
Experimental Detection of Anomalies
in Public Key Infrastructure.

Antonio Castro Lechtaler1,2, Marcelo Cipriano1,2,3

Eduardo Malvacio1

1 Escuela Superior Técnica – IESE. Buenos Aires,

2 Universidad Tecnológica Nacional Facultad Regional Buenos Aires. 3 Instituto Fátima.
[acastro@iese.edu.ar, marcelocipriano@iese.edu.ar, edumalvacio@gmail.com]

Abstract. Cryptographic techniques authenticate users and protect infor-
mation confidentiality. These tasks are performed by subsystems called Ora-
cles. The most popular Oracle is the RSA system based on two large primes
granting secure services. In 2008, a programming error in Open-SSL of the
Debian system was detected. Its biased number generator created system vul-
nerabilities by turning certificates predictable. This paper analyses the generic
performance of a RSA cryptographic Oracle and develops a methodology to
detect irregularities and anomalies in the quality of the certificates. Ten mil-
lion certificates delivered by a private PKI were analyzed and found signifi-
cant differences between theoretical predictions and experimental results.

Keywords: asymmetric cryptography, SSL, RSA, prime integers, predictable
primes.

1. Introduction

Given the widespread use of network communications and services, public key
cryptographic subsystems for user authentication should take measures to prevent
system vulnerability anomalies.

The RSA system has shown attack resistance so far. However, weak applications
might be present, for example in the SSL protocol [1] or others. The quality of primes
might not be appropriate [2] or the generation of such values might be predictable, as
it was demonstrated in the year 2008. [3] [4] [5]

Recently, researchers have shown that 0.2 percent of all public keys in the web are
not secure. [6]

Our laboratory carries out a line of research [7] analizing the randomness of public
keys for a particular PKI installed in a system or network for user authentication.

This article details the experimental results from running a software tool designed
to audit SSL Oracles with RSA encryption. [8]

2. An Overview of Public Key Infrastructure

The concept of Public Key Infrastructure (PKI) can be traced to the ideas of Whitfield
Diffie and Martin Hellman published in 1976 in which users have two types of keys
for cryptographic purposes: a public and a private key. [9]

For instance, PKI technology develops user authentication, encrypted message
transmission using others’ public keys, own message encryption/decryption, and
digital signature authentication or non-repudiation of transmitted information.

PKI implementation may be public or private. It generates certificates which are
delivered through a system based on the confidence of the certification authority and
digital signatures.

This paper focuses on the experimental results from the study of anomalies in a
private implementation of a PKI system.

3. PKIs and the RSA System

In 1977, Ron Rivest, Asi Shamir, and Len Adleman from the Massachusetts Institute
of Technology (MIT) presented a mathematical model following Diffie-Hellman
ideas. The system is known as RSA system.1 The relevance of their proposal made it
probably the most popular system in use. [10]

The basic RSA ciphering system consists of a 3-tuple (e, d, n) where e is the
public key, d is the private key and n is the module, also public.

Security of these primitive cryptographies relies on the difficulty of finding prime
factors of large compound numbers and the discrete logarithm problem, making
processing impossible in the short term, at least for the time being.

The source of a message m is encrypted by raising it to the power e of the receiver
and its module n, following Gaussian congruencies. After this operation, the
encrypted message c is obtained and transmitted. The receiver raises c to the d power
module n, recovering the original message m.

RSA has also a digital signature system based on the same logic but reversing the
steps of the process.

4. ¿What is a Cryptographic Oracle?

In any system based on the ideas of public key encryption, user authentication, digital
signature, and non-repudiation must operate with a sub-system giving cryptographic
support, namely a server assigned to those purposes.

The Oracle machine tackles the problems for which there are no algorithmic
solutions Türing introduced the paradigm of a super machine or Oracle Machine in
1938 [11]. Although not fully applied yet, the concept is analogous to the sub-system
dealing with certificate generation and other cryptographic tasks; thus, the term
Oracle used in this paper.

1 after their last names.

 The protocols Secure Sockets Layer – SSL and later the Transport Layer
Security TLS determine the steps required for secure communications, implementing
the concept of an Oracle. Open-SSL packets are examples of Oracles.

5. Oracle Vulnerability

If an Oracle does not deliver its assigned tasks, connections between system and
users become insecure. A bad performance and incorrect or malicious programming
can add vulnerability to the communications intended to protect because a wrong
programming in the search of prime numbers can turn the list of such values
predictable and diminish the quantity of n modules generated.

This vulnerability facilitates access to computer crime or intrusions to public or
private systems, disturbing legitimate users and dangerously damaging security.
The attacker can clone certificates, hack user identities, access different systems, e-
mail accounts, banking and credit card information and use the information to its
advantage, among other violations.

In this framework, the Oracle does not offer a safe working mode based on an
unbiased probability distribution of modules with a large cardinality for the set of
prime numbers predicted by Number Theory. Hence, it turns to an unsafe mode,
based on a biased value distribution of cryptographic modules.

6. The Debian Case.

The situation described in the previous section is genuine. It has been identified by
Luciano Bello, an argentine researcher of the OpenSSL toolkit included in the Debian
system.

Duly informed to developers, it was published as DSA 1571-1on May 13th, 2008,
under the title New open ssl packages fix predictable random number generator.
[12].

Its first vulnerable version 0.9.8c-1 was published on September 17th, 2006.
Due to a variable initialization error, the number generator became predictable.

Hence, it was vulnerable to brute-force attack over a reduced set of 215 values.
All systems relying on this Oracle for security had an open vulnerability for about

twenty months.
Clearly, administrators of Information Security Management Systems cannot

allow these types of error, because the system not offer a safe working mode,
regardless their origin.

(3)

(2)

7. Mathematical Methodology for Anomaly Detection in
Oracle Behavior

Given that the RSA cryptographic system works based on large prime numbers2, the
Oracle has to be able to obtain a large list of such numbers whose size may be
selected by the user.

For systems of b bits, let P be the set of all Oracle generated primer numbers of

the required order or size:

P = {p1 ; p2 ; p3 ; . . . ; pr } where Card (P) = r (1)

Considering that the values pi can be ordered, the value r is equal to the cardinality
of P. The number is estimated with the function π(n) of Number Theory.3

Then:

)2()2(1−Π−Π= bbr

Let N be the set of all different modules ni such that they are the product of two
prime values of the set P.

The cardinality of N represents the number of certificates that the Oracle is able to
generate for a key size of b bits.

However, it is in this particular point where the weakness of anomalous Oracles
lies: the instance in which the cardinality of N is drastically reduced by a bug or a
viral code.

A bias – such as in the Debian case – might generate a set P ́of prime values such
that P’⊂ P.

P’ makes a large number of certificates vulnerable with their security
compromised, considering that one of the prime factors is revealed. Hence, the
recovery of the private key is immediate.

Given the size and quantity of such primes, it is not possible to recover the set P to
detect anomalies or biases. Hence, a sample methodology is used in which each
sample is formed of certificate requests to the Oracle.

 Let M be a sample of s certificate requests to the Oracle:

2 For example, for systems of 1024 bits, two primes are required, p and q, such that each one is at least 512

bits. That is the case of balanced primes, whose size is recommended for greater system security. However,

certificates may even have 2048 and 4096 bits.

3
 The function indicates that the number of prime numbers between 1 and a number n is 1

ln/

)(
lim =

∞→ n

n

n

π

For instance, the number of prime numbers of the order 2512 is 500

511

511

512

512
512 2*7.5

2ln

2

2ln

2
)2(≈−≈π

2

)1(*
)(Card where};;;*{

−=<≤≠== rr
NrjrijippnN jit

(5)

(6) 1))prob(gcd(M
m

m* =≈

(7)

(8)

{ }simM i ≤≤= 1

We shall call collision of primes when the presence of at least one prime factor is
shared by two or more certificates in a sample M. That is:

1):(;, ≠∈ jiji mmndivisorgreatcommoMmm

Let m* be the quantity of samples M without collision of primes. Let m be the
quantity of samples M. The probability of not finding collision of primes for s
requests will be close to:

Let s requests be an Oracle. Each request is formed by a certificate which has a

module n formed by the product of two primes. The first request s1 can yield from
k(k-1)/2 modules. In order not to collide with s1, the second request s2 needs to be
obtained from all the modules which do not share primes with s1. In [8] and [13] we
show a formula indicanting the quantity of modules not sharing primes with each
other.

Developing the following array for each request, it yields:

s1=p1p2

p1p3 p2 p3

p1p4 p2 p4 s2=p3 p4

… … … …

p1pr p2 pr p3 pr … Pr-1pr

For s=1 the probability of not finding collision of primes in a sample is 1 given

that it is the only request.
For s=2, the probability of not finding collisions is such that the new certificate

does not belong to the set of modules that share primes with the previous certificate.
Then,

For h requests in each sample, the following expression is obtained:

(4)

[]
[]

2

)1(*

1)1(*2
2

)1(*
*

2

)1(*

1)gcd(
−








 +−−−−

==
kk

k
kkkk

Mprob

[] []



















−
+−−== Π

−

=
2

)1(*

1)(*2*
11)gcd(

1

0
kk

iki
Mprob

h

i

The value of h -- i.e. the quantity of requests per sample -- must be less than the
value of the least integer of k/2. If h is equal or greater than such value, the probability
of not finding collisions is zero.

8. Experimental Design and Evidence for Anomaly Detection in
the Behavior of Oracles

8.1 Hypothesis and Assumptions

Hypothesis: It is possible to detect the anomalous behavior of an Oracle by means of
probability analysis by not finding collisions between primes in the certificates of de-
livery.

The following assumptions are made:
Assumption 1: Given a key size of b bits, an Oracle is capable of delivering cer-

tificates using primes with size b-1 bits.
Assumption 2: Search and selection of prime values is a random process (or at

least pseudorandom) in such a way that we assume equiprobability for each value in
the size of b-1 bits.

Assumption 3: The Oracle does not “remember” the certificates previously is-
sued. Thus, it may repeat primes in the generation of new certificates, but not in the
same certificate. This assumption also contemplates the possibility of repeating a cer-
tificate already issued.

Assumption 4: Throughout sample selection, the probability of not finding colli-
sions fits from the experimental to the theoretical model.

Assumption 5: Given the previous assumptions, if an Oracle does not fit all the
criteria, we will consider that research should be necessary to develop new assump-
tions not contemplated or that an Oracle is defective and presents an anomalous be-
havior.

8.2 Experimental Design

We set up a PC with the latest version of OpenSSL for Windows, downloaded from
the internet [14].

We define the set M consisting of s certificates requested to OpenSSL through
software developed in our laboratory. This tool tests for collision of primes in M. The
output is the quantity of found collisions, in case there are any.

Repeating the process m times and accumulating in m* the quantity of sets M in
which collisions were found, the quotient in formula (6) is calculated which we shall
call the experimental probability of not finding collision of primes.

Such that:

(9)

)2ln(

2

)2ln(

2
31

31

32

32

−=k
(10)

We compare the experimental probability with the theoretical probability of not
finding collision of primes in m samples of s requests each.

9. Experimental Evidence

With the experimental design and the epistemological background, the hypothesis and
assumptions, the software tool developed, and the sample selection, the experimental
tests were carried out.

We processed 10.000 (104) samples (sets M) with 1.000 (103) certificate requests
each. In other words, we searched for collisions in 10.000.000 (107). For practical
processing purposes, we requested OpenSSL 64 bit certificates; i.e. the size of the
prime factors of each module is b=32 bits.

The theoretical model predicts, following formula 8 with these parameters:

where k is:

Thus, in (9) the theoretical probability is 0.979

However, the experimental results are shown below. Each lot contains 1.000 sets
M; each set holds 1.000 certificates. The column Collisions details the quantity of sets
M for which collision does not occur; i.e. m*.

[] []
















−
+−−== Π

=

2

)1(*

1)(*2*
11)gcd(

999

0
kk

iki
Mprob

i

Lot Collision

1 349

2 326

3 356

4 344

5 334

6 326

7 316

8 325

9 332

10 341

The probability from experimental results yields 0,3349±0,01008 and not 0.979, the
theoretical probability.

10. Conclusions

The theoretical model differs significantly form the experimental model. Analyzing

the theoretical framework of the model, we shall conclude:

a) the Oracle is biased and shows anomalous behavior. This conclusion may indi-

cate that our hypothesis was correct. However, before accepting it, the other possible

conclusion needs to be refuted, at least at this stage of the research.

b) at least one hidden undetected cause is present adding a variable to the theoret-

ical model, originating the difference between the predicted and the experimental re-

sults.

12. Further Work

Before developing software to control the normality or anomaly of the behavior of
Oracles of the type SSL, the strength of the primes in the certificates needs to be ex-
plored. It could be the case that the Oracle is delivering strong primes;4 i.e. primes
meeting additional conditions other than primality, and hence, the set of certificates
which may be delivered is reduced and yields the observed difference. [15]

We do not have the precise quantity of strong primes in a particular interval. The
research could lead to work on a heuristic formula for such purpose.

Thus, further work shall focus on this area and on repeating the tests detailed here.
In this way, formula refinements can be developed to offer definite criteria to deter-
mine normal or anomalous behavior of an Oracle. Once the hypothesis is verified, re-
search efforts shall concentrate in the development of software for Oracle auditing.

4
 p is large; p-1=aq+1 where q is a large prime; q-1=bt+1 t is also a large prime;

p+1=cw-1 where w is a large prime.

13. Acknowledgements.

The financial support provided by Agencia Nacional para la Promoción Científica y

Tecnológica and CITEDEF is gratefully acknowledged.

14. References.

1. Holz, R; Braun, N, and others. The SSL landscape: a thorough análisis of the
x.509 PKI using active and passive measurements. In Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement conference, IMC 2011,
pages 427-444. ACM, 2011.

2. Loebenberger, D; Nüsken, M. Analyzing Standards for RSA Integers. In A.
NITAJ and D. Pointcheval, editors. Africacrypt 2011. Volume 6737 of Lecture
Notes in Computer Science, pgs. 260-277. Springer, 2011.

3. http://www.debian.org/security/2008/dsa-1571/, 2008.
4. Moore, H. Debian OpenSSL Predictible PRNG Toys. See

http://digitaloffense.net/tools/debian-openssl/, 2008.
5. http://www.citedef.gob.ar/si6/descargas/openssl-debian-defcon16.pdf (accesed 18

july 2012).
6. Lenstra, A; Hughes, J; Augier, M y otros. Ron was wrong, Whit is right. e-print

International Association for Cryptologic Research,
http://eprint.iacr.org/2012/064, 15 Feb 2012.

7. Castro Lechtaler, A; Cipriano, M. Detección de Anomalías en Oráculos
Criptográficos tipo RSA por medio de análisis probabilísticas y estadísticos. XIV
Workshop de Investigadores en Ciencias de la Computación. Pg. 40-44. Posadas,
Argentina. 2012.

8. Castro Lechtaler, A; Cipriano, M. Detección de anomalías en Oráculos tipo
OpenSSL por medio de análisis de probabilidades. XVII Congreso Argentino de
Ciencias de la Computación CACIC 2011, Pg.1096-1104. La Plata, Argentina.
2011.

9. Rivest, R.; A. Shamir; L. Adleman (1978). "A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems". Communications of the ACM21.

10. Bellare, Mihir; Rogaway, Phillip; Introduction to Modern Cryptography, Lecture
Notes, University of California San Diego, 2006.

11. Turing, Allan; "Systems of logic defined by ordinals", Proc. Lond. Math. Soc.,
Ser. 2, 45: 161–228; This was Turing's Ph.D. thesis, Princeton University (1938).

12. http://lists.debian.org/debian-security-announce/2008/msg00152.html (accesed 18
july 2012).

13. Castro Lechtaler, A; Cipriano, M; Malvacio, E; Cañón, S; Procedure for the
Detection of Anomalies in Public Key Infrastructure (RSA Systems). 41° Jornadas
Argentinas de Informática (JAIIO), (Congress proceedings in the press) La Plata,
Argentina.

14. http://www.openssl.org/ (accesed 18 july 2012).
15. Rivest, R; Silverman, R; Are 'Strong' Primes Needed for RSA?, Cryptology ePrint

Archive: Report 2001/007. http://eprint.iacr.org/2001/007

