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Summary. In systems where agents are required to interact with a partially known and dy-
namic world, sensors can be used to obtain further knowledge about the environment. How-
ever, sensors may be unreliable, that is, they may deliver wrong information (due, e.g., to
hardware or software malfunctioning) and, consequently, they may cause agents to take wrong
decisions, which is a scenario that should be avoided. The paper considers the problem of rea-
soning in noisy environments in a setting where no (either certain or probabilistic) data is
available in advance about the reliability of sensors. Therefore, assuming that each agent is
equipped with a background theory (in our setting, an extended logic program) encoding its
general knowledge about the world, we define a concept of detecting an anomaly perceived in
sensor data and the related concept of agent recovering to a coherent status of information. In
this context, the complexities of various anomaly detection and anomaly recovery problems
are studied.

1 Introduction

Consider an agent operating in a dynamic environment according to an internal
background theory (the agent’s trustable knowledge) which is enriched, over time,
through sensing the environment. Were sensors completely reliable, in a fully ob-
servable environment, the agent could gain a perfectly correct perception of envi-
ronment evolution. However, in general, sensors maybe unreliable, in that they may
deliver erroneous observations to the agent. Thus, the agent’s perception about en-
vironment evolution might be erroneous and this, in turn, might cause that wrong
decisions are taken.

In order to deal with the uncertainty that arises from noisy sensors, probabilistic
approaches have been proposed see, e.g., [5, 6, 7, 14, 16, 21]) where evolutions are
represented by means of dynamic systems in which transitions among possible states
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Fig. 1. Parking lot example.

are determined in terms of probability distributions. Other approaches refer to some
logic formalization (see, e.g., modal logics, action languages, logic programming,
and situation calculus [2, 11, 12, 20]) in which a logical theory is augmented to deal
quantitatively and/or qualitatively with the reliability of the sensors.

In this paper we take a different perspective instead, by assuming that no informa-
tion about reliabilities of sensors is available in advance. Therefore, in this context,
neither probabilistic nor qualitative information can be exploited for reasoning with
sensing. Nonetheless, it is in any case relevant to single out faulty sensor data in or-
der for the agent to be able to correctly maintain a correct perception about the status
of the world. To this aim, we introduce a formal framework good for reasoning about
anomalies in agent’s perception of environment evolutions, that relies on the identi-
fication of possible discrepancies between the observations gained through sensors
and the internal trustable knowledge of the agent.

In order to make the framework clearer, we next introduce a running example.

1.1 Example of Faulty Sensors Identification

Consider an agent who is in charge of parking cars in a parking lot (see Figure 1).
The parking lot consists of two buildings, each with several floors. The floors are
reached via a single elevator which runs in the middle in between the two buildings
(so, there is a building toleft and one to theright of the elevator door). A number
of sensors are used to inform the agent about parking place availability at different
levels of the two buildings. In particular, the sensors tell the agent: (a) if there is
any available parking place at some level in any of the two buildings (sensors1); (b)
given the floor where the agent is currently located, if there is any available parking
place in the left and/or the right building at that floor (sensors2); (c) given the floor
and the building (left or right) where the agent is currently located, whether parking
places are available at that floor in that building (sensors3) – let us assume that there
are a total ofn parking places at each level of each of the two buildings. Also, the
agent uses a background theory that tells him that if he is at floori of the building
x and sensorss1, when queried, signalled parking availability at leveli and sensor
s2, when queried, signalled a parking availability in buildingx then there must be
indeed at least one parking place available at his current position.

Now, assume that, in fact, the agent senses sensors3 and the sensor returns the
information that no place is available at the current agent’s position. This clearly
disagrees with the internal state of the agent that tells that there should be indeed
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at least one place available in that position. Such disagreement implies that some
anomalies came into play somehow.

In particular, the agent might doubt about the reliability of sensors3 (that is,
there actually are available parking places at the agent position, buts3 tells that none
is available). Similarly, the agent might suspect that sensors1 is reliable whiles2

is not, thereby inferring that there is a place to park at the very floor where he is
currently located, but on the opposite building.

1.2 Contribution and Organization

Within the framework outlined above, the contribution of the paper is as follows.
In Section 2, we introduce some preliminaries on extended logic programming

which shall constitute the basic formalism exploited for modelling agents back-
ground knowledge. Then, in Section 3, we formally propose a concept of anomaly in
state evolutions of a dynamic environment, as perceived by an agent sensing that en-
vironment through (possibly) noisy sensors. Moreover, we define a suitable concept
of recovering the agent internal mental state from anomalies.

After that the framework has been introduced, we turn to the study of the com-
putational complexity of some basic relevant problems related to state evolution
anomaly detection and recovery. The results are proved and discussed in Section 4.
We considered background knowledge bases modelled by means of not-free ex-
tended logic programs as well as general logic programs under both the brave and
the cautious semantics. We point out here that, depending on the complexity of the
agent background knowledge, anomaly checking may be characterized by a quite
varied degree of difficulty, ranging from simple checking for the occurrence of com-
plementary literals in sensor data and in the agent background knowledge (which
is basically the case for our running example above) to quite complex tasks. The
capability of characterizing computational complexity sources in knowledge repre-
sentation frameworks is important both for gaining knowledge of the structure of
the problems the framework comprises and, above all, to be able to realize effective
rewriting and optimizations needed to efficiently implement them [10]. This justifies
our interest in analyzing the complexity of anomaly detection and repair in agent
evolutions, which will accounted for in the paper.

We believe that our investigation is a step towards providing capabilities for dy-
namic plan monitoring and repairing in noisy environment, where it can be useful
for an agent that is trying to achieve its goals to be able to monitor, identify anoma-
lies and fix a plan while evolving [3, 4, 8]. In this respect, it deserves of further
work the possibility of prototypically implementing anomalies identification primi-
tives for agent evolutions on top of some available answer set engine (e.g., [13, 17]),
and subsequently made them available to conditional planning environments (e.g.,
[15, 19, 22]).
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2 Preliminaries on Extended Logic Programs (ELPs)

We briefly recall here that a propositional ELP is a set of rules of the formL0 ←
L1, . . . , Lm, not Lm+1, . . . , not Ln (n ≥ m ≥ 0), where the symbol “not”
denotes negation by default, and eachLi is a literal, i.e. an expression of the
form p or ¬p with p a propositional letter and the symbol “¬” denotes classical
negation. Byh(r) we denote the headL0 of the rule r, and byb(r) its body
L1, . . . , Lm, not Lm+1, . . . , not Ln. An ELP ispositiveif classical negation does
not occur in the program.

In the following, we consider theanswer setsemantics for ELPs [9].Answer
setsof an ELPP are defined as follows. LetLit(P ) denote the set of all the literals
obtained using the propositional letters occurring inP . Let acontextbe any subset
of Lit(P ). Let P be anegation-by-default-freeELP. Call a contextS closed under
P iff for each ruleL0 ← L1, . . . , Lm in P , if L1, . . . , Lm ∈ S, thenL0 ∈ S. An
answer setof P is any minimal contextS such that (1)S is closed underP and
(2) if S is inconsistent, that is if there exists a propositional letterp such that both
p ∈ S and¬p ∈ S, thenS = Lit(P ). An answer set of a general ELP is defined as
follows. Let thereduct ofP w.r.t the contextS, denoted byRed(P, S), be the ELP
obtained fromP by deleting (i) each rule that hasnot L in its body for someL ∈ S,
and (ii) all subformulae of the formnot L of the bodies of the remaining rules. Any
contextS which is an answer set ofRed(P, S) is ananswer setof P . By ANSW(P )
we denote the collection of all consistents answer sets of an ELPP . An ELP P is
ANSW-consistent iffANSW(P ) 6= ∅.

An ELP P cautiouslyentails a literall, written P |=c l, iff for each S ∈
ANSW(P ), l ∈ S. An ELP P bravelyentails a literall, written P |=b l, iff there
existsS ∈ ANSW(P ) such thatl ∈ S.

3 Formal Framework

In this section, we introduce a simple framework to model environment state evolu-
tions with sensing, and we formally state the problem of reasoning about possibly
faulty sensors. In this respect, we present some techniques that an agent might ex-
ploit to identify ‘anomalous’ observations (and, hence, faulty sensors), and a ‘repair
approach’ in execution monitoring accommodating the uncertainty on the outcome
of the sensors.

3.1 Sensors, Agents, and Transitions

Let F be a set of propositional variables. We denote by¬f the negation of any
f ∈ F , and byF¬ the set{¬f | f ∈ F}.

We distinguish two (disjoint) sets of variables:(i) beliefs B, denoting the agent
beliefs about the status of the world;(ii) observables O, modelling the actual status
of the world as returned by a setS of environment sensors. Specifically, for each
sensors ∈ S, λ(s) ⊆ O denotes the set of propositional variables that are sensed by
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B :

�
floor0, f loor1, f loor2

buildingl, buildingr

O :

8<: availF0, availF1, availF2

availBl, availBr

availP lace

S :

8<:λ(s1) = {availF0, availF1, availF2}
λ(s2) = {availBl, availBr}
λ(s3) = {availP lace}

K :

�
availP lace ← availFi, availBj ,

f loori, buildingj .8>>>><>>>>:
senseForAvailabilityOnF loor : 〈floor0, s1〉
senseForAvailabilityOnBuilding : 〈∅, s2〉
senseForParking : 〈∅, s3〉
movei,j : 〈floori, {¬floori, f loorj}〉
enterj : 〈∅, {buildingj}〉

Fig. 2. Formalization of the parking lot example.

s. Moreover, at any time instant, we assume that the value of the sensor is returned
by a functionval : S 7→ λ(S) × λ(S)¬ producing a consistent set of observables
(literals which the sensor evaluates to ‘true’).

Example 1.In theparking lotapplication, the sensorsS, the observablesO and the
beliefsB are reported in Figure 2, where, for instance,availFi means that there are
parking places available at leveli, availBl that at the current floor there are places
available in the left building, andbuildingr that the car is currently in the building
on the right. ¢

Each agent is characterized by abackground knowledgeK expressed as an ex-
tended logic program overF , and, over time, by a currentstaterepresented as a
pair of setsS = 〈SB , SO〉, whereSB ⊆ B × B¬ andSO ⊆ O × O¬, such that
bothSB andSO are consistent. In the following,SB (resp.SO) will be denoted by
B(S) (resp.O(S)). In order to achieve its goals, the agent operates by executingop-
eratorsthat causetransitionsbetween states, that is, they cause the environment to
evolve together with the agent mental state. In particular, a transition usually changes
the agent’s beliefs; yet, it may change the observables if the corresponding operator
includes asensing.

Several ways to define transitions between states in the presence of sensing ac-
tions have been proposed in the literature, accounting, e.g., for non-deterministic
effects, causal effects, probabilities, and so on (see, e.g., [20, 18, 14, 12, 21] and
references therein). In the foregoing, we decided to refer to a particularly simple ap-
proach, since the results we are going to present are largely independent of the cho-
sen formalization of transitions and associated operators. Hence, in order to make
the exposition clearer we resume to a quite simple model which allows to specify
preconditions, multiple-effects andsensing actions. So, in our context, an operatort
for an agentA is simply a pair〈c, e〉 such thatc is a logic formula over the setB ∪O
denoting the preconditions, ande is the effect of the operator which can be either(i)
a consistent subseteB of B × B¬, or (ii) a sensores ∈ S. We denote bycon(t) the
preconditionc, and byeff (t) the effecte of t. See Figure 2 for the theoryK and the
set of operators in our parking lot application.
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In the following, given a preconditionc and an answer setS we will assume that
the entailmentS |= c is polynomial time decidable. An ELPP cautiouslyentails
a conditionc, written P |=c c, iff for eachS ∈ ANSW(P ), S |= c. An ELP P
bravelyentails a conditionc, writtenP |=b c, iff there existsS ∈ ANSW(P ) such
thatS |= c.

We next define the semantics of applying operators to agent’s states.

Definition 1. Let A be an agent and〈SB , SO〉 be a state for it. An operatort = 〈c, e〉
is applicablein 〈SB , SO〉 if (K ∪ SB ∪ SO) |= c, and theresult of its applicationis
the state〈S′B , S′O〉 defined as:

• 〈SB , (SO \ v¬) ∪ v〉, with v = val(es), if e = es ∈ S, and
• 〈SB \ e¬B ∪ eB , SO〉, if e = eB ⊆ B ×B¬.

In the case above, we also write〈SB , SO〉 →t 〈S′B , S′O〉. 2

Example 2.Consider again Figure 2, and in particular, the set of operators reported
in the bottom part of it: Given the state〈{floor0}, ∅〉, we can easily see that the
operatormove1,2 is not applicable. Conversely, the agent might apply the operator
senseForAvailabilityOnF loor and a possible outcome is〈{floor0}, {¬availF0,
¬availF1, availF2}〉. Figure 1 shows an example of transitions between states ex-
ploiting such operators. ¢

3.2 Reasoning on Evolutions

The repeated application of operators define an evolution for the agent. Formally, an
evolutionH for A is a succession of states of the form〈S0

B , S0
O〉 →t1 〈S1

B , S1
O〉 →t2

... →tn 〈Sn
B , Sn

O〉, such that (i) each transitionti is applicable in the state〈Si−1
B , Si−1

O 〉
and (ii) each state〈Si

B , Si
O〉 is the result of the application ofti in 〈Si−1

B , Si−1
O 〉. In-

tuitively, H represents an actual plan that the agent is performing in order to achieve
a given goal starting from the initial state〈S0

B , S0
O〉.

In the following,len(H) denotes the number of transitions occurring in the evo-
lution H; statei(H) denotes theith state of the evolutionH; state(H) denotes
statelen(H)(H); tri(H) denotes theith transition occurred in the evolution;H[i]
denotes the evolutionstate0(H) →tr1(H) . . . →tri(H) statei(H).

As previously pointed out, while dealing with noisy sensors, there might be evo-
lutions in which the agent finds some discrepancies between its mental beliefs (plus
its trustable knowledge) and the observations at hand. The following definition for-
malizes such a notion of ‘disagreement’.

Definition 2. Let H be an evolution for the agentA with knowledgeK. A set of
observationsW ⊆ O(state(H)) is ananomalyfor A in H if ∀w ∈ W , th(A,H) \
W |= ¬w, whereth(A,H) denotes the theoryK∪B(state(H))∪O(state(H)). 2

Example 3.Let H be the evolution:t1 : senseForAvailabilityOnF loor; t2 :
move0,2; t3 : senseForAvailabilityOnBuilding; t4 : enterl; andt5 : senseFor
Parking.
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Assume, now, that sensed values are such thatO(state1(H)) ⊇ {¬availF0,
¬availF1, availF2},O(state3(H)) ⊇ {availBl,¬availBr}, andO(state5(H)) ⊇
{¬availP lace} – see, again, Figure 2. Intuitively, the agent is planning to park at
the second floor in the left building after sensings1 ands2. But, the result of sensing
s3 is anomalous, as it disagrees with its mental beliefs (inK) according to which
availP lace should be true there. ¢

The agent employed in our running example has a unique possible view of the
world, being its knowledge a positive program. In general, an agent may have sev-
eral possible worlds. Thus, in the following we will distinguish between the cautious
and the brave semantics. In particular, while anomaly existence under the cautious
semantics expresses that no possible world is consistent with the sensor readings, un-
der the brave semantics a set of sensor readings is anomalous if each sensor reading
is inconsistent with some possible world in which all sensors of the set are simulta-
neously kept quiet.

Given an anomaly, we are interested in finding possible fixes for it, i.e., “alterna-
tive” evolutions defined over the same set of transitions in which, however, the result
of the sensing actions may differ from the evolution in which the anomaly has been
singled out. This is formalized next with the notion ofrepair for an evolution.

Definition 3. An evolutionH ′ for A is arepair for H w.r.t. an anomalyW if:
1. len(H) = len(H ′),
2. tri(H) = tri(H ′), for each1 ≤ i ≤ len(H), and
3. ∀w ∈ W ∩ O(state(H ′)), th(A, H ′) \W 6|= ¬w.

Moreover,H ′ is non trivial if W ∩ O(state(H ′)) is not empty. 2

Example 4.For instance, a repair for our running example is obtained by replacing
the value returned by sensors2 with {¬availBl, availBr} while keeping the values
returned bys1 ands3. This represents the scenario in which the available place is in
the opposite building of the same floor. ¢

4 Reasoning with Noisy Sensors

Now that we have defined our formal framework for anomaly detection and repair-
ing of an agent’s mental state evolution, we turn to the problem of defining relevant
agent’s reasoning tasks. Moreover, as already stated in the Introduction, is it impor-
tant to pinpoint the computational complexity characterizing such tasks, since this is
a fundamental premise to devising effective and optimized implementations of our
framework.

Specifically, we shall next consider the following relevant problems:

• ANOMALY-EXISTENCE: Given an agentA and an evolutionH for it, does there
exist an anomalyW for A in H?

• REPAIR-EXISTENCE: Given an agentA and an anomalyW for A in an evolution
H, does there exist a (non trivial) repairH ′ for H w.r.t. W?
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not -freecautiousbrave

ANOMALY-EXISTENCE P-c ΣP
2 -c NP-c

REPAIR-EXISTENCE NP-c ΣP
2 -c ΣP

2 -c
REPAIR-CHECKING NP-c ΣP

2 -c ΣP
2 -c

ANOMALY &REPAIR-CHECK. P-c DP -c DP -c

Fig. 3. Complexity of Basic Problems.

• REPAIR-CHECKING: Given an agentA and evolutionsH andH ′, is H ′ a repair
for H w.r.t. some anomalyW for A?

• ANOMALY &REPAIR-CHECKING: Let A be an agent andH an evolution. Given
an evolutionH ′ and a set of observablesW ⊆ O(state(H)), is W an anomaly
for A in H, andH ′ a repair forH w.r.t. W?

Complexity results concerning problems defined above are depicted in Figure 3. In
the following, the complexity of theANOMALY-EXISTENCEproblem for a particular
semantics of general logic programs is investigated.

Let T be a truth assignment of the set{x1, . . . , xn} of boolean variables. Then,
we denote byΦ the boolean formulaΦ = C1∧ . . .∧Cm in conjunctive normal form,
with Cj = tj,1∨ tj,2∨ tj,3, where eachtj,k is a literal on the set of boolean variables
X = x1, . . . , xn. Recall that deciding thesatisfiability of Φ is a well-known NP
complete problem.

Theorem 1.ANOMALY-EXISTENCEfor ELPs under brave semantics isNP-complete.

Proof:
(Membership)The problem can be solved by a polynomial time nondeterminis-

tic Turing machine that guesses a subsetW ⊆ O(state(H)) together withn = |W |
contextsS1, . . . , Sn of th(A,H) \W such that¬wi ∈ Si, and then checks in poly-
nomial time that eachSi is an answer set of the reduct ofth(A,H)\W w.r.t.Si and,
hence, ofth(A,H) \W .

(Hardness)Given the boolean formulaΦ, consider the set of observablesO(Φ) =
{x0, x1, . . . , xn}, the sensors(Φ) with λ(s(Φ)) = O(Φ), and the agentA(Φ) with
knowledgeK(Φ) :

r0 : sat ← c1, . . . , cm.
r1,j : cj ← σ(tj,1). (1 ≤ j ≤ m)
r2,j : cj ← σ(tj,2). (1 ≤ j ≤ m)
r3,j : cj ← σ(tj,3). (1 ≤ j ≤ m)
r4,i : ¬xi ← not xi, sat. (0 ≤ i ≤ n)

whereσ(xi) = xi andσ(¬xi) = not xi, the operatort(Φ) = 〈∅, s(Φ)〉, and the evo-
lution H(Φ) = 〈∅, ∅〉 →t(Φ) 〈∅,O(Φ)〉. Now we prove that there exists an anomaly
W ⊆ O(Φ) for A(Φ) in H(Φ) iff Φ is satisfiable.

(⇒) Assume that there exists an anomalyW for A(Φ) in H(Φ). Thenth(A(Φ),
H(Φ)) \ W |= ¬w, ∀w ∈ W . As the negation of some observablexi can be
implied only by ruler4,i, then it is the case that there exists an answer setM of
th(A(Φ),H(Φ)) such thatsat ∈ M . Consequently,T (xi) = true, ∀xi ∈ X \W ,
andT (xi) = false, ∀xi ∈ W , is a truth assignment to the variables ofΦ that makes
the formula satisfied.
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(⇐) Assume thatΦ is satisfiable, and letTX be a truth value assignment to the
variables inX that makesΦ true. ThenW = {x0} ∪ {xi | TX(xi) = false} is an
anomaly forA(Φ) in H(Φ).

According to the theorem above, negation by default makesANOMALY-EXISTENCE

intractable. Moreover, under the cautious semantics the problem is more difficult
than under the brave (see Figure 3), unlike most cases in which a kind of symme-
try holds between the complexity of the two semantics (within the same level of the
polynomial hierarchy).

5 Conclusions

In this paper we have defined a formal framework good for reasoning about agents’
mental state evolution about environments sensed through possibly unreliable sen-
sors. In our framework, no information (neither certain nor probabilistic) is assumed
to be available in advance about the reliability of sensors. The agent’s perception
can however be maintained to encode a correct perception of the world through the
identification and the resolution of discrepancies occurring between sensor delivered
data and the agent’s internal trustable knowledge, encoded in the form of an ELP
under answer set semantics. After having defined the formal framework, in order to
pinpoint main computational complexity sources implied in the implementation of
the anomaly detection and repairing agent’s mental state evolution, several reasoning
problem have been considered and their complexity have been studied.

We note that the problem ofbelief changeis only loosely related to work here
done. Indeed, rather than being interested in revising the agent theory in order to en-
tail the new information provided by the environment, we are interested in singling
out environmental manifestations to be doubted about. The notion of minimal repair
is indeed relevant in order to rank different possible repairs. We point out that several
relations of preference between repairs can be embedded in the basic framework here
introduced. Indeed, a natural form of preference relies in the number of agent obser-
vations the repair should change in order to recover its mental consistency, while it is
also interesting to rank repairs depending on the number of anomalies they are able
to fix. Furthermore, while sensors under consideration can only report binary states,
the framework is not limited to the management of binary environmental measures,
as many-valued discrete signals can be indeed simulated by sets of binary signals.
Investigating the impact of enriching the framework with sensors delivering real-
valued data is also of interest. Finally, it is interesting to explore how the presented
framework could be embedded within a full-fledged conditional agent planning sys-
tem. All those issues discusses above will be the topics of future investigation, while
we are currently involved with the implementation of our system on top of the DLV
system [13].
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