FO types for k-tuples RA ⊆ dom(A)k with A ∈ C is definable from Φk.

Proof. By definition of Φk, for each A, and each ā ∈ dom(A)k there exist a
formula ϕkā ∈ Φk such that A |= ϕkā(x1, . . . , xk)[ā]. By Def. 1, ϕkā(x1, . . . , xk) is
satisfied for k-tuplas on A that have the same FO type as ā. Then every relation
closed by FO types RA ⊆ dom(A)k is definable with the following formula:
ϕ(x1, . . . , xk) ≡

∨
ā∈RA ϕ

k
ā(x1, . . . , xk). ut

Lemma 4. Let C be a class of structures, k ≥ 1 and Φk = {ϕ1, ϕ2, . . . , ϕnk
},

with nk ≥ 1, be a set of intra-isolating formulae for FO types for k-tuples
over C. Then, the set {RA|A ∈ C, RA ⊆ dom(A)k and RA is closed by FO
types } is equal to the set {ϕA|ϕ(x1, . . . , xk) ≡

∨
i∈D

ϕi(x1, . . . , xk), D 6= ∅, D ⊆

{1, 2, . . . , nk} and A ∈ C} ∪ {∅}.

Proof. (⇒)Let RA be a non empty k-ary relation closed by FO types for some
A ∈ C. Then, by the Lemma 3, RA = ϕA such that ϕ(x1, . . . , xk) ≡

∨
ā∈RA

ϕā(x1, . . . , xk) and ϕā(x1, . . . , xk) ≡ ϕi(x1, . . . , xk) for some i ∈ {1, . . . , nk}.
(⇐) Every formula ϕ(x1, . . . , xk) ≡

∨
i∈D

ϕi(x1, . . . , xk), for someD ⊆ {1, 2, . . .

, nk} and D 6= ∅, define a relation closed by FO types since the disjunction im-
plies the union of the FO types which are isolated by the formulae ϕi(x1, . . . , xk).
If RA = ∅, then ϕ(x1, . . . , xk) ≡ x1 6= x1 ∧ · · · ∧ xk 6= xk ut



Definition 2. Let k ≥ 1, the class of structures C is a class with bounded FO
types for k-tuples if C has a set Φk of intra-isolating formulae for k-tuples. C is
a class with bounded FO types when for each k ≥ 1 it holds that C is a class
with bounded FO types for k-tuples.

Theorem 1. Let C be a class with bounded FO types, then SOF is equivalent to
FO on C.

Proof. Let A be σ-structure in C, and ψ ≡ ∃FX11 . . . ∃FX1s1∀FX21 . . . ∀FX2s2

. . . QXk1 . . . QXksk
ϕ(X11, . . . , X1s1 , X21, . . . , X2s2 , . . . , Xk1, . . . , Xksk

) where
Q = ∃F when k is odd and Q = ∀F when k is even. Let Φrtu = {ϕ1, . . . , ϕnrtu

}
be a set of intra-isolating formulae for FO types for rtu-tuples for C with nrtu

the cardinality of such set.
We define the set Γ̂rtu = {γ̂rij |γ̂rtu =

∨
s∈D

ϕs(x1, . . . , xrtu) for D ⊆ {1, . . . ,

nrtu
}, D 6= ∅ and ϕs ∈ Φrtu} ∪ {x1 6= x1 ∧ · · · ∧ xrtu

6= xrtu
}. Note that Γ̂rtu

is
the set of FO(σ) formulas that define every possible rtu-ary relation closed by
FO types for rtu-tuples on C.

Then

A |=∃FX11 . . . ∃FX1s1∀FX21 . . . ∀FX2s2 . . . QXk1 . . . QXksk
ϕ(X11, . . . , X1s1 ,

X21, . . . , X2s2 , . . . , Xk1, . . . , Xksk
) iff A |= ψ̂C .

where

ψ̂C ≡
∨

γ̂r11∈Γ̂r11

· · ·
∨

γ̂r1s1
∈Γ̂r1s1

∧
γ̂r21∈Γ̂r21

· · ·
∧

γ̂r2s2
∈Γ̂r2s2

. . .
(∨

/
∧)

γ̂rk1∈Γ̂rk1

. . .

(∨
/
∧)

γ̂rksk
∈Γ̂rksk

ϕ(γ̂r11/X11, . . . , γ̂r1s1
/X1s1 , . . . γ̂r21/X21, . . . ,

γ̂r2s2
/X2s2 , γ̂rk1/Xk1, . . . , γ̂rksk

/Xksk
).

We note that all the sets Γ̂rtu
, for 1 ≤ t ≤ k and 1 ≤ u ≤ st, are finite by

Lemma 4. Then, since all disjunctions and conjunctions are finite, ψ̂C ∈ FO. ut

Example 1. Fixing h ≥ 1, the class of full trees with arbitrary arity r and depth
h is an example of a class with bounded FO types. This class has an infinite
number of FO types but has a finite set of intra-isolating formulae. Given a
tuple ā in an r-ary full tree Tr and a tuple b̄ in an (r + 1)-ary full tree Tr+1,
the FO type of ā is different to the FO type of b̄ but they can satisfy the same
intra-isolaiting formula. Nevertheless, for a particular full tree Tr if two tuples on
Tr satisfy the same intra-isolating formula then they have the same FO type. In
every full tree there are h+1 different FO types for elements. Since the elements
at the same level have the same FO type. As an example, let h = 2 and r = 3,
then we have the following FO types for pairs of elements:

We have an equivalence class C1 for the pairs of elements which are siblings
at level 2. This class is symmetrical. The equivalence class C2 consists of pairs



which are “cousins” at level 2. This class is symmetrical. The equivalence class
C3 consists of pairs of elements which are siblings at level 1. C3 is symmetrical.
The equivalence class C4 consists of pairs where the first component is an element
in level 1 and the second component is a child in level two. C4 has an associated
class C5 with the symmetrical pairs. The class C6 consists of pairs where the
first component is the root node and the second component is an element of
level 2. C6 has an associated class C7 with the symmetrical pairs. The class C8

consists of the pairs where the first component is an element of level 1 and the
second component is an element of level two which is not a child of the element
of level 1. C8 has an associated class C9 with the symmetrical pairs. The class
C10 consists of pairs where the first component is the root node and the second
component is a child of root node. C10 has an associated class C11 with the
symmetrical pairs. The class C12 consists of a reflexive pair with the root node.
The class C13 consists of reflexive pairs with elements of level 1. The class C14

consists of reflexive pairs with elements of level 2. All of these classes of pairs can
be expressed with FO formulae with two free variables and all of them satisfy
an unique intra-isolating formula.

When we consider 3-tuples instead of 2-tuples the combinatorics grow but
they remain finite independently of the arity of the tree. Then all queries in SOF

on the class of full tree with fixed depth can be translated to equivalent queries
in FO.

5. SOF over Sets

A special case of structures with bounded FO types is any recursive class of
structures with a unary vocabulary. Note that in these structures the relations
are sets. We can build formulae which isolate the FO types for elements in a
given structure considering how each element participates in the different sets.
Using this formulae we can build formulae which isolate the FO type for k-tuples
in a given structure. It is interesting to see that, fixing a unary vocabulary, there
is a finite set of intra-isolating formulae for FO types for k-tuples.

Definition 3. Let σ = {S1, . . . , St} be a unary vocabulary. A binary conjunction
is a formula ϕi1...it(x) = li1 ∧ · · · ∧ lit with lij = Sj(x) when ij = 1, and
lij = ¬Sj(x) when ij = 0 for 1 ≤ j ≤ t and ij ∈ {0, 1}.

For example, for σ = {S1, S2, S3} we have the following binary conjunctions:
ϕ000(x) = ¬S1(x) ∧ ¬S2(x) ∧ ¬S3(x)
ϕ001(x) = ¬S1(x) ∧ ¬S2(x) ∧ S3(x)
...
ϕ111(x) = S1(x) ∧ S2(x) ∧ S3(x)

Lemma 5. Let σ = {S1, . . . , St} be a unary vocabulary with t ≥ 1. Let C ⊆ Bσ
and Φ1 = {ϕi(x)|i ∈ {0, 1}t and ϕi is a binary conjunction}. Then, Φ1 is a set
of intra-isolating formulae for FO types for elements on C.



Proof. We must prove that Φ1 satisfies Def. 1.
Let A ∈ C. First we will see that condition i) holds. Let a1 and a2 be elements

in dom(A) such that A |= ϕi(x)[a1] and A |= ϕi(x)[a2] for i ∈ {0, 1}t, then the
bijective function f that exchanges a1 with a2 and fixes the other elements in
dom(A) is an automorphism on A. For Sj ∈ σ, with 1 ≤ j ≤ t it holds that A |=
Sj(x)[a1]⇔ A |= Sj(x)[a2] since Sj is in ϕi(x) either positively or negatively. All
elements al 6∈ {a1, a2} trivially satisfy A |= Sj(x)[al]⇔ A |= Sj(x)[al]. Then for
all al ∈ dom(A) and for all Sj ∈ σ it holds A |= Sj(x)[al] ⇔ A |= Sj(x)[f(al)].
Therefore typeFOA (a1) = typeFOA (a2).

For condition ii) Let a and b satisfy typeFOA (a) = typeFOA (b), let i = i1 . . . it
with i ∈ {0, 1}t and ij = 0 when A 6|= Sj(x)[a] and ij = 1 when A |= Sj(x)[a]
for 1 ≤ j ≤ t, then A |= ϕi1...it(x)[a] and A |= ϕi1...it(x)[b] but A 6|= ϕr(x)[a]
and A 6|= ϕr(x)[b] for r ∈ {0, 1}t and r 6= i.

We prove condition iii).For i and j as above, let a be an element in dom(A).
Let ij = 0 when A |= ¬Sj(x)[a] and ij = 1 when A |= Sj(x)[a]. Then A |=
ϕi1,...,it(x)[a] and ϕi1,...,it(x) ∈ Φ1. ut

Lemma 6. Let k ≥ 1, t ≥ 1, σ = {S1, . . . , St} a unary vocabulary and C ⊆ Bσ.
Let Φk = {ϕu1(x1)∧ · · · ∧ϕuk

(xk)| ϕul
is a binary conjunction, ul ∈ {0, 1}t and

1 ≤ l ≤ k}. Φk is a set of intra-isolating formulae for FO types for k-tuples on
C.

Proof. Let A ∈ C. We prove the condition i) of Def. 1. Let ā, b̄ ∈ dom(A)k and
ϕu1(x1) ∧ · · · ∧ ϕuk

(xk) ∈ Φk such that A |= ϕu1(x1) ∧ · · · ∧ ϕuk
(xk)[ā] and

A |= ϕu1(x1) ∧ · · · ∧ ϕuk
(xk)[b̄]. Let fl be the bijective function that exchange

al with bl for 1 ≤ l ≤ k and fixes the other elements in dom(A), fl is an
automorphism as we show in Lemma 5. Then the composition f1 ◦ · · · ◦ fk is
an automorphism that exchanges the k-tuple ā with the k-tuple b̄, and fixes the
other elements in dom(A). Therefore typeFOA (ā) = typeFOA (b̄).

For condition ii) we suppose that for k-tuples ā and b̄ it holds thattypeFOA (ā) =
typeFOA (b̄). Let ϕu1(x1) ∧ · · · ∧ ϕuk

(xk) with ul ∈ {0, 1}t and ul = i1 . . . it such
that ϕi1...,it(x) is as the proof of Lemma 5 and 1 ≤ l ≤ k. Then A |= ϕul

(xl)[al]
and A |= ϕul

(xl)[bl] and for all r ∈ {0, 1}t such that ul 6= r, A 6|= ϕr(xl)[al]
and A 6|= ϕr(xl)[bl] for 1 ≤ l ≤ k. Therefore A |= ϕu1(x1) ∧ · · · ∧ ϕuk

(xk)[ā] and
A |= ϕu1(x1) ∧ · · · ∧ ϕuk

(xk)[b̄],with ϕu1(x1) ∧ · · · ∧ ϕuk
(xk) ∈ Φk and for all

ϕv1(x1) ∧ · · · ∧ ϕvk
(xk) ∈ Φk with v1 . . . vk ∈ {0, 1}t and u1 . . . uk 6= v1 . . . vk it

holds that A 6|= ϕv1(x1) ∧ · · · ∧ ϕvk
(xk)[ā] and A 6|= ϕv1(x1) ∧ · · · ∧ ϕvk

(xk)[b̄]
We prove conowndition iii). Let ā = (a1, . . . , ak) ∈ dom(A)k. Let ulj = 0

when A |= ¬Sj(xl)[al] and ulj = 1 when A |= Sj(xl)[al] for 1 ≤ l ≤ k and
1 ≤ j ≤ t, then A |= ϕul

(xl)[al] for ul = ul1 . . . ult . Therefore A |= ϕu1(x1) ∧
· · · ∧ ϕuk

(xk)[ā] and ϕu1(x1) ∧ · · · ∧ ϕuk
(xk) ∈ Φk. ut

Theorem 2. Let C be a class of structures with unary vocabulary, then SOF is
equivalent to FO on C.

Proof. Let t ≥ 1, and σ = {S1, . . . , St}, and C ∈ Bσ then, for all k ≥ 1,
by Lemma 6, Φk = {ϕu1(x1) ∧ · · · ∧ ϕuk

(xk)|ϕul
is a binary conjuntion, ul ∈



{0, 1}t and 1 ≤ l ≤ k}, is a set of intra-isolating formulae for FO types for k-
tuples over C. Therefore, by Theorem 1, SOF is equivalent to FO on C. ut

Among other queries, the parity query3 over sets is not expressible in SOF

since as it is well known parity is not expressible in FO. However this query is
expressible in SO for structures of arbitrary vocabulary, in particular for unary
vocabulary. Then, the following Corollary is immediate.

Corollary 1. SOF is strictly included in SO.

6. Conclusion

In the existential fragment Σ1,F
1 of SOF we can express co-NP problems .

In [4] we proved that there are NP complete problems that can be expressed in
Σ1,F

1 . However we cannot express in full SOF the parity query which is in P.
Then we can conclude that different logics allow orthogonal classifications of the
problems with respect to the classic classification of computational complexity.
These orthogonal classifications can be used to refine the classic computational
complexity classes, providing us more information about certain problems.
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