CAPÍTULO 15

"APÉNDICES"

15.1 APÉNDICE I (ÁNGULOS DIEDROS)

15.1.1 Definición y nomenclatura de ángulo diedro

De acuerdo con las recomendaciones de la International Union of Pure and Applied Chemistry, IUPAC,^[1] en una cadena de átomos A–B–C–D se define como ángulo de torsión o ángulo diedro, al ángulo que existe entre el plano que contiene los átomos A, B y C y aquel que contiene a los átomos B, C y D. En una proyección de Newman, el ángulo de torsión es el ángulo entre los enlaces de dos grupos especificados, uno próximo al observador y el otro distante. De esta manera, el ángulo de torsión existente entre los grupos A y D se considera positivo si el enlace cercano A–B se encuentra rotado en una dirección siguiendo las agujas del reloj hasta un valor de 180°, mientras que un ángulo de torsión negativo requiere una rotación en el sentido inverso.

Los arreglos correspondientes a ángulos de torsión entre 0° y \pm 90° son llamados syn, aquellos correspondientes a ángulos entre \pm 90° y 180° son llamados anti. Similarmente, para ángulos de torsión comprendidos entre 30° y 150° ó entre – 30° y –150°, los arreglos moleculares se denominan clinal, y aquellos entre 0° y \pm 30° ó \pm 150° y 180°, se designan como periplanar. Los dos tipos de términos pueden combinarse de manera que definen cuatro rangos de ángulos de torsión, de 0° a \pm 30° synperiplanar (*sp*); de 30° a 90° y de –30° a –90° synclinal (*sc*), de 90° a 150° y de –90° a –150° anticlinal (*ac*) y de \pm 150° a 180° antiperiplanar (*ap*). En la Figura 16.1 se muestra una proyección de Newman a lo largo del enlace B–C, con el enlace C–D alejado del observador y diferentes posiciones del enlace A–B, conjuntamente con las correspondientes definiciones y ángulos diedros.

Las conformaciones synperiplanar y antiperiplanar son también conocidas como conformaciones *syn* y *anti*, respectivamente, y las conformaciones definidas anteriormente como synclinal se conocen como gauche. Esta nomenclatura fue la utilizada mayormente a lo largo de la presente tesis doctoral. Para macromoléculas se

309

recomienda la utilización de los símbolos T, C, G⁺, G⁻, A⁺ y A⁻ (*ap*, *sp*, +*sc*, -*sc*, +*ac* y -*ac*, respectivamente).

Figura 15.1 Proyección de Newman y definición de ángulos diedros recomendada por la IUPAC (tomado de la tesis doctoral de M. F. Erben)^[2]

15.2 APÉNDICE II (ESTRUCTURAS CRISTALINAS)

15.2.1 Datos Cristalográficos

A continuación se muestran los datos cristalográficos resultantes del análisis estructural y del refinamiento de la estructura cristalina de todos los compuestos líquidos medidos utilizando la técnica de difracción de rayos X a bajas temperaturas y la técnica de difracción de rayos X de sólidos cristalinos.

En algunos casos se muestran en tablas los parámetros, como longitudes de enlace y ángulos de enlace para aquellas moléculas para las cuales en el análisis estructural solo se mostró algunos de estos parámetros.

15.2.1.1 CH₃OC(0)SNCO

Tabla 15.1 Datos cristalográficos del análisis estructural y refinamient	to de la estructura de
CH₃OC(O)SNCO	

Empirical formula	$C_3 H_3 N O_3 S$
Formula weight	133.12 Da
Density (calculated)	1.566 g.cm ⁻³
F(000)	408
Temperature	203(2) K
Crystal size	0.3 mm
Crystal color	colorless
Crystal description	cylindric
Wavelength	0.71073 Å
Crvstal svstem	triclinic
Space group	Рī
	a = 8.292(6) Å alfa = 67.290(2)
Unit cell dimensions	<i>b</i> = 9.839(7) Å beta = 71.557(10)
	c = 11.865(8) Å αama = 83.485 (10)
Volume	847.08(10) Å ³
7	6
Cell measurement reflections used	2470
Cell measurement theta min/max	2.36° to 28.26°
Diffractometer control software	Bruker AXS SMART Vers. 5 054 1997/98
Diffractometer measurement device	Siemens SMART CCD area detector system
Diffractometer measurement method	Data collection in omega at 0.3° scan width, one run with 740 frames, phi = 0° , chi = 0°
Theta range for data collection	2.24° to 28.31°
Theta range for data collection Completeness to theta = 28.31°	2 24° to 28 31° 67 6 %
Theta range for data collection Completeness to theta = 28.31° Index ranges	2 24° to 28.31° 67 6 % -9<=h<=11 -13<=k<=12 -13<=l<=13
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction	2 24° to 28.31° 67 6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6 02A
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers 6.02A 0 486 mm ⁻¹
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0.486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0.486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03 R.H. Blessing. Acta Cryst. (1995) A51.33-38
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details Max_/ min_transmission	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0.486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03 R.H. Blessing. Acta Cryst. (1995) A51.33-38 1.00 / 0.90
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details Max / min_transmission R(merg) before/after correction	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0.486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03 R.H. Blessing, Acta Cryst. (1995) A51.33-38 1.00 / 0.90 0.0211 / 0.0065
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details Max / min_transmission R(merg) before/after correction Computing structure solution	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0.486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03 R H. Blessing. Acta Cryst. (1995) A51.33-38 1.00 / 0.90 0.0211 / 0.0065 Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details Max / min_transmission R(merg) before/after correction Computing structure solution Computing structure refinement	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6 02A 0.486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03 R.H. Blessing. Acta Cryst. (1995) A51.33-38 1.00 / 0.90 0.0211 / 0.0065 Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details Max / min_transmission R(merg) before/after correction Computing structure solution Computing structure refinement Refinement method	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0.486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03 R H. Blessing, Acta Crvst. (1995) A51.33-38 1.00 / 0.90 0.0211 / 0.0065 Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Eull-matrix least-squares on F ²
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details Max_/ min_transmission R(merg) before/after correction Computing structure solution Computing structure refinement Refinement method Reflections collected	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0 486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03 R H. Blessing Acta Crvst. (1995) A51.33-38 1 00 / 0.90 0 0211 / 0.0065 Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Eull-matrix least-squares on F ² 2703
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details Max / min_transmission R(merg) before/after correction Computing structure solution Computing structure refinement Refinement method Reflections collected Independent reflections	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0.486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03 R.H. Blessing. Acta Crvst. (1995) A51.33-38 1.00 / 0.90 0.0211 / 0.0065 Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Eull-matrix least-squares on F^2 2703 1227 [<i>R</i> (int) = 0.0333]
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details Max / min_transmission R(merg) before/after correction Computing structure solution Computing structure refinement Refinement method Reflections collected Independent reflections Data / restraints / parameters	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0 486 mm ⁻¹ Bruker AXS SADABS program multiscan V2 03 R H. Blessing. Acta Crvst. (1995) A51.33-38 1 00 / 0.90 0 0211 / 0.0065 Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Bruker AXS SHELXTL Vers. 5.10. DOS/WIN95/NT Eull-matrix least-squares on F^2 2703 1227 [<i>R</i> (int) = 0.0333] 892 / 0 / 101
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details Max / min_transmission R(merg) before/after correction Computing structure solution Computing structure refinement Refinement method Reflections collected Independent reflections Data / restraints / parameters Goodness-of-fit on F ²	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0 486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03 R H. Blessing. Acta Crvst. (1995) A51.33-38 1 00 / 0.90 0 0211 / 0.0065 Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Eull-matrix least-squares on F^2 2703 1227 [<i>R</i> (int) = 0.0333] 892 / 0 / 101 1 012
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details Max / min_transmission R(merg) before/after correction Computing structure solution Computing structure refinement Refinement method Reflections collected Independent reflections Data / restraints / parameters Goodness-of-fit on F ² Weighting details	2 24° to 28.31° 67.6% -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0.486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03 R H. Blessing. Acta Crvst. (1995) A51.33-38 1.00 / 0.90 0.0211 / 0.0065 Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Eull-matrix least-squares on F ² 2703 1227 I <i>R</i> (int) = 0.03331 892 / 0 / 101 1.012 w = 1/[σ^2 (Fo ²)+ (0.1146*P) ²], where P = (Fo ² +2Fc ²)/3
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details Max / min_transmission R(merg) before/after correction Computing structure solution Computing structure refinement Refinement method Reflections collected Independent reflections Data / restraints / parameters Goodness-of-fit on F ² Weighting details Final R indices [I>2sigma(1)]	2 24° to 28.31° 67.6% -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0.486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03 R H. Blessing. Acta Crvst. (1995) A51.33-38 1.00 / 0.90 0.0211 / 0.0065 Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Eull-matrix least-squares on F ² 2703 1227 IR(int) = 0.03331 892 / 0 / 101 1.012 w = 1/[σ^2 (Fo ²)+ (0.1146*P) ²], where P = (Fo ² +2Fc ²)/3 R1 = 0.0592 wR2 = 0.1474
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details Max_/ min_transmission R(merg) before/after correction Computing structure solution Computing structure refinement Refinement method Reflections collected Independent reflections Data / restraints / parameters Goodness-of-fit on F ² Weighting details Final R indices [I>2sigma(1)] R indices (all data)	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0 486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03 R H. Blessing Acta Crvst. (1995) A51.33-38 1 00 / 0.90 0 0211 / 0.0065 Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Full-matrix least-squares on F ² 2703 1227 [<i>R</i> (int) = 0.0333] 892 / 0 / 101 1 012 w = 1/[σ^2 (Fo ²)+ (0.1146*P) ²], where P = (Fo ² +2Fc ²)/3 <i>R</i> 1 = 0.0592 <i>wR</i> 2 = 0.1474 <i>R</i> 1 = 0.0787 <i>wR</i> 2 = 0.1639
Theta range for data collection Completeness to theta = 28.31° Index ranges Computing data reduction Absorption coefficient Computing absorption correction Absorption correction details Max / min_transmission R(merg) before/after correction Computing structure solution Computing structure refinement Refinement method Reflections collected Independent reflections Data / restraints / parameters Goodness-of-fit on F ² Weighting details Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	2 24° to 28.31° 67.6 % -9<=h<=11 -13<=k<=12 -13<=l<=13 Bruker AXS SAINT program Vers. 6.02A 0.486 mm ⁻¹ Bruker AXS SADABS program multiscan V2.03 R H. Blessing. Acta Crvst. (1995) A51.33-38 1.00 / 0.90 0.0211 / 0.0065 Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT Eull-matrix least-squares on F ² 2703 1227 IR(int) = 0.03331 892 / 0 / 101 1.012 w = 1/[σ^2 (Fo ²)+ (0.1146*P) ²], where P = (Fo ² +2Fc ²)/3 R1 = 0.0592 wR2 = 0.1474 R1 = 0.0787 wR2 = 0.1639 0.003(5)

Fabla 15.1 Coordenadas atómicas (x 10 ⁴) y coeficientes de los desplazamientos isotrópicos equivalentes
$(Å^2 \times 10^3)$ obtenidos del análisis de difracción de rayos X a baja temperatura para el CH ₃ OC(O)SNCO.
U(eq) definido como un tercio de la traza del tensor Uij ortogonalizado

	x	У	z	U(eq)
H(1A)	6691	-3391	7745	82
H(1B)	6492	-3684	9193	82
H(1C)	7905	-2571	8081	82
S(1)	4146(1)	657(1)	7348(1)	42(1)
O(1)	5549(2)	-1745(2)	8291(2)	47(1)
N(1)	4561(2)	1847(2)	5845(2)	43(1)
C(1)	2762(3)	-2948(2)	8330(2)	54(1)
O(2)	6750(1)	-591(1)	6168(1)	45(1)
C(2)	5723(2)	-693(2)	7169(2)	35(1)
C(3)	5627(2)	1891(2)	4874(2)	42(1)
O(3)	6562(2)	2098(2)	3870(2)	62(1)

Tabla 15.2 Parámetros de desplazamiento anisotrópico obtenidos del análisis de difracción de rayos Xpara el CH₃OC(O)SNCO. El factor exponencial de los desplazamientos anisotrópicos toma la forma: -

$2\pi^2$ [h ² a ^{*2} U11 +	+ 2 h k a* b* U ₁₂]
---	---------------------------------

	U11	U22	U33	U23	U13	U12
S(1)	44(1)	45(1)	36(1)	-17(1)	-11(1)	14(1)
O(1)	58(1)	42(1)	33(1)	-9(1)	-14(1)	17(1)
N(1)	47(1)	41(1)	35(2)	-10(1)	-14(1)	15(1)
C(1)	66(1)	43(1)	52(2)	-14(1)	-25(1)	22(1)
O(2)	42(1)	46(1)	39(1)	-15(1)	-8(1)	11(1)
C(2)	37(1)	35(1)	35(2)	-14(1)	-14(1)	5(1)
C(3)	47(1)	33(1)	45(2)	-13(1)	-17(1)	10(1)
O(3)	69(1)	50(1)	42(1)	-8(1)	-1(1)	14(1)

15.2.1.2 CH₃OC(0)SN[(CO)(CO)C₆H₄]

	(CO)(CO)C ₆ H ₄]		
Empirical formula	C ₁₀ H ₇ NO ₄ S		
Formula weight	237.23		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system, space group	monoclinic, P2 ₁ /c		
Unit cell dimensions	a= 6.795(1) Å alpha=90°		
	b= 5.109(1) Å beta =90.310(3)°		
	c= 30.011(3) Å gamma=90°		
Volume	1041.8(3) Å ³		
Z, Calculated density	4, 1.512 Mg/m ³		
Absorption coefficient	0.308 mm ⁻¹		
F(000)	488		
Crystal size	0.16 x 0.12 x 0.08 mm		
Theta range for data collection	3.00 to 26.00°		
Limiting indices	-5≤h≤8, -6≤k≤4, -27≤1≤36		
Reflections collected / unique	3342 / 1889 [R(int)=0.07]		
Completeness to theta = 26.00°	91.6 %		
Max. and min. transmission	0.9758 and 0.9524		
Refinement method	Full-matrix least-squares on F2		
Data / restraints / parameters	1889 / 0 / 146		
Goodness-of-fit on F2	1.052		
Final R indices $[I>2\sigma(I)]$	R1 = 0.0453, wR2 = 0.1008		
R indices (all data)	R1 = 0.0686, wR2 = 0.1151		
Largest diff. peak and hole	0.223 and -0.335 e.A-3		

 Tabla 15.3 Datos cristalográficos del análisis estructural y refinamiento de la estructura del

 CH₃OC(O)SN[(CO)(CO)C₆H₄]

Tabla 15.4 Coordenadas atómicas (x 10⁴) y coeficientes de los desplazamientos isotrópicos equivalentes(Ų x 10³) obtenidos del análisis de difracción de rayos X para el CH₃OC(O)SN[(CO)(CO)C₆H₄]. U(eq)definido como un tercio de la traza del tensor Uij ortogonalizado

átomo	x	У	z	U(eq)
S	9950(1)	14714 (1)	1001(1)	35(1)
O(1)	11027(2)	11472 (4)	1837(1)	40(1)
O(2)	5995(2)	12064 (4)	816(1)	44(1)
O(3)	11044(3)	10275 (3)	610(1)	42(1)
O(4)	12017(2)	14126 (3)	308(1)	35(1)
Ν	8734(3)	12370 (4)	1280(1)	32(1)
C(1)	9471(3)	11031 (5)	1657(1)	31(1)
C(2)	7947(3)	9085 (5)	1774(1)	29(1)
C(3)	7899(4)	7314 (5)	2121(1)	35(1)
C(4)	6259(4)	5684 (5)	2147(1)	43(1)
C(5)	4739(4)	5836 (6)	1835(1)	43(1)
C(6)	4797(4)	7638 (5)	1488(1)	38(1)
C(7)	6421(3)	9257 (5)	1464(1)	30(1)
C(8)	6888(3)	11332 (5)	1139(1)	32(1)
C(9)	11120(3)	12616 (5)	604(1)	31(1)
C(10)	13010(4)	12720 (6)	-49(1)	41(1)

Tabla 15.5 Coordenadas de hidrógeno (x 10⁴) y parámetros de desplazamiento isotrópicos (Å² x 10³)para la CH₃OC(O)SN[(CO)(CO)C₆H₄]

átomo	x	У	z	U (eq)
H(3)	8938	7211	2333	42
H(4)	6177	4443	2382	52
H(5)	3644	4691	1860	52
H(6)	3758	7750	1276	46
H(10A)	12095	11469	-186	61
H(10B)	14148	11778	73	61
H(10C)	13454	13970	-275	61

S-N		1.682(2)
S-C(9)		1.792(3)
O(1)-C(1)		1.206(3)
O(2)-C(8)		1.199(3)
O(3)-C(9)		1.197(3)
O(4)-C(9)		1.326(3)
O(4)-C(10)		1.460(3)
N-C(1)		1.410(3)
N-C(8)		1.425(3)
C(1)-C(2)		1.480(3)
C(2)-C(3)		1.381(3)
C(2)-C(7)		1.392(3)
C(3)-C(4)		1.394(4)
C(4)-C(5)		1.391(4)
C(5)-C(6)		1.391(4)
C(6)-C(7)		1.382(3)
C(7)-C(8)		1.476(4)
N-S-C(9)		97.3(1)
C(9)-O(4)-C	C(10)	114.9(2)
C(1)-N-C(8)	111.5(2)
C(1)-N-S	-	124.9(2)
C(8)-N-S		123.4(2)
O(1)-C(1)-N	١	125.1(2)
O(1)-C(1)-C	C(2)	129.2(2)
N-C(1)-C(2)	105.7(2)
C(3)-C(2)-C	C(7)	121.7(2)
C(3)-C(2)-C	C(1)	129.7(2)
C(7)-C(2)-C	C(1)	108.6(2)
C(2)-C(3)-C	2(4)	117.1(2)
C(5)-C(4)-C	2(3)	121.4(3)
C(4)-C(5)-C	C(6)	121.1(3)
C(7)-C(6)-C	C(5)	117.5(3)
C(6)-C(7)-C	2(2)	121.3(2)
C(6)-C(7)-C	2(8)	129.8(2)
C(2)-C(7)-C	2(8)	109.0(2)
O(2)-C(8)-N	١	124.5(2)
O(2)-C(8)-C	C(7)	130.3(2)
N-C(8)-C(7)	105.2(2)
O(3)-C(9)-C	D(4)	127.7(3)
O(3)-C(9)-S	3	124.6(2)
O(4)-C(9)-S	6	107.7(2)

 Tabla 15.6 Longitudes de enlace (Å) y ángulos de enlace (°) obtenidos por difracción de rayos X para la

 CH₃OC(O)SN[(CO)(CO)C₆H₄]

15.2.1.3 CH₃OC(0)SSCF₃

Empirical formula	$C_3 H_3 F_3 O_2 S_2$
Formula weight	192.17 Da
Density (calculated)	1.765 g cm ⁻³
F(000)	384
Temperature	190(2) K
Crystal size	0.3 mm diameter
Crystal color	colorless
Crystal description	cylindric
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	P 1
Unit cell dimensions	$a = 6.4698(5)$ Å $\alpha = 97.219(6)^{\circ}$
	$b = 9.0499(8) \text{ Å}$ $\beta = 93.131(5)^{\circ}$
	$c = 12.5700(11) \text{ Å}$ $\gamma = 96.888(5)^{\circ}$
Volume	723.07(11) Å ³
Z	4
Cell measurement reflections used	9901
Cell measurement theta min/max	2.28° to 27.03°
Diffractometer control software	Bruker AXS APEX 2 Vers. 2.0-2 2006
Diffractometer measurement device	Siemens SMART three axis goniometer with
	APEX II area detector system
Diffractometer measurement method	Data collection strategy APEX 2/COSMO
	chi + / - 10°
Theta range for data collection	1.64° to 27.90°
Completeness to theta = 27.90°	76.2 %
Index ranges	-5<=h<=5, -11<=k<=11, 0<=l<=16
Computing data reduction	Bruker AXS APEX 2 Vers. 2.0-2 2006
Absorption coefficient	0.730 mm ⁻¹
Empirical absorption correction	Bruker AXS TWINABS Vers. 1.05
Max. / min. transmission	0.97 / 0.81
R(merg) before/after correction	0.0534 / 0.0509
Computing structure solution	Bruker AXS SHELXTL Vers. 6.12 W95/98/NT/2000/ME
Computing structure refinement	Bruker AXS SHELXTL Vers. 6.12 W95/98/NT/2000/ME
Refinement method	Full-matrix least-squares on F ²
Reflections collected	36644
Independent reflections	7516 [<i>R</i> (int) = 0.069]
Data / restraints / parameters	5296 / 0 / 184
Goodness-of-fit on F2	1.031
Weighting details	w = 1/[σ ² (Fo ²)+ (0.1365*P) ² +0.2533*P]
	where $P = (Fo^2+2Fc^2)/3$
Final R indices [I>2sigma(I)]	<i>R</i> 1 = 0.0631, <i>wR</i> 2 = 0.1900
R indices (all data)	<i>R</i> 1 = 0.0887, <i>wR</i> 2 = 0.2186
Extinction coefficient	0.004(5)
Largest diff. peak and hole	0.563 and -0.357 eÅ ⁻³

Tabla 15.7 Datos cristalográficos del análisis estructural y refinamiento de la estructura de
 $CH_3OC(O)SSCF_3$

	x	У	Z	U(eq)
S11	2060(2)	2230(1)	6248(1)	45(1)
S21	-1058(2)	2159(1)	6255(1)	47(1)
011	-716(4)	1558(3)	4130(2)	52(1)
O21	-3897(5)	1672(2)	4771(2)	48(1)
C11	2795(7)	4205(4)	6213(3)	52(1)
C21	-1850(7)	1741(3)	4838(2)	40(1)
C31	-4915(7)	1387(4)	3692(3)	57(1)
F11	2176(5)	5056(3)	7044(2)	94(1)
F21	2056(4)	4669(3)	5336(2)	91(1)
F31	4852(4)	4463(3)	6252(2)	73(1)
S12	3799(2)	8330(1)	1004(1)	45(1)
S22	6860(2)	8198(1)	880(1)	45(1)
O12	5730(4)	8116(2)	-1219(2)	48(1)
O22	9108(5)	8059(3)	-679(2)	54(1)
C12	2788(6)	6365(3)	867(3)	46(1)
C22	7096(7)	8113(3)	-553(2)	42(1)
C32	9717(7)	7959(5)	-1781(3)	63(1)
F12	795(4)	6279(2)	1114(2)	64(1)
F22	2824(4)	5674(2)	-128(2)	67(1)
F32	3755(4)	5597(2)	1511(2)	72(1)

Tabla 15.8 Coordenadas atómicas (x 10⁴) y parámetros de desplazamiento isotrópico equivalente (Å² x 10³) obtenidos del análisis de difracción de rayos X para el CH₃OC(O)SSCF₃]. U(eq) está definido como un tercio de la traza del tensor Uij ortogonalizado

Tabla 15.9 Coordenadas de hidrógeno (x 10^4) y parámetros de desplazamiento isotrópicos (Å² x 10^3)para el CH₃OC(O)SSCF₃

	Х	у	Z	U(eq)
H3A1	-4359	2134	3262	85
H3B1	-6387	1427	3744	85
H3C1	-4697	408	3358	85
H3A2	8861	7130	-2209	94
H3B2	11158	7792	-1787	94
H3C2	9546	8871	-2078	94

Tabla 15.10 Parámetros de desplazamiento anisotrópico obtenidos del análisis de difracción de rayos X para el CH₃OC(O)SNCO. El factor exponencial de los desplazamientos anisotrópicos toma la forma: $-2\pi^2$

	U11	U22	U33	U23	U13	U12
S11	39(1)	51(1)	47(1)	10(1)	-1(1)	11(1)
S21	40(1)	67(1)	33(1)	5(1)	7(1)	4(1)
011	46(2)	73(1)	36(1)	-2(1)	8(1)	9(1)
O21	34(2)	65(1)	43(1)	4(1)	1(1)	3(1)
C11	34(3)	55(2)	68(2)	11(2)	-1(2)	7(2)
C21	45(3)	41(1)	34(1)	5(1)	4(1)	2(1)
C31	54(3)	65(2)	48(2)	5(1)	-8(2)	1(2)
F11	83(2)	66(1)	126(2)	-23(1)	29(2)	8(1)
F21	78(2)	78(2)	121(2)	58(2)	-27(2)	-8(1)
F31	43(2)	78(1)	92(2)	6(1)	-1(1)	-3(1)
S12	43(1)	42(1)	50(1)	0(1)	9(1)	10(1)
S22	38(1)	61(1)	34(1)	4(1)	0(1)	1(1)
012	45(2)	62(1)	37(1)	8(1)	-4(1)	7(1)
O22	34(2)	84(2)	45(1)	14(1)	7(1)	10(1)
C12	35(3)	48(2)	52(2)	2(1)	5(2)	3(1)
C22	50(3)	39(1)	38(2)	7(1)	3(2)	5(1)
C32	54(3)	84(2)	52(2)	8(2)	20(2)	6(2)
F12	34(2)	76(1)	80(2)	7(1)	10(1)	0(1)
F22	67(2)	61(1)	66(1)	-17(1)	11(1)	-4(1)
F32	62(2)	63(1)	95(2)	35(1)	-4(1)	9(1)

[h² a*² U11 + ... + 2 h k a* b* U₁₂]

15.2.1.4 [CH₃OC(O)SN(H)]₂CO

Empirical formula	$C_5H_8N_2O_5S_2$
Formula weight	480.51
Temperature (K)	296(2)
Crystal system, space group	Orthorhombic, P21212
Unit cell dimensions: ^a	
a [Å]	9.524(2)
b [Å]	12.003(1)
c [Å]	4.481(1)
Volume (Å ³)	512.3(1)
Z, Calculated density (Mg/m ³)	2, 1.558
Absorption coefficient (mm ⁻¹)	0.519
F(000)	248
Crystal size (mm)	0.16 x 0.04 x 0.04
Crystal color / shape	Colorless / prism
θ-range for data collection (°)	2.73 to 24.98
Limiting indices	$-10 \le h \le 11, -14 \le k \le 14, -5 \le l \le 4$
Reflections collected / unique	3215 / 906 [R(int)=0.037]
Observed [I>2σ(I)]	838
Completeness to θ = 24.98° (%)	99.3
Max. and min. transmission	0.980 and 0.922
Weights, w	$[\sigma^{2}(F_{o}^{2})+(0.0475P)^{2}+0.03P]^{-1}, P=[Max(F_{o}^{2},0)+2F_{c}^{2}]/3$
Data/restraints/parameters	906 / 0 / 7
Goodness-of-fit on F ²	1.086
Final R indices ^b [I>2σ(I)]	R1=0.0289, wR2=0.0750
R indices (all data)	R1=0.0318, wR2=0.0775
Absolute structure parameter	0.04(10)
Extinction coefficient	0.06(1)
Largest diff. peak and hole ($e \cdot A^{-3}$)	0.178 and -0.166

 Tabla 15.11
 Datos cristalográficos del análisis estructural y refinamiento de la estructura de la

 [CH₃OC(O)SN(H)]₂C=O

^aLeast-squares refinement of the angular settings for 3215 reflections in the 2.73<9<24.98° range.

^b *R*-indices defined as: $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$.

átomo ^a	x	У	Z	U(eq)
S(1)	2754(1)	-266(1)	914(1)	50(1)
O(3)	0	0	3605(5)	57(1)
O(4)	4266(2)	1167(1)	3469(5)	60(1)
O(5)	2437(2)	1935(1)	1037(5)	66(1)
N(6)	1202(2)	-114(2)	-753(4)	45(1)
C(2)	0	0	877(7)	41(1)
C(7)	3112(2)	1154(2)	1785(5)	45(1)
C(8)	4762(3)	2247(2)	4462(8)	73(1)

Tabla 15.12 Coordenadas atómicas (x 10⁴) y parámetros de desplazamiento isotrópico equivalente (Å² x 10³) obtenidos del análisis de difracción de rayos X para la [CH₃OC(O)SN(H)]₂C=O. U(eq) está definido como un tercio de la traza del tensor Uij ortogonalizado

^a Para la numeración atómica ver Figura 11.5 (Capítulo 11).

Tabla 15.13 Coordenadas de hidrógeno (x 104) y parámetros de desplazamiento isotrópicos (Å2 x 103)para la [CH3OC(O)SN(H)]2C=O

átomo	x	У	Z	U(eq)
H(6)	1157	-107	-2670	54
H(8A)	5113	2659	2784	110
H(8B)	5500	2148	5896	110
H(8C)	4001	2650	5364	110

Tabla 15.14 Parámetros de desplazamiento anisotrópico obtenidos del análisis de difracción de rayos Xpara el CH₃OC(O)SNCO. El factor exponencial de los desplazamientos anisotrópicos toma la forma: $-2\pi^2$ $[h^2 a^{*2} U11 + ... + 2 h k a^* b^* U_{12}]$

átomo	U11	U22	U33	U23	U13	U12
S(1)	39(1)	53(1)	57(1)	-3(1)	-8(1)	1(1)
O(3)	48(1)	95(2)	28(1)	0	0	-2(1)
O(4)	47(1)	52(1)	82(1)	-8(1)	-18(1)	-2(1)
O(5)	60(1)	59(1)	80(1)	4(1)	-11(1)	12(1)
N(6)	35(1)	71(1)	31(1)	-3(1)	-1(1)	-1(1)
C(2)	40(2)	51(2)	31(1)	0	0	-5(1)

15.2.1.5 CH₃OC(0)SN(HC(0)N(H)C(CH₃)₃

Empirical formula	C9 H18 N2 O4 S	
Formula weight	250.31	
Temperature	130(2) K	
Wavelength	71.073 pm	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 1028.72(9) pm	$\alpha = 90^{\circ}$
	b = 936.48(5) pm	$\beta = 90.010(7)^{\circ}$
	c = 2657.7(2) pm	$\gamma = 90^{\circ}$
Volume	2.5604(3) nm ³	
Z	8	
Density (calculated)	1.299 Mg/m ³	
Absorption coefficient	0.255 mm⁻¹	
F(000)	1072	
Crystal size	0.8 x 0.02 x 0.02 mm ³	
Theta range for data collection	2.66 to 25.35°.	
Index ranges	-12<=h<=11, -11<=k<=11, -32<=l<=27	
Reflections collected	21126	
Independent reflections	4686 [R(int) = 0.0792]	
Completeness to theta = 25.35°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1 and 0.88981	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4686 / 0 / 422	
Goodness-of-fit on F2	0.859	
Final R indices [I>2sigma(I)]	R1 = 0.0434, wR2 = 0.0660	
R indices (all data)	R1 = 0.1116, wR2 = 0.0777	
Largest diff. peak and hole	0.253 and -0.243 e.Å ⁻³	

Tabla 15.15 Datos cristalográficos del análisis estructural y refinamiento de la estructura de la $CH_3OC(O)SN(H)C(O)N(H)C(CH_3)_3$

Tabla 15.16 Coordenadas atómicas (x 10 ⁴) y parámetros de desplazamiento isotrópico equivalente (Å ² x
10 ³) obtenidos del análisis de difracción de rayos X para la CH ₃ OC(O)SN(H)C(O)N(H)C(CH ₃) ₃ . U(eq)
está definido como un tercio de la traza del tensor Uij ortogonalizado

	x	У	z	U(eq)
C(1)	4776(3)	6525(3)	4427(1)	23(1)
C(2)	3117(4)	6155(5)	5030(1)	41(1)
C(3)	7626(3)	6236(3)	3773(1)	20(1)
C(4)	10064(3)	6334(3)	3791(1)	21(1)
C(5)	10311(3)	5456(4)	3318(1)	31(1)
C(6)	10226(3)	5433(4)	4260(1)	29(1)
C(7)	11016(3)	7578(4)	3810(2)	32(1)
C(8)	10220(3)	1525(3)	4427(1)	24(1)
C(9)	11877(4)	1148(4)	5029(1)	39(1)
C(10)	7373(3)	1225(3)	3773(1)	21(1)
C(11)	4934(3)	1328(3)	3792(1)	23(1)
C(12)	4695(3)	454(4)	3317(1)	29(1)
C(13)	4767(3)	424(3)	4262(1)	28(1)
C(14)	3990(3)	2577(4)	3807(2)	32(1)
C(20)	9231(3)	-407(4)	2498(1)	40(1)
C(21)	7800(3)	-260(4)	2500(1)	50(1)
C(22)	11259(3)	792(3)	2502(2)	37(1)
C(23)	11750(4)	2282(4)	2498(2)	44(1)
N(1)	6533(2)	7074(3)	3729(1)	26(1)
N(2)	8745(2)	6942(3)	3779(1)	25(1)
N(3)	8464(2)	2087(3)	3730(1)	24(1)
N(4)	6253(2)	1961(3)	3780(1)	23(1)
O(1)	5525(2)	6963(2)	4732(1)	34(1)
O(2)	3578(2)	6051(2)	4514(1)	30(1)
O(3)	7533(2)	4917(2)	3795(1)	25(1)
O(4)	9472(2)	1959(2)	4732(1)	33(1)
O(5)	11419(2)	1045(2)	4514(1)	30(1)
O(6)	7467(2)	-86(2)	3793(1)	25(1)
O(10)	9806(2)	-1542(2)	2502(1)	71(1)
O(11)	9855(2)	842(2)	2501(1)	40(1)
S(1)	5048(1)	6423(1)	3768(1)	25(1)
S(2)	9952(1)	1422(1)	3769(1)	26(1)

Tabla 15.17 Parámetros de desplazamiento anisotrópico obtenidos del análisis de difracción de rayos Xpara la CH₃OC(O)SN(H)C(O)N(H)C(CH₃)₃. El factor exponencial de los desplazamientos anisotrópicostoma la forma: $-2\pi^2$ [$h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	26(2)	13(1)	31(2)	-2(1)	-4(1)	4(1)
C(2)	37(2)	56(3)	30(2)	-4(2)	7(2)	3(2)
C(3)	23(2)	20(2)	16(2)	-2(1)	1(1)	1(1)
C(4)	20(2)	17(2)	27(2)	-3(2)	2(1)	1(1)
C(5)	29(2)	31(2)	34(2)	0(2)	7(2)	0(2)
C(6)	29(2)	21(2)	36(2)	-1(2)	-4(2)	2(2)
C(7)	26(2)	28(2)	43(3)	1(2)	-4(2)	-1(2)
C(8)	28(2)	12(1)	34(2)	0(1)	5(1)	-4(1)
C(9)	32(2)	53(3)	33(2)	-5(2)	-8(2)	-1(2)
C(10)	24(2)	22(2)	17(2)	-2(1)	-4(1)	-1(1)
C(11)	19(2)	18(2)	32(2)	1(2)	-1(1)	2(1)
C(12)	33(2)	28(2)	26(2)	-2(2)	-6(2)	-2(2)
C(13)	33(2)	21(2)	30(2)	-2(2)	6(2)	-2(2)
C(14)	25(2)	28(2)	43(3)	3(2)	0(2)	1(2)
C(20)	51(2)	42(2)	29(2)	-4(2)	0(2)	-2(2)
C(21)	37(2)	79(2)	33(2)	-2(2)	1(2)	-8(2)
C(22)	36(2)	43(2)	33(2)	0(2)	1(2)	10(2)
C(23)	48(3)	42(2)	42(3)	-4(2)	-3(2)	7(2)
N(1)	22(2)	14(1)	42(2)	-1(1)	2(1)	-3(1)
N(2)	26(2)	11(1)	37(2)	2(1)	2(1)	-1(1)
N(3)	22(2)	10(1)	41(2)	2(1)	-1(1)	4(1)
N(4)	24(2)	10(1)	36(2)	2(1)	-1(1)	1(1)
O(1)	31(1)	36(1)	35(1)	-7(1)	-9(1)	-4(1)
O(2)	24(1)	39(1)	27(1)	-4(1)	4(1)	-3(1)
O(3)	26(1)	11(1)	37(1)	-1(1)	2(1)	0(1)
O(4)	29(1)	34(1)	35(1)	-7(1)	7(1)	4(1)
O(5)	24(1)	38(1)	26(1)	-3(1)	-3(1)	5(1)
O(6)	27(1)	13(1)	33(1)	0(1)	-1(1)	1(1)
O(10)	69(2)	44(1)	98(2)	0(2)	1(1)	-2(1)
O(11)	38(2)	44(1)	38(1)	0(1)	0(1)	6(1)
S(1)	24(1)	22(1)	29(1)	-2(1)	0(1)	-3(1)
S(2)	22(1)	23(1)	31(1)	-2(1)	1(1)	2(1)

15.2.1.6 CH₃OC(0)SN(HC(0)OC(CH₃)₃

Tabla 15.18 Datos cristalográficos del análisis estructural y refinamiento de la estructura de	Tab	
CH ₃ OC(O)SN(H)C(O)OC(CH ₃) ₃		

Empirical formula	C7 H13 N O4 S	
Formula weight	207.24	
Temperature	130(2) K	
Wavelength	71.073 pm	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 1105.67(5) pm	a= 90°
	b = 1027.23(3) pm	b= 111.252(4)°
	c = 965.30(3) pm	g = 90°
Volume	1.02181(6) nm ³	
Z	4	
Density (calculated)	1.347 Mg/m ³	
Absorption coefficient	0.302 mm ⁻¹	
F(000)	440	
Crystal size	0.3 x 0.1 x 0.01 mm ³	
Theta range for data collection	2.80 to 26.37°.	
Index ranges	-13<=h<=12, -12<=k<=12, -12<=l<=12	
Reflections collected	9912	
Independent reflections	2090 [R(int) = 0.0674]	
Completeness to theta = 26.37°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1 and 0.91908	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2090 / 0 / 170	
Goodness-of-fit on F2	0.838	
Final R indices [I>2sigma(I)]	R1 = 0.0366, wR2 = 0.0516	
R indices (all data)	R1 = 0.0850, wR2 = 0.0582	
Largest diff. peak and hole	0.352 and -0.220 e.Å ⁻³	

S(1)-N(1)	166.42(18)
S(1)-C(1)	176.9(2)
O(1)-C(1)	119.2(2)
O(2)-C(1)	133.3(2)
O(2)-C(2)	145.4(2)
O(3)-C(3)	121.0(2)
O(4)-C(3)	133.0(2)
O(4)-C(4)	149.2(2)
N(1)-C(3)	136.5(2)
N(1)-H(1N)	80.6(18)
C(2)-H(2A)	96(2)
C(2)-H(2B)	93(2)
C(2)-H(2C)	97(2)
C(4)-C(7)	150.7(3)
C(4)-C(6)	150.8(3)
C(4)-C(5)	151.1(3)
C(5)-H(5A)	102.1(19)
C(5)-H(5B)	94(2)
C(5)-H(5C)	97.0(18)
C(6)-H(6A)	101(2)
C(6)-H(6B)	97(2)
C(6)-H(6C)	93.9(18)
C(7)-H(7A)	96(2)
C(7)-H(7B)	97.0(19)
C(7)-H(7C)	98.3(19)
N(1)-S(1)-C(1)	99.91(9)
C(1)-O(2)-C(2)	115.62(17)
C(3)-O(4)-C(4)	121.25(13)
C(3)-N(1)-S(1)	122.14(15)
C(3)-N(1)-H(1N)	119.2(15)
S(1)-N(1)-H(1N)	116.4(15)
O(1)-C(1)-O(2)	126.04(19)
O(1)-C(1)-S(1)	125.83(17)
O(2)-C(1)-S(1)	108.12(14)
O(2)-C(2)-H(2A)	105.9(13)
O(2)-C(2)-H(2B)	107.4(13)
H(2A)-C(2)-H(2B)	115.1(19)
O(2)-C(2)-H(2C)	111.9(12)
H(2A)-C(2)-H(2C)	107.1(17)
H(2B)-C(2)-H(2C)	109.5(19)
O(3)-C(3)-O(4)	127.03(19)

 Tabla 15.19 Longitudes de enlace (pm) y ángulos de enlace (°) obtenidos por difracción de rayos X para

 el CH₃OC(O)SN(H)C(O)OC(CH₃)₃

O(3)-C(3)-N(1)	124.0(2)
O(4)-C(3)-N(1)	108.97(16)
O(4)-C(4)-C(7)	109.82(17)
O(4)-C(4)-C(6)	101.74(16)
C(7)-C(4)-C(6)	111.55(19)
O(4)-C(4)-C(5)	109.24(17)
C(7)-C(4)-C(5)	112.58(18)
C(6)-C(4)-C(5)	111.37(19)
C(4)-C(5)-H(5A)	112.9(10)
C(4)-C(5)-H(5B)	106.1(12)
H(5A)-C(5)-H(5B)	105.5(17)
C(4)-C(5)-H(5C)	113.0(11)
H(5A)-C(5)-H(5C)	109.0(15)
H(5B)-C(5)-H(5C)	110.0(16)
C(4)-C(6)-H(6A)	110.3(12)
C(4)-C(6)-H(6B)	110.7(12)
H(6A)-C(6)-H(6B)	107.6(17)
C(4)-C(6)-H(6C)	110.4(12)
H(6A)-C(6)-H(6C)	111.0(16)
H(6B)-C(6)-H(6C)	106.8(16)
C(4)-C(7)-H(7A)	106.4(12)
C(4)-C(7)-H(7B)	111.4(11)
H(7A)-C(7)-H(7B)	110.9(16)
C(4)-C(7)-H(7C)	111.5(11)
H(7A)-C(7)-H(7C)	109.6(16)
H(7B)-C(7)-H(7C)	107.1(16)

Tabla 15.20 Coordenadas atómicas (x 10⁴) y parámetros de desplazamiento isotrópico equivalente (Å² x 10³) obtenidos del análisis de difracción de rayos X para el CH₃OC(O)SN(H)C(O)OC(CH₃)₃. U(eq) está definido como un tercio de la traza del tensor Uij ortogonalizado

	x	У	z	U(eq)
S(1)	8139(1)	662(1)	5063(1)	29(1)
O(1)	5719(1)	1170(1)	3303(1)	34(1)
O(2)	6187(1)	-821(1)	4334(1)	30(1)
O(3)	7959(1)	3157(1)	6516(1)	32(1)
O(4)	8049(1)	4310(1)	4546(1)	24(1)
N(1)	8270(2)	2188(2)	4553(2)	27(1)
C(1)	6465(2)	397(2)	4076(2)	26(1)
C(2)	4884(2)	-1265(3)	3459(3)	36(1)
C(3)	8068(2)	3232(2)	5316(2)	24(1)
C(4)	7962(2)	5622(2)	5164(2)	25(1)
C(5)	9128(2)	5830(3)	6570(2)	32(1)
C(6)	8000(3)	6505(2)	3933(3)	34(1)
C(7)	6698(2)	5747(3)	5413(3)	31(1)

Tabla 15.21 Coordenadas de hidrógeno (x 10⁴) y parámetros de desplazamiento isotrópicos (Å² x 10³)para el CH₃OC(O)SN(H)C(O)OC(CH₃)₃

	x	У	Z	U(eq)
H(1N)	8251(18)	2289(19)	3720(20)	28(7)
H(2A)	4880(20)	-1400(20)	2480(20)	50(7)
H(2B)	4720(20)	-2000(20)	3920(20)	52(8)
H(2C)	4236(19)	-610(20)	3390(20)	38(6)
H(5A)	9989(18)	5708(19)	6418(18)	35(6)
H(5B)	9108(18)	6710(20)	6820(20)	36(6)
H(5C)	9122(17)	5280(18)	7384(19)	26(6)
H(6A)	8840(20)	6380(20)	3760(20)	56(7)
H(6B)	7954(19)	7410(20)	4190(20)	41(7)
H(6C)	7281(19)	6349(18)	3060(20)	32(6)
H(7A)	6662(19)	6630(20)	5740(20)	42(7)
H(7B)	6646(17)	5128(19)	6150(20)	28(6)
H(7C)	5950(19)	5582(19)	4500(20)	39(6)

Tabla 15.22 Parámetros de desplazamiento anisotrópico obtenidos del análisis de difracción de rayos Xpara el CH₃OC(O)SN(H)C(O)OC(CH₃)₃. El factor exponencial de los desplazamientos anisotrópicostoma la forma: $-2\pi^2$ [$h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	31(1)	26(1)	26(1)	2(1)	5(1)	0(1)
O(1)	36(1)	28(1)	31(1)	7(1)	4(1)	4(1)
O(2)	33(1)	19(1)	32(1)	1(1)	6(1)	-2(1)
O(3)	50(1)	34(1)	17(1)	1(1)	18(1)	0(1)
O(4)	33(1)	21(1)	20(1)	-1(1)	12(1)	-1(1)
N(1)	41(1)	24(1)	17(1)	0(1)	13(1)	-5(1)
C(1)	35(1)	26(1)	19(1)	-1(1)	11(1)	1(1)
C(2)	38(2)	28(2)	38(2)	-4(1)	9(1)	-7(1)
C(3)	21(1)	27(1)	20(1)	-3(1)	4(1)	-2(1)
C(4)	28(1)	21(1)	24(1)	-3(1)	10(1)	0(1)
C(5)	31(1)	30(2)	32(1)	-7(1)	10(1)	-4(1)
C(6)	41(2)	27(2)	37(1)	5(1)	18(1)	1(1)
C(7)	27(1)	36(2)	31(1)	0(1)	11(1)	2(1)

15.2.1.7 CH₃CH₂OC(S)N(H)C(O)OCH₃

Empirical formula	C₅H9NO3S
Formula weight	163.19
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P21/n
Unit cell dimensions	a= 4.088(1) Å alpha=90°
	b=22.346(1) Å beta=100.687(3)°
	c= 8.284(1) Å gamma=90°
Volume	743.7(2) A ³
Z, Calculated density	4, 1.458 Mg/m ³
Absorption coefficient	0.383 mm ⁻¹
F(000)	344
Crystal size	0.195 x 0.162 x 0.143 mm
Theta range for data collection	2.66 to 25.99°
Limiting indices	-4≤h≤5, -27≤k≤25, -8≤l≤10
Reflections collected / unique	4183 / 1422 [R(int)=0.0442]
Completeness to theta=25.99°	97.9 %
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	1422 / 0 / 93
Goodness-of-fit on F ²	1.109
Final R indices [I>2 (I)]	R1 ^a = 0.0324, wR2 ^b = 0.0906
R indices (all data)	R1 = 0.0355, wR2 = 0.0923
Largest diff. peak and hole	0.318 and -0.303 e.A ⁻³

 Tabla 15.23 Datos cristalográficos del análisis estructural y refinamiento de la estructura del

 CH₃CH₂OC(S)N(H)C(O)OCH₃

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, ^b $wR_2 = [\Sigma w(|F_o|^2 - |F_c|^2)^2 / \Sigma w(|F_o|^2)^2]^{1/2}$

	átomo	×	V	7	U(ea)	_	
ivalentes (Å 2 x 10 3) obtenidos del análisis de difracción de rayos X para el CH₃-O-(C=O)-NH-(C=S)-							

eq

Tabla 15.24 Coordenadas atómicas (x 10⁴) y coeficientes de los desplazamientos isotrópicos

átomo	X	У	Z	U(eq)
S	7355(1)	-98(1)	7893(1)	24(1)
O(1)	4039(3)	1552(1)	10927(1)	29(1)
O(2)	5824(4)	1915(1)	8699(2)	33(1)
O(3)	8051(3)	1031(1)	7038(1)	23(1)
Ν	5862(3)	898(1)	9300(2)	23(1)
C(1)	3348(5)	2161(1)	11372(2)	31(1)
C(2)	5299(4)	1507(1)	9546(2)	22(1)
C(3)	7112(4)	638(1)	8048(2)	20(1)
C(4)	9210(4)	806(1)	5582(2)	24(1)
C(5)	10220(5)	1348(1)	4709(2)	31(1)

Tabla 15.25 Parámetros de desplazamiento anisotrópico obtenidos del análisis de difracción de rayos Xpara el CH₃-O-(C=O)-NH-(C=S)-O-CH₂-CH₃. El factor exponencial de los desplazamientos anisotrópicostoma la forma: $-2\pi^2$ [$h^2 a^{*2}$ U11 + ... + 2 h k a* b* U₁₂]

átomo	U11	U22	U33	U23	U13	U12	
S	32(1)	18(1)	25(1)	-1(1)	7(1)	1(1)	
O(1)	48(1)	16(1)	28(1)	0(1)	19(1)	2(1)	
O(2)	53(1)	19(1)	33(1)	2(1)	22(1)	0(1)	
O(3)	31(1)	20(1)	21(1)	0(1)	11(1)	-1(1)	
Ν	34(1)	16(1)	21(1)	1(1)	11(1)	0(1)	
C(1)	46(1)	18(1)	33(1)	-3(1)	19(1)	2(1)	
C(2)	26(1)	19(1)	22(1)	-2(1)	7(1)	-1(1)	
C(3)	20(1)	21(1)	19(1)	-1(1)	1(1)	-1(1)	
C(4)	29(1)	23(1)	20(1)	-4(1)	8(1)	2(1)	
C(5)	41(1)	27(1)	28(1)	1(1)	16(1)	4(1)	

Tabla 15.26 Coordenadas de hidrógeno (x 10⁴) y parámetros de desplazamiento isotrópicos (Ų x 10³)para el CH₃-O-(C=O)-NH-(C=S)-O-CH₂-CH₃

Atom	х	У	Z	U(eq)
H(1)	5347	652	10043	27
H(1A)	1848	2351	10456	46
H(1B)	5435	2387	11619	46
H(1C)	2294	2156	12342	46
H(4A)	7407	585	4860	28
H(4B)	11128	533	5904	28
H(5A)	12030	1557	5432	46
H(5B)	8309	1617	4420	46
H(5C)	10979	1221	3707	46

15.3 APÉNDICE III (PARÁMETROS DE MEDICIÓN GC-MS DE LOS DIFERENTES COMPUESTOS Y ESPECTROS DE MASAS)

En este Apéndice se muestran los parámetros de medición empleados en el GC-MS para los diferentes compuestos y los espectros de masas de algunos de los compuestos estudiados en este trabajo.

15.3.1 Parámetros de medición en el GC-MS de los diferentes compuestos

Los parámetros de medición en la mayoría de los casos difieren, siendo en otros casos iguales para compuestos análogos.

15.3.1.1 $CH_3OC(O)S[N(CO)(CO)C_6H_4]$

He 1909 J-433 HP-5
1909 J-433 HP-5
30 m
0,25 mm
0,25 μm
1 μΙ
70 °C
200 °C
Split
presión
120 KPa
34,0 ml/min
1,48 ml/min
45.6 cm/s
3 ml/min
20,0
oo sostenido (min)
2
2
3
oo sostenido (min)
2
2
200 °C
250 °C
5 min
70 eV

Tabla 15.27 Condiciones de medida empleados para la especie CH₃OC(O)S[N(CO)(CO)C₆H₄]

15.3.1.2 CH₃OC(0)SSCN

Fase móvil:		He		
Columna:		1909 J-433 HP-5		
Longitud:		30 m		
Diámetro interno:		0,25 mm		
Relleno:		0,25 μm		
Volumen de inyección:	1 μl			
Temperatura del horno:	70 °C			
Temperatura de inyección:	200 °C			
Modo de inyección:		Split		
Modo de control de flujo:		presión		
Presión:		100 KPa		
Flujo total:		31,0 ml/min		
Flujo de la columna:		1,33 ml/min		
Velocidad lineal:		43 cm/s		
Flujo de la purga:		3 ml/min		
Relación de Split:		20,0		
Programa de temperatura del ho	rno:			
Velocidad (°C/min)	Temperatura °C	Tiempo sostenido (min)		
-	70	2		
5	200	2		
15	250	1		
Programa de presión:				

Tabla 15.28 Condiciones de medida empleados para la especie $CH_3OC(O)SSCN$

elocidad (kPa/min) Temperatura (kPa)		mpo sostenido (min)	
-	70	2	
5	200	2	
Temperatura de la fuente de de id	ones:	200 °C	
Temperatura de la interface:		250 °C	
Tiempo de corte del solvente:		5 min	
Potencial de ionización:		70 eV	

15.3.1.3 CH₃OC(0)SSC(0)CH₃

Potencial de ionización:

Fase móvil:		Не
Columna:		1909 J-433 HP-5
Longitud:		30 m
Diámetro interno:		0,25 mm
Relleno:		0,25 μm
Volumen de inyección:		1,5 μl
Temperatura del horno:		70 °C
Temperatura de inyección:		250 °C
Modo de inyección:		Split
Modo de control de flujo:		presión
Presión:		100 KPa
Flujo total:		31,0 ml/min
Flujo de la columna:		1,33 ml/min
Velocidad lineal:		43 cm/s
Flujo de la purga:		3 ml/min
Relación de Split:		20,0
Programa de temperatura del l	norno:	
Velocidad (°C/min)	Temperatura °C	Tiempo sostenido (min)
-	70	2
10	250	2
20	300	2
Programa de presión:		
Velocidad (kPa/min)	Temperatura (kPa) Tie	empo sostenido (min)
-	70	2
10	250	2
Temperatura de la fuente de de	e iones:	200 °C
Temperatura de la interface:		250 °C
Tiempo de corte del solvente:		5 min

Tabla 15.29 Condiciones de medida empleados para la especie $CH_3OC(O)SSC(O)CH_3$

70 eV

15.3.1.4 CH₃OC(0)SSC(0)CF₃

Fase móvil:		Не
Columna:		1909 J-433 HP-5
Longitud:		30 m
Diámetro interno:		0,25 mm
Relleno:	0,25 μm	
Volumen de inyección:		1,0 μl
Temperatura del horno:		70 °C
Temperatura de inyección:		200 °C
Modo de inyección:		Split
Modo de control de flujo:		presión
Presión:		100 KPa
Flujo total:		31,0 ml/min
Flujo de la columna:		1,33 ml/min
Velocidad lineal:		43 cm/s
Flujo de la purga:		3 ml/min
Relación de Split:		20,0
Programa de temperatura del ho	prno:	
Velocidad (°C/min)	Temperatura °C	Tiempo sostenido (min)
-	70	2
10	250	2
20	300	2
Programa de presión:		
Velocidad (kPa/min)	Temperatura (kPa) Tie	empo sostenido (min)
-	70	2
10	200	2

Tabla 15.30 Condiciones de medida empleados para la especie $CH_3OC(O)SSC(O)CF_3$

102002Temperatura de la fuente de de iones:200 °CTemperatura de la interface:250 °CTiempo de corte del solvente:3 minPotencial de ionización:70 eVVelocidad de escaneo2500

15.3.1.5 CH₃OC(0)SSCF₃

Fase móvil:		Не
Columna:		1909 J-433 HP-5
Longitud:		30 m
Diámetro interno:		0,25 mm
Relleno:		0,25 μm
Volumen de inyección:		1,0 μl
Temperatura del horno:		35 °C
Temperatura de inyección:		100 °C
Modo de inyección:		Split
Modo de control de flujo:		presión
Presión:		100 KPa
Flujo total:		31,0 ml/min
Flujo de la columna:		1,33 ml/min
Velocidad lineal:		43 cm/s
Flujo de la purga:		3 ml/min
Relación de Split:		20,0
Programa de temperatura del	horno:	
Velocidad (°C/min)	Temperatura °C	Tiempo sostenido (min)
-	35	2
4	70	1
50	200	1

Tabla 15.31 Condiciones de medida empleados para la especie $CH_3OC(O)SSCF_3$

Programa de presión:

Velocidad (kPa/min) Temperatura (kPa		mpo sostenido (min)	
-	35	2	
4	100	1	
Temperatura de la fuente d	e de iones:	200 °C	
Temperatura de la interface	2:	250 °C	
Tiempo de corte del solven	te:	3 min	
Potencial de ionización:		70 eV	
Velocidad de escaneo		2500	

15.3.2 Espectros de masas (MS)

En esta sección se presentan espectros de masas de algunos de los compuestos estudiados en este trabajo de tesis doctoral.

15.3.2.1 [Pd(COD)(L2)CI]

Figura 15.2 Espectro de masas del complejo [Pd(COD)(L2)Cl]

15.3.2.2 [Pd(COD)(L4)Cl]

Figura 15.3 Espectro de masas del complejo [Pd(COD)(L4)Cl]

15.3.2.3 [Au(L2)(PPh₃)]

Figura 15.4 Espectro de masas del complejo [Au(L2)(PPh₃)] (región de *m/z* entre 40 y 750)

Figura 15.6 Espectro de masas del complejo [Au(L2)(PPh₃)](región ampliada de *m/z* entre 350 y 750)

15.4 APÉNDICE IV (DETERMINACIÓN DE LA POBLACIÓN TEÓRICA CONFORMACIONAL TEÓRICA RELATIVA A 25°)

En este trabajo de tesis doctoral se realizó este cálculo teórico principalmente para moléculas contenidas en la primera parte y especialmente para aquellos compuestos para los cuales fueron medidos espectros IR en fase gaseosa y no así para aquellas moléculas que a temperatura ambiente son sólidos o líquidos con muy baja presión de vapor.

A modo de ejemplo en este apéndice se muestra el procedimiento usado y las ecuaciones empleadas para el CH₃OC(O)SNCO.

15.4.1 Determinación de la población teórica relativa de las 3 conformaciones del CH₃OC(O)SNCO a 25 ℃

La determinación del equilibrio conformacional entre dos o más especies se lleva a cabo teniendo en cuenta el análisis termoquímico que se obtiene por medio del cálculo de frecuencias. Las funciones termodinámicas obtenidas por medio del cálculo de frecuencia tales como energía, E^o, entalpía, H^o y energía libre de Gibbs, G^o, están corregidas por la energía de punto cero y la energía térmica del sistema. Para determinar la población relativa porcentual entre dos o más conformaciones se utilizó la ecuación de Boltzman, (ecuación 16.1).

$$P_{n} = \frac{A_{n} * e^{\left(\frac{-G_{n}^{0}}{RT}\right)}}{\sum_{i} A_{i} * e^{\left(\frac{-G_{i}^{0}}{RT}\right)}}$$
(15.1)

Donde, P_n es la proporción de cada confórmero en el equilibrio a la temperatura T, A_n es la degeneración de cada estructura, G^o se refiere a la energía libre de gibbs en cal.mol⁻¹, R es la constante de los gases ideales (R = 1,9872 cal.mol⁻¹. K⁻¹) y T se refiere a la temperatura absoluta a la cual se desea calcular el equilibrio en grados Kelvin.

Primeramente se debe determinar si los confórmeros a estudiar tienen alguna característica que pueda aumentar la contribución en el equilibrio, es decir que degeneración tienen. Por ejemplo la existencia de enantiómeros los cuales tienen la misma energía y el mismo espectro vibracional, contribuirá con un An = 2 al grado de degeneración de la molécula.

Así, para el CH₃OC(O)SNCO se calculó la concentración relativa a temperatura ambiente para las estructuras más estables, *syn-syn-syn, syn-anti-syn* y *syn-syn-anti* ya que las demás conformaciones, según los resultados teóricos, no contribuirían significativamente (ver Tabla 2.1, Capítulo 2).

A continuación se ejemplifica el cálculo de la población teórica en equilibrio en fase gaseosa a 25 ° C para el $CH_3OC(O)SNCO$ usando el método B3LYP y la base 6/311++G**. Sea I una de las conformaciones estables *syn-syn-syn*, II la segunda conformación estable *syn-anti-syn* y por ultimo III la tercera conformación *syn-syn-anti.*

1. Se aplicó la ecuación 16.1 para conocer la proporción de la conformación **I** en el equilibrio.

$$\boldsymbol{P}_{I} = \frac{\boldsymbol{A}_{I} \ast \boldsymbol{e}^{\left(\frac{-\boldsymbol{G}_{I}^{0}}{RT}\right)}}{\boldsymbol{A}_{I} \ast \boldsymbol{e}^{\left(\frac{-\boldsymbol{G}_{I}^{0}}{RT}\right)} + \boldsymbol{A}_{II} \ast \boldsymbol{e}^{\left(\frac{-\boldsymbol{G}_{II}^{0}}{RT}\right)} + \boldsymbol{A}_{III} \ast \boldsymbol{e}^{\left(\frac{-\boldsymbol{G}_{II}^{0}}{RT}\right)}}$$

2. Se realiza una inversión de la ecuación y se separan los términos:

$$\frac{1}{P_{I}} = \frac{A_{I} * e^{\left(\frac{-G_{I}^{0}}{RT}\right)}}{A_{I} * e^{\left(\frac{-G_{I}^{0}}{RT}\right)}} + \frac{A_{II} * e^{\left(\frac{-G_{II}^{0}}{RT}\right)}}{A_{I} * e^{\left(\frac{-G_{I}^{0}}{RT}\right)}} + \frac{A_{III} * e^{\left(\frac{-G_{II}^{0}}{RT}\right)}}{A_{I} * e^{\left(\frac{-G_{II}^{0}}{RT}\right)}}$$

Se simplifican los términos,

$$\frac{1}{P_{I}} = 1 + \frac{A_{II} * e^{-\left(\frac{-G_{II}^{0} + G_{I}^{0}}{RT}\right)}}{A_{I}} + \frac{A_{III} * e^{-\left(\frac{-G_{II}^{0} + G_{I}^{0}}{RT}\right)}}{A_{I}}$$

3. Se reemplazaron los valores numéricos y se despeja P_I:

$$\frac{1}{P_{I}} = 1 + \frac{1 * e^{-\left(\frac{900,48 \, cal.mol^{-1}}{1,9872 \, cal.mol^{-1}.K^{-1}.298K}\right)}}{1} + \frac{1 * e^{-\left(\frac{840,86 \, cal.mol^{-1}}{1,9872 \, cal.mol^{-1}.K^{-1}.298K}\right)}}{1}$$

$$\frac{1}{P_{I}} = 1 + 0,2186 + 0,2417$$

 $P_{I} = 0,6848$

4. Se realiza el mismo cálculo para el conformero II:

$$\frac{1}{P_{II}} = \frac{A_{I} * e^{\left(\frac{-G_{I}^{0}}{RT}\right)}}{A_{II} * e^{\left(\frac{-G_{II}^{0}}{RT}\right)}} + \frac{A_{II} * e^{\left(\frac{-G_{II}^{0}}{RT}\right)}}{A_{II} * e^{\left(\frac{-G_{II}^{0}}{RT}\right)}} + \frac{A_{III} * e^{\left(\frac{-G_{III}^{0}}{RT}\right)}}{A_{III} * e^{\left(\frac{-G_{III}^{0}}{RT}\right)}}$$
$$\frac{1}{P_{II}} = \frac{A_{I} * e^{-\left(\frac{-G_{III}^{0} + G_{II}^{0}}{RT}\right)}}{A_{III}} + 1 + \frac{A_{III} * e^{-\left(\frac{-G_{III}^{0} + G_{III}^{0}}{RT}\right)}}{A_{III}}$$

5. Se reemplazaron los valores numéricos y se despejó P_{II}:

$$\frac{1}{P_{II}} = 4,13 + 1 + 0,904$$

$$P_{II} = 0,1657$$

- 6. Se realizó el mismo cálculo para el confórmero III, las proporciones halladas para estas tres conformaciones son:
- P_I = 0,6848
- P_{II} = 0,1657

P_{III} = 0,1495

15.5 APÉNDICE V (ESPECTROS DE RMN)

En esta sección de Apéndices se presenta información complementaria de espectros ¹H y ³¹P RMN de algunos de los compuestos estudiados en este trabajo de tesis doctoral.

15.5.1 Espectros ¹H RMN

15.5.1.1 Pd(COD)Cl₂

Figura 15.7 Espectro de ¹H RMN del Pd(COD)Cl₂, la señal marcada con * corresponde a los protones del agua y ** corresponde a impurezas introducidas durante la manipulación de la muestra (comúnmente glicerina)

15.5.1.2 AuCIPPh₃

Figura 15.8 Espectro de ¹H RMN del AuCIPPh₃

15.5.2 Espectros de ³¹P RMN

15.5.2.1 AuCIPPh₃

Figura 15.9 Espectro de ³¹P RMN del aducto de partida AuCIPPh₃

15.5.2.2 [NiCl₂(PPh₃)₂]

15.6 APÉNDICE VI (ESPECTROS FTIR)

En esta sección de Apéndices se presenta información complementaria de espectros FTIR de algunos de los compuestos estudiados en este trabajo de tesis doctoral.

Figura 15.11 Espectro FTIR del CH₃OC(O)SN(H)C(O)N(C₂H₅)₂ medido en fase sólida con KBr. La banda marcada con * corresponde al C=O del solvente CH₃C(O)OC₂H₅

15.6.2 Espectro FTIR del CH₃OC(O)SN(H)C(O)OC₂H₅

15.6.3 Espectro FTIR del CH₃OC(O)SN(H)C(O)OC(CH₃)₃

Figura 15.13 Espectro FTIR del CH₃OC(O)SN(H)C(O)OC(CH₃)₃ medido en fase sólida

15.6.4 Espectro FTIR del CH₃OC(O)SN(H)C(O)SC₂H₅

15.6.5 Espectro FTIR del Pd(COD)Cl₂

Figura 15.15 Espectro FTIR del Pd(COD)Cl2 medido en fase sólida

15.6.6 Espectro FTIR de la sal CH₃OC(O)SN(Na)C(O)OC(CH₃)₃

Figura 15.16 Espectro FTIR de la sal CH₃OC(O)SN(Na)C(O)OC(CH₃)₃

15.6.7 Espectro FTIR del complejo [Pd(COD)(L2)CI]

Figura 15.17 Espectro FTIR del complejo de Pd(II) [Pd(COD)(L2)CI]

15.7 APÉNDICE VII (ASIGNACIÓN DE MODOS NORMALES DE VIBRACIÓN)

En esta sección se presenta la asignación de los modos normales de vibración de la $[CH_3OC(O)SN(H)]_2CO$ y de los tiocarbamatos de O-metilo y O-etilo, respectivamente.

15.7.1 [CH₃OC(O)SN(H)]₂CO

 Tabla 15.32 Números de onda experimentales y teóricos y asignación de los modos de vibración del

 [CH₃OC(O)SN(H)]₂CO

	Experiment	tal	Calculado ^e		Asignación/
Modo	IR℃	Raman ^d			· · · · · · · · · · · · · · · · · · ·
			anti-anti ^f	syn-anti ^g	(Descripcion Aproximada) ^{w,o}
	3448				2 x v ₁₀
ν_1	3248 vs	3246	3593 (0.05)	3601 (0.05)	v _s (N-H) /A
v ₂			3586 (0.01)	3581 (0.04)	v _{as} (N-H) /B
	3126 vvw				Impurity
v ₃		3044	3168 (0.00)	3171 (0.00)	v _{as} (CH ₃) ^{a,b} (1)/A
ν ₄	3014 vvw	3016	3168 (0.01)	3168 (0.00)	v _{as} (CH ₃) ^{a,b} (2)/B
v ₅			3135 (0.02)	3138 (0.01)	v _{as} (CH ₂) ^{a,b} (1)/A
ν ₆			3135 (0.00)	3134 (0.01)	v _{as} (CH ₂) ^{a,b} (2)/B
ν7			3057 (0.00)	3058 (0.02)	v _s (CH ₃) ^{a,b} (1)/A
ν_8	2957 vw	2958	3057 (0.05)	3057 (0.02)	v _s (CH ₃) ^{a,b} (2)/B
	2868	2841			$v_{11} + v_{21}$
ν,			1818 (0.06)	1812 (0.22)	v(C=O)¤,b,c (1)/A
V 10	1732 vs	1730	1800 (0.39)	1804 (0.16)	vas(C=O)a,b/B
v 11	1650 vs	1650	1791 (0.15)	1785 (0.22)	$v_s(C=O)^{a,b} + v_{as}(C=O)^c/A$
	1630				2 x v ₃₁
V12			1496 (0.00)	1496 (0.01)	ρ _s (CH ₂) ^{a,b} (1)/A
V 13			1496 (0.01)	1496 (0.01)	ρ _s (CH ₂) ^{α,b} (2)/B
V14	1497 s	1496	1485 (0.01)	1484 (0.01)	ρ _{as} (CH ₃) ^{a,b} (1)/A
V 15			1485 (0.00)	1484 (0.01)	ρ _{αs} (CH ₃) ^{α,b} (2)/B
V16	1456 w	1455	1467 (0.02)	1467 (0.01)	ρ _s (CH ₃) ^{α,b} (2)/B
V 17			1467 (0.00)	1467 (0.01)	ρ _s (CH ₃) ^{α,b} (1)/A
V 18	1431 m	1433	1448 (0.27)	1461 (0.22)	ρ _s (N-H)/A
V 19			1421 (0.02)	1393 (0.02)	ρ _{as} (N-H)/B
	1331				2 x v ₃₆
	1262				$v_{36} + v_{39}$
V20			1212 (0.04)	1223 (0.06)	ρ _s (CH ₃ O) ^{α,b} (1)/A
V 21	1206 vs	1195	1211 (0.18)	1210 (0.03)	ρ _{αs} (CH ₃ O) ^{α,b} (2)/B
V22	1167 vs	1158	1181 (0.35)	1208 (0.16)	$v_{as}(COC)^{a,b}$ (2) + $\rho_s(N-H)/B$
V23			1178 (0.10)	1173 (0.09)	v _{as} (COC) ^{a,b} (1)/A
V24			1168 (0.00)	1168 (0.00)	δ _{αs} (CH ₃) ^{α,b} (1)/A
V 25			1168 (0.00)	1168 (0.00)	δ _{αs} (CH ₃) ^{α,b} (2)/B
V26			1134 (1.00)	1161 (1.00)	$v_{\alpha s}(N-C-N) + \rho_s(N-H)/B$
V 27	1094 vvw	1065	1037 (0.01)	1028 (0.02)	v _s (N-C-N)/A
	1020				2 x v ₃₉
V28	939 w	940	964 (0.01)	964 (0.00)	v(CH ₃ O) ^{a,b} (1)/A
V29			964 (0.01)	957 (0.00)	v(CH ₃ O) ^{a,b} (2)/B
1100			929 (0.00)	912 (0.01)	δ _s (N-C-N)/A

V 31	815 m	821	824 (0.04)	842 (0.00)	δ(O-C=O) ^{α,b} (2)/B
v 32			824 (0.00)	824 (0.02)	δ(O-C=O)¤.b (1)/A
v 33			813 (0.03)	820 (0.02)	v(S-N) ^{a,b} (2)/B
V34			761 (0.01)	756 (0.01)	δοορ(NC(O)N)/B
V 35			729 (0.01)	681 (0.00)	δ(N-C=O) ^{α,b} /B
V36	677 w		675 (0.01)	673 (0.01)	δοοp(OC(O)S) ^{α,b} (1)/A
V 37	668 sh		672 (0.01)	588 (0.00)	δοοp(OC(O)S) ^{a,b} (2)/B
v 38			515 (0.00)	523 (0.00)	δ(O=C-S)¤,b (1)/A
V 39	509 w	518	505 (0.01)	507 (0.02)	δ(O=C-S) ^{α,b} (2)/B
V40	438 vvw	440	453 (0.08)	487 (0.01)	δοοp(N-H) ^s /B
V41		391	423 (0.00)	471 (0.01)	ρ _s (S-N-C) ^{α,b} (1)/A
V42		341	378 (0.04)	462 (0.08)	δoop(N-H)as /A
V43			372 (0.01)	375 (0.00)	δ(O-C-S) ^{α,b} (2)/B
v_{44}			324 (0.02)	346 (0.02)	τ(COC=O) ^{α,b} (1) + ρ _{as} (N-H)/A
V 45		289	305 (0.07)	314 (0.02)	τ(COC=O) ^{a,b} (2) + τ(S-N-C=O) ^{a,b} (2)/B
v_{46}			266 (0.00)	287 (0.02)	τ(CS-NC) ^{α,b} (2) /B
V47		215	260(0.00)	250 (0.00)	δ _{as} (N-H)/A
ν_{48}			207 (0.00)	210 (0.00)	aleteo de la rama izquierda de la molécula
V49			189 (0.00)	194 (0.00)	aleteo de la rama derecha de la molécula
v_{50}			188 (0.00)	179 (0.00)	$\rho_{s}(N-H) + \rho_{s}(CH_{3}) (2)/B$
v_{51}			149 (0.00)	146 (0.00)	δ _s (CH ₃ O) ^{α,b} (2)/B
v ₅₂			140 (0.00)	137 (0.00)	δ _{as} (CH ₃ O) ^{α,b} (1)/B
v_{53}			119 (0.00)	116 (0.00)	δ _s (CH ₃) ^{a,b} (2)/B
v_{54}			115 (0.00)	114 (0.00)	δ _s (CH ₃) ^{a,b} (1)/A
v_{55}			88 (0.00)	79 (0.00)	torsión de toda la molécula/B
v_{56}			70 (0.00)	69 (0.00)	τ(COC=O) ^{α,b} (1)/A
ν_{57}			64 (0.00)	61 (0.00)	τ(COC=O) ^{a,b} (2)/B
v_{58}			48 (0.00)	48 (0.00)	ρ(-SC(O)OC-) ^{α,b} (1)/A
V59			27 (0.00)	28 (0.00)	ρ(-SC(O)OC-) ^{α,b} (2)/B
ν_{60}			21 (0.00)	21 (0.00)	τ(SC-OC) ^{a,b} (1)/A

^a Lado izquierdo de la molécula respecto al grupo carbonilo central C2=O3; ^b Lado derecho de la molécula respecto al grupo carbonilo central C2=O3; ^c Intensidad de las bandas: vs = muy intenso, s = intenso, m = media, sh = hombro, w = débil, vw = muy débil, vvw = muy muy débil; ^d sólido a temperatura ambiente. ^e En paréntesis la intensidad de la banda. ^f Conformación observada experimentalmente por difracción de rayos X. ^g Conformación más estable en fase gaseosa encontrada por métodos teóricos. (1) Movimiento simétrico **a** respecto a **b**. (2) Movimiento antisimétrico de **a** respecto de **b**.

15.7.2 CH₃OC(S)N(H)C(O)OCH₃

Tabla 15.33 Números de onda experimentales y teóricos y asignación de los modos de vibración de
$CH_3OC(S)N(H)C(O)OCH_3$

Experimenta		al	Calculado [®]	Asignación/
Modo	IR°	Raman ^d	B3LYP/6-311++G** s-s-a	(Descripción aproximada) ^{a,o} (1,2) /Simetría
	3511			2 x ν ₈
	3293			$v_8 + v_{13}$
ν ₁	3216 m	3192 (5)	3622 (10)	v(N-H) /A'
ν ₂	3026 w	3029 (25)	3163 (2)	v _{as} (CH ₃) ^b /A'
ν ₃	3007 w	3009 (10)	3162 (2)	v _{as} (C-H) ^a /A'
ν ₄	2965 w	2997 (10)	3133 (2)	v _{as} (C-H) ^b /A"
ν ₅	2950 w	2965 (57)	3129 (2)	v _{as} (C-H) ^a /A"
ν ₆	2887 vvw	2948 (65)	3055 (2)	v _s (CH ₃) ^{a,b} /A'
ν ₇	2855 vvw	2851 (12)	3054 (6)	v _{as} (CH ₃) ^{a,b} /A'
ν_8	1768 vs	1761 (95)	1828 (56)	ν(C=O) /A'
ν ₉	1548 vs	1493 (38)	1541 (100)	δ(Ν-Η) /Α'
v_{10}		1441 (35)	1500 (2)	$\rho_{s}(CH_{2})^{a}/A"$
ν ₁₁		1423 (10)	1492 (2)	$\rho_{s}(CH_{2})^{b}/A"$
V ₁₂			1484 (1)	$\delta_{s}(CH_{3})^{a}/A'$
V ₁₃	1451 s		1481 (26)	$\delta_{as}(CH_3)^{a,b}$ (2)/A'
V ₁₄	1423 vw		1479 (2)	$\delta_{as}(CH_3)^b$ /A"
V ₁₅	1345 m	1345 (22)	1469 (6)	ρ _s (CH ₃) ^{a,b} (2)/A'
V ₁₆	1280 w		1347 (44)	$v_{as}(N-C(S)-O) + \rho_s(CH_3)^b /A'$
V ₁₇	1255 vs	1245 (40)	1266 (43)	$v(C=S) + v_s(N-C(S)-O) /A'$
ν ₁₈			1212 (1)	$\delta_{as}(CH_3)^a / A'$
V ₁₉	1205 vvs	1205 (32)	1201 (45)	$v_{as}(O-C(O)-N) + \rho_{s}(CH_{3})^{b} /A'$
v ₂₀			1175 (<1)	δ(CH ₃) ^a /A"
V ₂₁			1169 (<1)	δ(CH ₂) ^b /A"
V ₂₂	1152 m	1146 (35)	1162 (48)	$\delta(CH_3)^b$ /A'
	1101			2 x v ₃₀
V ₂₃	1070 vs	1068 (45)	1099 (47)	$v_{as}(CH_3-O^a + O-CH_3^b) /A'$
v_{24}	1032 w	1031 (9)	1048 (3)	v _s (CH ₃ -O ^a + O–CH ₃ ^b)+ v _s (C–N–C) /A'
V ₂₅	928 vvw	930 (100)	945 (3)	v _s (C–O–C) ^a /A'
V ₂₆	790 w	781 (93)	795 (<1)	v _s (C–O–C) ^b /A'
V ₂₇	765 w		772 (3)	боор (O−C(O)S) /А"
V ₂₈	725 m	728 (30)	731 (2)	δ(O–C=O) ^a + δ(O=C–N) /A'
V ₂₉	639 w	638 (30)	646 (10)	ρ(N-H) /A"
V ₃₀	590 w	583 (70)	635 (1)	δοορ (N–C(S)O) /A'
v ₃₁			596 (<1)	τ(C–Ο–C–Η) ⁰ /Α'
V ₃₂	410 vw	404 (45)	389 (1)	$\tau(O=C-N-H)^{a} + \tau(N-C-O-C)^{b}$ (1)/A'
V ₃₃		347 (76)	337 (1)	$\tau(O=C-N-H)^{a} + \tau(N-C-O-C)^{b} (2)/A'$
V34		317 (10)	300 (4)	torsion de toda la molécula /A'
V ₃₅		268 (28)	246 (<1)	aletéo de toda la molécula /A'
V36		217 (7)	201 (1)	$\delta_{as}(CH_3)^a + \delta_{as}(CH_3)^o (2) /A''$
V ₃₇		163 (30)	167 (<1)	$\delta_{s}(CH_{3})^{a} + \delta_{s}(CH_{3})^{v} (1) / A^{"}$
V ₃₈			147 (<1)	$\delta_{s}(CH_{3})^{a} + \delta_{s}(CH_{3})^{b} (2) / A''$
V39			131 (<1)	$\tau_{s}(O-CH_{3}^{a} + O-CH_{3}^{b}) /A'$
V40			118 (<1)	τ(CH ₃) ^a /A"
V41			65 (<1)	τ(CH ₃) ^a /A"
V42			44 (<1)	δοορ(N–C–O) ^b +τ _s (O–CH ₃ ^b)/A"

^a grupo metilo de la molécula vecino al C=O. ^b metilo vecino al grupo C=S. ^c intensidad de las bandas: vs =muy intenso, s =intenso, m = mediano, sh = hombror, w =débil, vw = muy débil, vvw =muy muy débil; ^d sólido a temperatura ambiente, in paréntesis la intensidad Raman relativa (1,7 u. a. = 100 %); ^e en paréntesis la intensidad relativa de las bandas para la forma más estable (100% = 679.10 Km/mol). (1) movimiento del grupo del lado **a** simétrico respecto al lado **b** (2) movimiento del lado **a** antisimétrico respecto al lado **b**.

15.7.3 CH₃CH₂OC(S)N(H)C(O)OCH₃

Tabla 15.34 Números de onda experimentales y teóricos y asignación de los modos de vibración del
CH ₃ CH ₂ OC(S)N(H)C(O)OCH ₃

Experimental		I Calculado [†] Asignación/		
Modo	IR ^d	Raman ^e	B3LYP/6-311++G**	(Descripción aproximada) ^{a,b} (1,2)
mouo		Kumun	s-a-s-a	/Simetría
	0540			
	3513			2 x ν ₁₀
	3292			$v_{10} + v_{11}$
ν_1	3204 s	3188 (20)	3621 (9)	v(N-H) /A'
ν ₂	3053 vvw	3055 (25)	3161 (2)	v _{as} (CH ₃) ^a /A'
ν_3	3016 vw	3015 (25)	3127 (2)	V _{as} (C-H) ^a /A'
ν_4	2995 w	2990 (50)	3124 (4)	v _{as} (C-H) ^{0,c} (1)/A'
ν_5	2966 w	2968 (98)	3108 (3)	v _{as} (CH ₃) ^c /A'
ν_6	2945 vvw	2937 (60)	3098 (<1)	v _{as} (C-H) ^{b,c} (2)/A"
ν ₇	2905 vvw	2904 (40)	3058 (1)	v _s (CH ₂) ^b /A'
ν_8	2873 vvw	2873 (20)	3053 (5)	v _s (CH ₃) ^a /A'
ν ₉	2842 vvw	2841 (20)	3041 (2)	v _s (CH ₃) ^c /A'
ν_{10}	1770 vs	1768 (100)	1826 (53)	ν(C=O) + ρ(N-H) /A'
ν_{11}	1537 vs		1537 (100)	δ(N-H) /A'
ν_{12}			1517 (6)	ρ(CH ₂) ^{b,c} (2)/A'
V ₁₃	1490 vvw	1493 (5)	1499 (6)	$ ho_{as}(CH_3)^a$ /A'
v_{14}	1475 w	1465 (50)	1497 (1)	$\rho_{as}(CH_3)^{c} + \rho(CH_2)^{b} (1)/A"$
v_{15}	1458 w	1453 (30)	1483 (2)	ρ _{as} (CH ₃) ^{a,c} (2)/A"
v_{16}	1445 vvw		1483 (<1)	ρ _{as} (CH ₃) ^{a,c} (1)/A"
V17	1431 w	1431 (5)	1470 (<1)	ρ _s (CH ₃) ^a /A'
V ₁₈	1402 m	1399 (7)	1431 (7)	$\rho_{s}(CH_{3})^{c} + \rho_{s}(CH_{2})^{b} (2)/A''$
V ₁₉	1374 m	1373 (3)	1409 (13)	$\rho_{s}(CH_{3})^{c} + \rho_{s}(CH_{2})^{b} (1)/A''$
V ₂₀	1315 m	1310 (25)	1331 (47)	$v_{as}(N-C(S)-O) + \rho_{s}(CH_{2})^{b} /A'$
V ₂₁	1292 vvw		1292 (<1)	ρ(CH ₂)/A"
V ₂₂	1266 s	1265 (15)	1264 (46)	ν(C=S) + ν _s (N–C–O) ^b /A'
V ₂₃	1207 vs	1199 (20)	1211 (1)	$\delta_{as}(CH_3)^a /A'$
V ₂₄	1190 vs	1183 (12)	1182 (98)	v _{as} (N–C(S)–O) /A'
V25			1175 (<1)	δ _s (CH ₃) ^a /A"
v_{26}	1157 w(sh)	1156 (5)	1174 (1)	$\delta(CH_2)^{b} + \delta(CH_3)^{c} (2)/A''$
V ₂₇	1106 m	1108 (30)	1128 (6)	$\delta_{as}(CH_3)^c /A'$
v_{28}	1054 vs	1051 (60)	1078 (38)	v _{as} (CH ₃ –O + O–CH ₂) /A'
V ₂₉	1028 m(sh)		1049 (5)	v _s (CH ₃ -O + O-C ₂ H ₅) /A'
v_{30}	975 vvw	973 (45)	981 (<1)	δ(C-N-C) + δ(C–C–H) ^b /A'
ν_{31}	916 w	917 (48)	930 (3)	v _s (C-O-C) ^a /A'
V ₃₂	822 vvw	817 (2)	814 (<1)	δ(CH ₂) ^b + δ(CH ₃) ^c (1)/A"
V33	775 w(sh)		778 (<1)	δ(C-O-C) ^b + δ(CH ₃) ^c /A'
v_{34}	766 w	769 (95)	772 (3)	δοορ (O–C(O)S) /A"
V ₃₅	741 w		731(1)	$\delta(O-C=O)^a + \delta(O=C-N) /A'$
V ₃₆	724 w	728 (30)	653 (9)	ρ Ν-Η /Α "
V37	646	643 (12)	633 (1)	δοορ (N–C(S)O) /A'
	000	500 (05)		
V38	BUG W	<u> </u>	613 (<1)	$\tau_{(S)C} \cup C^* + \delta(O C C)^{*,*}/A'$

V ₃₉	404 (25)	395 (<1)	τ(C–O–C–C) ^{b,c} + δ(O=C–N)/A'
V ₄₀	382 (65)	368 (<1)	$\delta(C-O-C)^a + \delta(O-C-C)^b /A'$
V ₄₁	327 (40)	315 (1)	δ de toda la molécula ^{a,b,c} (1) /A'
V ₄₂	299 (10)	284 (3)	δ de toda la molécula ^{a,b,c} (2)/A'
V43	227 (20)	254 (<1)	τ(C–CH ₃) ^{b,c} /A"
V44	218 (22)	193 (<1)	aleteo de toda la molécula /A'
V ₄₅		184 (1)	$\tau_{as}(O-CH_3^{a} + C-CH_3^{c}) + \delta oop(N-O-C)^{b}$
V ₄₆	142 (55)	139 (<1)	$\delta oop(N-C-O)^{b} + \tau_{s}(O-CH_{3}^{a} + C-CH_{3}^{c})$
V47		105 (<1)	τ(CH ₃) ^a /A"
V ₄₈		97 (<1)	torsión de toda la molécula /A'
V ₄₉		70 (<1)	τ(O–C–C) ^{b,c} /A"
v ₅₀		60 (<1)	τ(CH ₃) ^a + τ(CH ₂ -CH ₂) ^{b,c} (1) /A"
V ₅₁		36 (<1)	τ(CH ₃ -O) ^a + τ(CH ₂ -CH ₂) ^{b,c} (2) /A"

^a Metilo del resto metoxi de la molécula. ^b CH₂ del grupo etilo. ^c Metilo del grupo etilo de la molécula. ^d Intensidad de las bandas: vs =muy intenso, s =intenso, m = medio, sh =hombro, w = débil, vw =muy débil, vvw = muy muy débil; ^e sólido a temperatura ambiente, en paréntesis la intensidad Raman relativa (2,1 u. a. = 100 %); ^f En paréntesis la intensidad relativa de las bandas para la conformación más estable, (100% = 705.99 Km/mol (*s-a-s-a*)). (1) Movimiento simétrico del resto **b** respecto a **c** o el resto **a** respecto a **b/c**. (2) Movimiento antisimétrico del lado **b** respecto al **c** o del lado **a** respecto al **b/c**.

```
15.8 APÉNDICE VIII (ESPECTROS DE RMN BIDIMENSIONAL, HSQC)
15.8.1 CH<sub>3</sub>OC(S)N(H)C(O)OCH<sub>3</sub>
```


Figura 15.18 Espectro RMN bidimensional (HSQC) del CH₃OC(S)N(H)C(O)OCH₃

15.8.2 CH₃CH₂OC(S)N(H)C(O)OCH₃

Figura 15.19 Espectro RMN bidimensional (HSQC) del CH₃CH₂OC(S)N(H)C(O)OCH₃

15.9 REFERENCIAS

- [1] I. U. f. P. a. A. Chemistry, *Pure Appl. Chem.* **1976**, *45*, 11.
- [2] M. F. Erben, Universidad Nacional de La Plata (La Plata), **2005**.