
A multiplatform interpreter to introduce structured and

concurrent programming

Beatriz Depetris
1
, Guillermo Feierherd

1
, Daniel Aguil Mallea

1
, Germán Tejero

1

1 Universidad Nacional de Tierra del Fuego, Instituto de Desarrollo Económico e Innovación,

Hipólito Irigoyen 880, 9410 Ushuaia, Tierra del Fuego, Argentina

{bdepetris, gfeierherd, daguilmallea, gtejero}@untdf.edu.ar

Abstract. The process of teaching and learning computer programming has

always been a challenge for students and teachers. Throughout time, the

challenge has become tougher because now the concepts related to concurrent

programming must be added to the traditional concepts of programming. The

tools that show the performance of algorithms have been of great help, although

they must be used carefully. This article describes the development and use of

an update of the Visual Da Vinci (an environment used in different institutions

to introduce computer programming) and discusses the reasons why

programming (and software design in general) usually arises issues. It also

justifies the current importance of concurrent programming and the difficulties

it adds to traditional programming. Further on in the text, the Concurrent Da

Vinci is analysed and commented on, showing an example of how it is used to

solve a classical problem of concurrency.

Keywords: teaching computer programming, teaching concurrent programming,

algorithm visualization.

1 Introduction.

Having a flair for managing abstract ideas is a distinctive characteristic of good

computing professionals. It is an ability made up of two complementary elements: the

ability to simplify, removing unnecessary details, and the ability to derive

generalizations that highlight the common and essential aspects of a group of specific

cases.

This ability is necessary because software is essentially abstract, therefore its

design and development have to do mainly with abstractions. As Devlin states, “Once

you realize that computing is all about constructing, manipulating, and reasoning

about abstractions, it becomes clear that an important prerequisite for writing (good)

computer programs is the ability to handle abstractions in a precise manner.” [1]

Along the same line, when Kramer wonders “why is it that some software

engineers and computer scientists are able to produce clear, elegant designs and

programs, while others cannot?”, he reaches the conclusion that “the key lies in

2 Beatriz Depetris1, Guillermo Feierherd1, Daniel Aguil Mallea1, Germán Tejero1

abstraction: The ability to perform abstract thinking and to exhibit abstraction

skills.” [2]

According to Piaget, humans develop the abilities related to abstraction at the

fourth (and last) stage of cognitive development: the formal operational stage, which

starts approximately at 12 years old. Nevertheless, reality shows that many university

students (at least among the ones that chose courses related to informatics) have a low

development of these abilities.

Piaget’s theory backs up the assertion of Rutherford and Ahlgren, quoted by Dann

and Cooper in their article about Alice: “students’ learning progression is usually

from the concrete to the abstract. Young people can learn most readily about things

that are tangible and directly accessible to their senses—visual, auditory, tactile, and

kinesthetic. With experience, they grow in their ability to understand abstract

concepts, manipulate symbols, reason logically, and generalize. These skills develop

slowly, however, and the dependence of most people on concrete examples of new

ideas persists throughout life. Concrete experiences are most effective in learning

when they occur in the context of some relevant conceptual structure.” [3]

1.1 Teaching Computer Programming

Given that humans understand abstract ideas basing on concrete ideas, tools aimed for

the introduction of young people to programming have been created and used for

some time. The common characteristic of these tools is the visualization of the

algorithms’ execution. These tools are usually used in introductory courses to

computer programming of the university courses that deal with informatics (CS1 and

CS2). Nevertheless, because of the relevance computing thought has gained lately, in

some cases the tools are used with under-age students, or even with students that are

not planning to venture into informatic courses. While some of these tools have

specific purposes (for example, visualizing the action on trees), others, even if they

can be of use for people with different ages and interests, are more general (like Alice,

Greenfoot and Scratch). [4]

At the ex Ushuaia headquarters of the Universidad Nacional de la Patagonia San

Juan Bosco (UNPSJB), currently part of the newly created Universidad Nacional de

Tierra del Fuego, we have been using Visual DaVinci (VDV) for several years. The

environment VDV is a tool designed and developed in the Instituto de Investigación

en Informática LIDI of the Universidad Nacional de La Plata. This institution started

to use it, and it was later implemented in other National Universities. [5]

One of the main characteristics of the Visual DaVinci language is that it can

receive instructions in Spanish. In order to be able to visualize the execution, it uses a

city made compose of streets (horizontal) and avenues (vertical), a robot (that can

move through the city) and objects (flowers, papers and obstacles), located in the

intersection of streets and avenues, with which the robot can interact.

Before executing a program, the location of flowers, papers and obstacles can be

determined. During the execution, the robot (Lubo-I), which has a bag to take flowers

and papers, moves along the city obeying a group of primitives (mover, derecha,

A multiplatform interpreter to introduce structured and concurrent programming 3

tomarFlor, depositarPapel, etc.) Besides, there is access to certain variables of the

system (HayFlorEnLaEsquina, HayPapelEnLaBolsa, etc.) [6]

Compared to any other visual programming language available in the market,

Visual DaVinci is a limited tool, but it is precisely this characteristic which helps

avoiding the distraction that a great number of possibilities causes, and diminishing

the time it takes to learn how to use the enviroment. Thanks to this students can focus

on learning to design algorithms and express them in a short period of time.

Obviously, these limitations restrict both the possible data and the algorithms that can

be developed and visualized.

Finally it should be noted that Visual DaVinci uses a syntax similar to Pascal,

which facilitates the task in that courses of programming and algorithmic that use it as

a language.

1.2 Previous Experiences at the Ushuaia Headquarters

VDV has been used at the Ushuaia Headquarters since 1999. At first, it was used in

an optional course of Expression of Problems and Algorithms that used to take place

simultaneously with the Maths Leveling Course, which is required to start any course

at the Faculty of Engeneering of the UNPSJB.

The optional course had two basic aims. First, to work as a vocational guidance for

the applicants to the course. Second, to start working with some contents of

Algorithms and Programming (subjects of the second semester of the first year),

allowing the concepts to sink in during the first semester.

The results of the experiences were most satisfactory: the failure level in

Algorithms and Programming dropped among the students that had taken the optional

course [7]. As a consequence, in the new syllabus implemented since 2010, the

subject Expression of Problems and Algorithms was added to the first semester of the

first year. At first, the subject works with VDV, and then starts with Pascal.

1.3 Concurrent Programming

Concurrency is a characteristic of some problems which allows them to be

transformed into less serious sub-problems that, to a certain extent, can be solved

simultaneously. However, given that these solutions are partial collaborations to the

general solution, they are not completely independent. Depending on the problem,

they have to share resources and synchronize. When this technique is applied to

problems that must be solved by computers, it is called concurrent programming.

It is important to point out that concurrent programming does not mean real

simultaneity. In fact, if there is one processor only, the simultaneous execution is only

apparent. Besides, when the execution of the programs that solve partial solutions can

take place really simultaneously, using a group of machines (distributed system),a

machine with many processors (multicore), or some combination of both options, we

prefer to call it parallel programming.

4 Beatriz Depetris1, Guillermo Feierherd1, Daniel Aguil Mallea1, Germán Tejero1

The construction of operating systems was a field where concurrency techniques

sparked great interest and experienced significant improvements. As a consequence,

in many universities the introduction to concurrent programming is usually a part of

the subject that deals with the different aspects of Operating Systems. Afterwards, in

many cases, both concurrent and parallel programming, receive little further

treatment.

However, in recent times, hardware developments that took the ability of

multiprocessing to cheaper devices generated an added interest in this way of solving

problems. In the case of our syllabus, this has been reflected in some changes made to

the syllabus, implemented since 2010. Some of the changes are the transformation of

the concurrency topics of the subject Operating Systems into a new subject

(Introduction to Concurrency) and the creation of curricular spaces specifically

devoted to the issue (Parallel Systems-S).

To the already mentioned issues of traditional programming, concurrent

programming adds new ones. Some of them are the need to establish a

communication between the processes that contribute to the solution, the control of

the access to shared resources and synchronization. However, we think that the

greatest difficulty comes up when checking the processes’ correctness, as a

consequence of nondeterminism. As it is generally known, this characteristic causes

that, starting from the same initial conditions (input data) the consecutive executions

of the processes vary. This brings about difficulties to reproduce errors and detect

them.

1.4 A single environment

Bearing in mind the success of the VDV as a method of introducing students to

programming, the idea to use it to introduce concurrent programming came natural.

The advantages are obvious: the students already know the enviroment and have

experience with it, which allows them to focus on the specific matters of the topic.

At first, the idea to modify VDV and add facilities that would allow its use to solve

concurrent programming issues was considered. The result of this analysis was that it

should be fully reprogrammed. Some of the reasons behind this decision were:

 VDV is programmed in Delphi and only works with Windows. To produce a

multiplatform version was a priority due to the fact that many students use free

software and would not be able to install it.

 To create a full version would allow the gaining of experience and the

improvement of some details (better messages in case of error, more coherent

language, replace the enunciation of some primitives that can become ambiguous

in other contexts, etc.)

 Finally, to structure VDV from its roots so that it can accept the extensions that

allows its use to introduce students to concurrent programming.

A multiplatform interpreter to introduce structured and concurrent programming 5

1.5 Other aspects to consider

Even if experience shows that the tools which allow the visualization of the

algorithms’ execution are of great help when starting programming, it is important

that the teacher pays special attention to the design of the activities that will be

presented to the students.

The advantages of this tool stem from the fact that it makes code debugging easier.

When the errors are visible, the students become less dependent on their teacher.

Nevertheless, this can lead to the problems being solved by trial and error. Without

taking anything away from this method, truth is that students need to develop other

strategies to solve problems.

2 Characteristics of the Concurrent DV

En primer lugar cabe señalar que la versión de DaVinci First of all, it is important to

highlight that the Concurrent DaVinci version, in addition to all the elements it has to

make the teaching of concurrent programming easier and that will be briefly

described below, adds a group of extensions to the Visual DaVinci, the most

important being:

 Multiplatform implementation

 Improvement of the error messages when compiling and executing

 Incorporation of the string data type

 Reading variables when the execution is taking place

 Incorporation of a group of primitives (random numbers, convert text to numbers

and numbers to text, etc.)

 Replace the indentation for the keywords comenzar and fin to limit code blocks

 Admission of a distribution of flowers, papers and obstacles established by the

student, and the possibility to preserving it for future executions

The main extensions for concurrency are:

 Incorporation of the abstract data type semaphor, both general and binary.

Semaphores solve the typical issues of concurrency. This data type only works

with the primitives iniciarSemaforo, esperar and avisar

 Incorporation of the most common short-term schedulers (FIFO, Round-robin,

random). Although a concurrent program should work properly regardless the type

of scheduler the operating system uses, the possibility to choose among different

schedulers allows a practical observation of how they influence the execution.

 Incorporation of the possibility to manipulate the logical execution sequence.

Concurrency introduces the problem of non-determinism. That is why it is essential

to have a mechanism that allows both the exact reproduction of a concurrent

execution that is finished (correctly or incorrectly) as the ability to execute traces

established by the user (“forced traces”) that lead to error situations and that,

regarding non determinism, can fail to happen even when a high number of

program executions is made.

6 Beatriz Depetris1, Guillermo Feierherd1, Daniel Aguil Mallea1, Germán Tejero1

3 Example

Concurrent programming is usually taught through a group of traditional examples,

each of which work as a metaphor for real situations that come up in the operating

systems enviroment (original cradle of concurrent programming), and that then can

extend to other domains.

These examples help to set out the typical issues that come up when accessing to

shared resources and when synchronizing the different processes that help to the

solution of the problem is needed. One of these examples is the Bounded Buffer

Problem.

3.1 The Bounded Buffer Problem

This problem is first considered taking into account a couple of processes that share a

repository of predefined size. They are usually identified as producer (the process that

adds elements to the repository) and consumer (the process that takes elements from

the repository). Later, the problem can be generalized into n producers and m

consumers.

The problem presents requirements from the point of view of accessing to the use

of the shared resource (the repository), and also regarding the synchronization

between processes: a producer cannot add elements to a full repository and a

consumer cannot take elements from an empty repository.

In DVC, the simplified problem has been represented using two robots: one is the

producer and the other one, the consumer. The repository is an area of the city (Slots

for Consumer in Fig. 1). The elements of the repository are flowers, which the

producer picks up from other area of the city (Producer Resources Quadrant in Fig.

1), where the flowers have been placed before the execution. For the process to be

executed indefinitely, once the consumer takes an element of the repository, he must

place it back in the quadrant from which the producer takes it. The code of the

example is the following:

programa ProductorConsumidor

variables //globales

 lleno:semaforoGeneral

 vacio:semaforoGeneral

 turno:semaforoBinario

 turnoCuadrante:semaforoBinario

 avenidaProd:numero

 avenidaCons:numero

 //Constantes

 AVFINAL : numero

 CALLECONS : numero

A multiplatform interpreter to introduce structured and concurrent programming 7

 CALLEPROD : numero

subprogramas

 procedimiento tomarFlorDeCuadrante(en calle:numero;

en avFin:numero)

 comenzar

 Pos(1,calle)

 mientras ! HayFlorEnLaEsquina

 Pos((posAv % avFin)+1,posCa)

 tomarFlor

 fin

hilos

 hilo productor (en caPro:numero;en caCon:numero;en

avFin:numero)

 comenzar

 iniciar

 mientras v

 comenzar

 esperar(turnoCuadrante)

 tomarFlorDeCuadrante(caPro, avFin)

 avisar(turnoCuadrante)

 esperar(vacio)

 esperar(turno)

 Pos(avenidaProd,caCon)

 depositarFlor

 avenidaProd := (avenidaProd % avFin)+ 1

 avisar(turno)

 avisar(lleno)

 fin

 fin

 hilo consumidor (en caPro:numero;en caCon:numero;en

avFin:numero)

 comenzar

 iniciar

 mientras v

 comenzar

 esperar(lleno)

 esperar(turno)

 Pos(avenidaCons,caCon)

 tomarFlor

 avenidaCons := (avenidaCons % avFin)+ 1

 avisar(turno)

8 Beatriz Depetris1, Guillermo Feierherd1, Daniel Aguil Mallea1, Germán Tejero1

 avisar(vacio)

 Pos(aleatorio(avFin)+1,caPro)

 depositarFlor

 fin

 fin

comenzar

 //constantes

 AVFINAL := 10

 CALLECONS := 2

 CALLEPROD := 8

 //recursos compartidos

 avenidaprod := 1

 avenidacons := 1

 //inicilizacion semaforos

 iniciarSemaforo(lleno,0)

 iniciarSemaforo(vacio,AVFINAL)

 iniciarSemaforo(turno,1)

 iniciarSemaforo(turnoCuadrante,1)

 //arrancamos los hilos

 arrancar productor(CALLEPROD, CALLECONS, AVFINAL)

 arrancar consumidor(CALLEPROD, CALLECONS, AVFINAL)

fin

A multiplatform interpreter to introduce structured and concurrent programming 9

Fig. 1.

4 Future projects

The interpreter has been developed as part of a thesis. In order to show its

functionality, an elementary development environment has also been created.

In the future, we are planning to work on the following aspects, among others:

 Improvement of the development environment: the plan is to change the

elementary environment the current version has. The new environment will have

characteristics similar to the modern environments, like NetBeans and Eclipse, and

will provide useful tools for configuration, code editing and debugging and it will

also improve the visualization of the city and its robots. The fact that the new

environment will be similar to the currently used will be an extra advantage.

 Language extension: the extension of the specification is planned in order to study

in depth different concepts related to computer programming in general. Some of

these extensions are: the possibility to declare functions, the incorporation of array

10 Beatriz Depetris1, Guillermo Feierherd1, Daniel Aguil Mallea1, Germán Tejero1

data type, the improvement of the robots’ characteristics (making it possible to

uncoupling them from the threads of execution).

 Incorporation of other primitives and mechanisms for concurrency. It is

contemplated incorporate at least messages and monitors.

 Verification of the “forced traces”: currently, it is the users’ responsibility to make

sure that a “forced trace” is coherent with the code. In the future, the interpreter

will have the ability to perform this task.

References

1. Devlin, K.: Why universities require computer science students to take math,

Communications of ACM 46, 9, 37–39, (September 2003)

2. Kramer, J.: Is abstraction the key to computing?, Communications of ACM 50, 4,

36–42, (April 2007)

3. Dann, W., Cooper, S.: Education: Alice 3: concrete to abstract. Communications of

ACM 52, 8, 27–29, (August 2009)

4. Utting, I., Cooper, S., Kölling, M., Maloney, J., Resnick, M.: Alice, Greenfoot, and

Scratch -- A Discussion, Transactions on Computer Education 10, 4, Article 17, 11

pages, (November 2010)

5. Champredonde, R., De Giusti, A.: Design and Implementation of Visual Da Vinci.

In: III Congreso Argentino en Ciencias de la Computación (CACiC 1997), La Plata

(1997)

6. De Giusti, A. y otros. Algoritmos, Datos y Programas. Pearson Education, Buenos

Aires (2001)

7. Feierherd, G., Depetris, B., Jerez, M.: Una evaluación sobre la incorporación

temprana de algorítmica y programación en el ingreso a informática. In: VII

Congreso Argentino de Ciencias de la Computación (CACiC 2001), El Calafate

(2001)

