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Abstract. Cryptographic techniques authenticate users and protect infor-
mation confidentiality. These tasks are performed by subsystems called Ora-
cles. The most popular Oracle is the RSA system based on two large primes 
granting secure services. In 2008, a programming error in Open-SSL of the 
Debian system was detected. Its biased number generator created system vul-
nerabilities by turning certificates predictable. This paper analyses the generic 
performance of a RSA cryptographic Oracle and develops a methodology to 
detect irregularities and anomalies in the quality of the certificates. Ten mil-
lion certificates delivered by a private PKI were analyzed and found signifi-
cant differences between theoretical predictions and experimental results.  
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1.  Introduction 

Given the widespread use of network communications and services, public key 
cryptographic subsystems for user authentication should take measures to prevent 
system vulnerability anomalies. 

The RSA system has shown attack resistance so far. However, weak applications 
might be present, for example in the SSL protocol [1] or others. The quality of primes 
might not be appropriate [2] or the generation of such values might be predictable, as 
it was demonstrated in the year 2008. [3] [4] [5] 

Recently, researchers have shown that 0.2 percent of all public keys in the web are 
not secure. [6] 

Our laboratory carries out a line of research [7] analizing the randomness of public 
keys for a particular PKI installed in a system or network for user authentication. 

This article details the experimental results from running a software tool designed 
to audit SSL Oracles with RSA encryption. [8] 



2.  An Overview of Public Key Infrastructure  

The concept of Public Key Infrastructure (PKI) can be traced to the ideas of Whitfield 
Diffie and Martin Hellman published in 1976 in which users have two types of keys 
for cryptographic purposes: a public and a private key. [9] 

For instance, PKI technology develops user authentication, encrypted message 
transmission using others’ public keys, own message encryption/decryption, and 
digital signature authentication or non-repudiation of transmitted information. 

PKI implementation may be public or private. It generates certificates which are 
delivered through a system based on the confidence of the certification authority and 
digital signatures. 

This paper focuses on the experimental results from the study of anomalies in a 
private implementation of a PKI system. 

3.  PKIs and the RSA System 

In 1977, Ron Rivest, Asi Shamir, and Len Adleman from the Massachusetts Institute 
of Technology (MIT) presented a mathematical model following Diffie-Hellman 
ideas. The system is known as RSA system.1 The relevance of their proposal made it 
probably the most popular system in use. [10] 

The basic RSA ciphering system consists of a 3-tuple (e, d, n) where e is the 
public key, d is the private key and n is the module, also public. 

Security of these primitive cryptographies relies on the difficulty of finding prime 
factors of large compound numbers and the discrete logarithm problem, making 
processing impossible in the short term, at least for the time being. 

The source of a message m is encrypted by raising it to the power e of the receiver 
and its module n, following Gaussian congruencies. After this operation, the 
encrypted message c is obtained and transmitted. The receiver raises c to the d power 
module n, recovering the original message m. 

RSA has also a digital signature system based on the same logic but reversing the 
steps of the process. 

4.  ¿What is a Cryptographic Oracle? 

In any system based on the ideas of public key encryption, user authentication, digital 
signature, and non-repudiation must operate with a sub-system giving cryptographic 
support, namely a server assigned to those purposes. 

The Oracle machine tackles the problems for which there are no algorithmic 
solutions Türing introduced the paradigm of a super machine or Oracle Machine in 
1938 [11]. Although not fully applied yet, the concept is analogous to the sub-system 
dealing with certificate generation and other cryptographic tasks; thus, the term 
Oracle used in this paper. 
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  The protocols Secure Sockets Layer – SSL and later the Transport Layer 
Security TLS determine the steps required for secure communications, implementing 
the concept of an Oracle. Open-SSL packets are examples of Oracles. 

5.  Oracle Vulnerability 

If an Oracle does not deliver its assigned tasks, connections between system and 
users become insecure. A bad performance and incorrect or malicious programming 
can add vulnerability to the communications intended to protect because a wrong 
programming in the search of prime numbers can turn the list of such values 
predictable and diminish the quantity of n modules generated. 

This vulnerability facilitates access to computer crime or intrusions to public or 
private systems, disturbing legitimate users and dangerously damaging security.  
The attacker can clone certificates, hack user identities, access different systems, e-
mail accounts, banking and credit card information and use the information to its 
advantage, among other violations. 

In this framework, the Oracle does not offer a safe working mode based on an 
unbiased probability distribution of modules with a large cardinality for the set of 
prime numbers predicted by Number Theory. Hence, it turns to an unsafe mode, 
based on a biased value distribution of cryptographic modules. 

6.  The Debian Case. 

The situation described in the previous section is genuine. It has been identified by 
Luciano Bello, an argentine researcher of the OpenSSL toolkit included in the Debian 
system. 

Duly informed to developers, it was published as DSA 1571-1on May 13th, 2008, 
under the title New open ssl packages fix predictable random number generator. 
[12]. 

Its first vulnerable version 0.9.8c-1 was published on September 17th, 2006. 
Due to a variable initialization error, the number generator became predictable. 

Hence, it was vulnerable to brute-force attack over a reduced set of 215 values. 
All systems relying on this Oracle for security had an open vulnerability for about 

twenty months. 
Clearly, administrators of Information Security Management Systems cannot 

allow these types of error, because the system not offer a safe working mode, 
regardless their origin. 
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7.   Mathematical Methodology for Anomaly Detection in 
Oracle Behavior 

Given that the RSA cryptographic system works based on large prime numbers2, the 
Oracle has to be able to obtain a large list of such numbers whose size may be 
selected by the user. 

For systems of b bits, let P be the set of all Oracle generated primer numbers of 

the required order or size: 
 

P = {p1 ; p2 ; p3 ; . . . ; pr } where Card (P) = r    (1) 
 

Considering that the values pi can be ordered, the value r is equal to the cardinality 
of P. The number is estimated with the function π(n) of Number Theory.3  

Then: 
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Let N be the set of all different modules ni such that they are the product of two 
prime values of the set P. 
 
 
 
 

The cardinality of N represents the number of certificates that the Oracle is able to 
generate for a key size of b bits.  

However, it is in this particular point where the weakness of anomalous Oracles 
lies: the instance in which the cardinality of N is drastically reduced by a bug or a 
viral code. 

A bias – such as in the Debian case – might generate a set P  ́of prime values such 
that P’⊂ P. 

P’ makes a large number of certificates vulnerable with their security 
compromised, considering that one of the prime factors is revealed. Hence, the 
recovery of the private key is immediate. 

Given the size and quantity of such primes, it is not possible to recover the set P to 
detect anomalies or biases. Hence, a sample methodology is used in which each 
sample is formed of certificate requests to the Oracle. 

 Let M be a sample of s certificate requests to the Oracle: 
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We shall call collision of primes when the presence of at least one prime factor is 
shared by two or more certificates in a sample M. That is: 
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Let m* be the quantity of samples M without collision of primes. Let m be the 
quantity of samples M. The probability of not finding collision of primes for s 
requests will be close to:  
 

 
 
 
Let s requests be an Oracle. Each request is formed by a certificate which has a 

module n formed by the product of two primes. The first request s1 can yield from 
k(k-1)/2 modules. In order not to collide with s1, the second request s2 needs to be 
obtained from all the modules which do not share primes with s1. In [8] and [13] we 
show a formula indicanting the quantity of modules not sharing primes with each 
other. 

Developing the following array for each request, it yields: 
 

s1=p1p2     

p1p3 p2 p3    

p1p4 p2 p4 s2=p3 p4   

… … … …  

p1pr p2 pr p3 pr … Pr-1pr 

 
For s=1 the probability of not finding collision of primes in a sample is 1 given 

that it is the only request. 
For s=2, the probability of not finding collisions is such that the new certificate 

does not belong to the set of modules that share primes with the previous certificate. 
Then, 
 

 
  
 
 
 
For h requests in each sample, the following expression is obtained: 
 
 
 
 
 

(4) 

[ ]
[ ]

2

)1(*

1)1(*2
2

)1(*
*

2

)1(*

1)gcd(
−








 +−−−−

==
kk

k
kkkk

Mprob

[ ] [ ]



















−
+−−== Π

−

=
2

)1(*

1)(*2*
11)gcd(

1

0
kk

iki
Mprob

h

i



The value of h -- i.e. the quantity of requests per sample -- must be less than the 
value of the least integer of k/2. If h is equal or greater than such value, the probability 
of not finding collisions is zero. 

8.  Experimental Design and Evidence for Anomaly Detection in 
the Behavior of Oracles 

8.1   Hypothesis and Assumptions 
 
Hypothesis: It is possible to detect the anomalous behavior of an Oracle by means of 
probability analysis by not finding collisions between primes in the certificates of de-
livery. 

The following assumptions are made: 
Assumption 1: Given a key size of b bits, an Oracle is capable of delivering cer-

tificates using primes with size b-1 bits. 
Assumption 2: Search and selection of prime values is a random process (or at 

least pseudorandom) in such a way that we assume equiprobability for each value in 
the size of b-1 bits. 

Assumption 3: The Oracle does not “remember” the certificates previously is-
sued. Thus, it may repeat primes in the generation of new certificates, but not in the 
same certificate. This assumption also contemplates the possibility of repeating a cer-
tificate already issued. 

Assumption 4: Throughout sample selection, the probability of not finding colli-
sions fits from the experimental to the theoretical model. 

Assumption 5: Given the previous assumptions, if an Oracle does not fit all the 
criteria, we will consider that research should be necessary to develop new assump-
tions not contemplated or that an Oracle is defective and presents an anomalous be-
havior. 
 
8.2   Experimental Design 
 
We set up a PC with the latest version of OpenSSL for Windows, downloaded from 
the internet [14]. 

We define the set M consisting of s certificates requested to OpenSSL through 
software developed in our laboratory. This tool tests for collision of primes in M. The 
output is the quantity of found collisions, in case there are any. 

Repeating the process m times and accumulating in m* the quantity of sets M in 
which collisions were found, the quotient in formula (6) is calculated which we shall 
call the experimental probability of not finding collision of primes. 

Such that: 
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We compare the experimental probability with the theoretical probability of not 
finding collision of primes in m samples of s requests each. 

9.  Experimental Evidence 

With the experimental design and the epistemological background, the hypothesis and 
assumptions, the software tool developed, and the sample selection, the experimental 
tests were carried out. 

We processed 10.000 (104) samples (sets M) with 1.000 (103) certificate requests 
each. In other words, we searched for collisions in 10.000.000 (107). For practical 
processing purposes, we requested OpenSSL 64 bit certificates; i.e. the size of the 
prime factors of each module is b=32 bits. 

The theoretical model predicts, following formula 8 with these parameters: 
 
 
 
 
where k is: 

 

 

 

 

Thus, in (9) the theoretical probability is 0.979 

However, the experimental results are shown below. Each lot contains 1.000 sets 
M; each set holds 1.000 certificates. The column Collisions details the quantity of sets 
M for which collision does not occur; i.e. m*. 
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Lot Collision 

1 349 

2 326 

3 356 

4 344 

5 334 

6 326 

7 316 

8 325 

9 332 

10 341 

 

The probability from experimental results yields 0,3349±0,01008 and not 0.979, the 
theoretical probability. 

10.  Conclusions 

The theoretical model differs significantly form the experimental model. Analyzing 

the theoretical framework of the model, we shall conclude: 

a) the Oracle is biased and shows anomalous behavior. This conclusion may indi-

cate that our hypothesis was correct. However, before accepting it, the other possible 

conclusion needs to be refuted, at least at this stage of the research.  

b) at least one hidden undetected cause is present adding a variable to the theoret-

ical model, originating the difference between the predicted and the experimental re-

sults. 

12.  Further Work 

Before developing software to control the normality or anomaly of the behavior of 
Oracles of the type SSL, the strength of the primes in the certificates needs to be ex-
plored. It could be the case that the Oracle is delivering strong primes;4 i.e. primes 
meeting additional conditions other than primality, and hence, the set of certificates 
which may be delivered is reduced and yields the observed difference. [15] 

We do not have the precise quantity of strong primes in a particular interval. The 
research could lead to work on a heuristic formula for such purpose. 

Thus, further work shall focus on this area and on repeating the tests detailed here. 
In this way, formula refinements can be developed to offer definite criteria to deter-
mine normal or anomalous behavior of an Oracle. Once the hypothesis is verified, re-
search efforts shall concentrate in the development of software for Oracle auditing. 

 

                                                           
4
 p is large; p-1=aq+1 where q is a large prime; q-1=bt+1 t is also a large prime; 

p+1=cw-1 where w is a large prime. 
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