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Abstract. This paper presents a time-delayed neural network (TDNN) model
that has the capability of learning and predicting the dynamic behavior of
nonlinear elements that compose a wireless communication system. This model
could help speeding up system deployment by reducing modeling time. This pa-
per presents results of effective application of the TDNN model to an amplifier,
part of a wireless transmitter.

1 Introduction

In new generation wireless communications - i.e. third generation (3G) stan-
dards such as WCDMA (Wideband Code Multiple Division Access) and UMTS
(Universal Mobile Telecommunications System) towards which most of the cur-
rent cellular networks will migrate - system component modeling has become a
critical task inside the system design cycle, due to modern digital modulation
schemes [1].

New standards may introduce changes in the behavior of the devices that are
part of the system (e.g. mobile phones and their internal components) mainly
due to the modulation schemes they use, generating nonlinearities in the be-
havior and memory effects (when an output signal depends on past values of an
input signal). Memory effects in the time-domain cause the output of an elec-
tronic device to deviate from a linear output when the signal changes, resulting
in the deterioration of the whole system performance since the device begins
behaving nonlinearly. In this work we are interested in modeling the nonlinear
behavior that an amplifier can have inside a wireless transmission.

Amplifiers are a major building block of modern RF digital wireless trans-
mitters (i.e. cellular phones). Figure 1 shows a simplified block diagram of what
a cellular phone communication would be. The voice coming from the phone
speaker (analog signal) has to be digitalized to be transmitted through the wire-
less network, and this is the task of an Analog/Digital converter. The digitalized
voice then has to be compressed to reduce bit rate and bandwidth. It is also
codified, to format the data so the receiver can detect and minimize errors by
doing the reverse operation. After that, a modulator adds the carrier signal to
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the data signal. The signal has to reach an antenna from the cellular phone with
enough strength to guarantee the communication. But the signal suffers from
attenuation and needs amplification before that. Therefore, the final element of
the chain is a power amplifier (PA) which amplifies the signal before it travels
to the nearer antenna and to the receiver side of the communications chain.

Fig. 1. Simplified block diagram of a digital wireless transmitter.

An amplifier works by increasing the magnitude of an applied signal. Am-
plifiers can be divided into two big groups: linear amplifiers, which produce an
output signal directly proportional to the input signal, and power amplifiers
which have the same function as the first ones, but their objective is to obtain
maximum output power. A PA can work in different ”classes”: in Class A if
it arrives at the limit of the linearity; and class B when it works in nonlinear
regime. Moreover, in wireless communications, the transmitter itself introduces
nonlinearities when operating near maximum output power [2].

Nonlinear behavior modeling has been object of increasing interest in the last
years [3][4] since classical techniques that were traditionally applied for modeling
are not suitable anymore. That is why new techniques and methodologies have
been recently proposed, as for example neural network (NN) based modeling
applied to PA modeling[5].

Neural networks, as a measurement-based technique, may provide a compu-
tationally efficient way to relate inputs and outputs, without the computational
complexity of full circuit simulation or physics level knowledge [6], therefore
significantly speeding up the analysis process. No knowledge of the internal
structure is required and the modeling information is completely included in
the device external response.

Although the NN approach has been largely exploited for static simulation,
their application to dynamic systems modeling is a rather new research field.
In this paper we present a new NN model for modeling nonlinear elements that
belong ro a communications chain, using a network which takes into account
device nonlinearity and memory effects. In particular, this paper presents the
results of the proposed model to nonlinear PA modeling.

The organization of the paper is the following: in the next Section, NN-based
modeling of electronic components is presented. Section 3 explains the neural
network model presented in this paper and shows its architecture and parame-
ters. In Section 4, measurements and validation results are shown. Finally, the
conclusions are reported in Section 5.
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2 Neural network-based modeling

Neural network-based models are nowadays seen as a potential alternative for
modeling electronics elements having medium-to-strong memory effects along
with high-order nonlinearity. NNs are preferred over traditional methods (i.e.
equivalent-circuit, empirical models) because of their speed in implementation
and accuracy. A NN model can be used during the stage of system design for a
rapid evaluation of its performance and main characteristics. The model can be
directly trained with measurements extracted from the real system, speeding
up the design cycle. NN models can be more detailed and rapid than traditional
equivalent-circuit models, more exact and flexible than empirical models, and
easier to develop when a new technology is introduced. By profiting from their
potential to learn a device behavior based on simulated or measured records of
its input and output signals, they were used in nonlinear modeling and design
of many microwave circuits and systems [7].

The increasing number of electronic devices models proposed using NNs that
have appeared in the last years [8][13][10] shows their importance and interest.
Many topologies of NNs are reported in the literature for modeling different
types of circuits and systems, with different kinds of linear and nonlinear be-
havior [11]. However, until very recently, NNs for modeling were applied almost
exclusively to instantaneous behavior of the input variables alone. Although
this approach has been largely exploited for static simulation, their application
to dynamic system is a rather new research field. Recently have appeared NN-
based models taking into account the dynamic phenomena in RF microwave
devices [12].

For representation of a system which has a nonlinear behavior and is dy-
namic, intending by dynamic not only that the device characteristic varies over
time but also that it depends on past values of its controlling input variables, not
any NN topology can be used. A neural model which includes time-dependence
into the network architecture is the time-delayed neural network (TDNN), a
special type of the well-known multilayer-perceptron (MLP). TDNNs have been
successfully applied for solving the temporal processing problems in speech
recognition, system identification, control and signal modeling and processing
[13]. They are suited for dynamic systems representation because the contin-
uous time system derivatives are approximated inside the model by discrete
time-delays of the model variables.

A TDNN is based on the feedforward MLP neural network with the addi-
tion of tapped delay lines (Z−1) which generate delayed samples of the input
variables. They are used to add the history of the input signals to the model,
needed for memory effects modeling. The TDNN entries include not only the
current value of the input signal, but also its previous values, as illustrates figure
2. The memory depth M of the element or system analyzed is reflected on the
length of the taps. The strategy followed to set the system memory is dictated
by the bandwidth accuracy required.
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Fig. 2. Time-Delayed neural network (TDNN) model and its corresponding input
data.

In this paper we propose the application of a TDNN model for modeling
nonlinear and dynamic behavior of devices or elements, parts of a communica-
tion system. The model proposed is explained in detail in the next Section.

3 TDNN model

The proposed model has the classical three layers topology for universal approx-
imation in a MLP: the input variable and its delayed samples, the nonlinear
hidden layer and a linear combination of the hidden neurons outputs at the
output neuron. The architecture of the TDNN is shown in figure 3.

Fig. 3. Time-Delayed neural network (TDNN) to model a communications chain
component.

The input layer has as inputs the samples of the independent variable, to-
gether with its time-delayed values. The model here presented shows a one-input
variable dependence (x) of one output variable (y), but the model can be easily
extended to more input/output variables. The variable can have a delay tap
between 0 and N , then the total number of input neurons is M (M = N + 1).
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In the hidden layer, the number h of hidden neurons varies between 1 and
H. The hidden units have a nonlinear activation function. In general, the hy-
perbolic tangent (tanh) will be used because this function is usually chosen in
the electronics field for nonlinear behavior. In our model we have used H =
10, but if necessary, the number of neurons in the hidden layer can be changed
to improve the network accuracy. The hidden neurons receive the sum of the
weighted inputs plus a corresponding bias value for each neuron bh. All the neu-
rons have bias values. This fact gives more degrees of freedom to the learning
algorithm and therefore more parameters can be optimized, apart from weights,
to better represent a nonlinear system.

The weights between layers are described with the usual perceptron no-
tation, where the sub-indexes indicate the origin and the destination of the
connection weight, e.g. wj,i means that the weight w relates the destination
neuron j with the origin neuron i. However, a modification in the notation
was introduced, adding a super-index to the weights, to more easily identify to
which layer they belong. Therefore, w1 means that the weight w belongs to the
connection between the inputs and the first hidden layer, and w2 means that
the weight w belongs to the connection between the first hidden layer and the
second one (in our particular case, the second hidden layer happens to be the
output layer). In this second group of connections weights, the sub-index which
indicates the destination neuron has been eliminated because there is only one
possible destination neuron (the output).

This unique output neuron has a linear activation function which acts as
a normalization neuron (this is usual choice in MLP models). Therefore, the
output of the proposed TDNN model is calculated as the sum of the weighted
outputs of the hidden neurons plus the corresponding output neuron bias (b0),
yielding equation 1.

yNN (t) = b0 +

[
H∑

h=1

w2
h tanh

(
bh +

N∑
i=0

w1
h,i+1x(t− i)

)]
(1)

Network initialization is an important issue for training the TDNN with the
back-propagation algorithm, in particular in what respects speed of execution.
In this work the initial weights and biases of the model are calculated using
the Nguyen-Widrow initial conditions [14] which allow reducing training time,
instead of a purely random initialization.

Once the TDNN model has been defined, it is trained with time-domain
measurements of the element output variable under study (yout(t)), which is
expressed in terms of its discrete samples. To improve network accuracy and
speed up learning, the inputs are normalized to the domain of the hidden neu-
rons nonlinear activation functions (i.e for the hyperbolic tangent tanh, the
interval is [−1;+1]). The formula used for normalization is shown in equation
2.

xnorm =
2 (x−min{x})

(max{x} −min{x})
− 1 (2)
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During training, network parameters are optimized using a backpropaga-
tion algorithm such as the Levenberg-Marquardt [15], chosen due to its good
performance and speed in execution. To evaluate the TDNN learning accuracy,
the mean square error (mse) is calculated at each iteration k of the algorithm,
using equation 3, where P is the number of input/output pairs in the training
set, yout is the output target and yNN is the NN output.

mse =
1
P

P∑
k=1

E(k)2 =
1
P

P∑
k=1

(yout(k)− yNN (k))2 (3)

The good generality property of a NN models says that it must perform
well on a new dataset distinct from the one used for training. Even a excessive
number of epochs or iterations on the learning phase could make performance
to decrease, causing the over-fitting phenomena. That is why, to avoid it, the
total amount of data available from measurements is divided into training and
validation subsets, all equally spaced. We have used the ”early-stopping” tech-
nique [16], where if there is a succession of training epoch in which accuracy
improves only for the training data and not for the validation data, over-fitting
has occurred and the learning is terminated. The obtained results are shown in
the next section.

4 Measurements and validation results

For training the neural model, a dedicated test-set for accurate PA charac-
terization has been used. It provides static and pulsed DC characterization,
scattering parameter measurements, real-time load/source-pull at fundamen-
tal and harmonic frequencies, and gate and drain time-domain RF waveforms.
The measurements are carried out with a Microwave Transition Analyzer and
a large-signal Vector Network Analyzer.

Complete characterization was performed for different input power levels
and different classes of operation at 1 GHz on a 2 ns window, as shows figure 4.
Class A is biased at 50% IDSS, and class B with IDS = 0. A 1 mm total gate
periphery GaN HEMT based on SiC with IDSS = 700 mA, has been measured
at 1 GHz. The power sweep ranged from -21 to +27 dBm. Only the first 4
harmonics are taken into account.

The basic idea to characterize the nonlinear models for IDS is to collect
input-output data with different tuned-load terminations, mapping the widest
region in the I-V characteristic. Time-domain data have been collected only
for load-pull characterization results in this case, that is three tuned-loads,
50 ohm, the best output power (Pout) and the best output efficiency (PAE).
The dynamic load curves corresponding to the selected loads are rather close
in class A operation, whereas they are fairly open in class B operation. This
suggested to use the all three selected loads from class B characterization, and
only 50 ohm load data from class A. The other characterization data will be
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Fig. 4. Time-domain waveforms at 1 GHz at increasing power for class A (top), and
B (bottom) at 50 Ohm load used for training.

used for model validation. In principle, however, this method does not need full
load-pull characterization, but only to map gate and drain nonlinear models
for different generic tuned-loads, in order to concern the widest region in the
I-V characteristic. Input data vectors of VGS and VDS for each load and power
level have been first copied and delayed as many times, to represent the network
inputs, as necessary to account for memory, and then joined together to train
the TDNN model with all the working classes, the selected load terminations
and the power levels, simultaneously. This is shown in figure 5.

Fig. 5. TDNN model training data organization.

We report here some results for class A and B, at VDS=30V. The validation
test includes the best Pout load, that has not been used for model training, and
some intermediate points for input power levels not included in the training
set. Results obtained show a rather good agreement between experimental and
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modelled data, in fact the relative mean square error is lower than 1e-04 (figure
6).

Fig. 6. TDNN model performance.

Figure 7 reports the output PA time-domain waveforms at increasing output
power at 50 Ohm load: the upper plots are relative to a class A condition, while
the bottom ones refer to class B operations. The left figures report the measure-
ments, while the right ones show the TDNN simulation result. Figure 8 shows
the comparison between the training (left) and validation (right) measurement
data used for class A operation and the TDNN model response.

Fig. 7. Time-domain waveforms at 1 GHz at increasing power for class A (top), and
B (bottom). Measurements (left), TDNN output (right). The pointed arrow waveform
refers to a validation data subset.

From the comparison between measurements and model output, the wave-
forms good agreement in general. Also for the power levels excluded from the
training data, used only for model validation. This is a key result to prove the
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model predictive capabilities. The model is also capable of recognizing the class
in which the device is working and in consequence give a reasonable output
response.

Fig. 8. Time domain waveforms at 1 GHz at increasing power for class A at 50 Ohm
(used for training), and optimum Pout (used for validation). Measurements (left),
TDNN output (right).

5 Conclusions

In this paper, a model that has the capability of learning and predicting the
dynamic behavior of nonlinear PAs, based on a Time-Delayed Neural Network
(TDNN), has been proposed. Validation and accuracy of the TDNN model in
the time-domain showed good agreements between the TDNN model output
data and measurements.

The TDNN model can be trained with input/output device measurements
or simulations, and a very good accuracy can be obtained in the device char-
acterization easily and rapidly. These properties make this kind of models spe-
cially suitable for new wireless communications components modeling, which
are mostly nonlinear and require speed, accuracy and simplicity when design-
ing and building the model.

6 Acknowledgement

The authors would like to thank Prof. Marco Pirola and Vittorio Camarchia,
from Politecnico di Torino at Turin (IT), for providing the measurements used
in this work. Also, we would like to thank Banco Ro and Red Universia for the
financial support under project number INV-1334.



10 Georgina Stegmayer and Omar Chiotti

References

1. Evci C, Barth U, Sehier P, Sigle R. (2003) The path to beyond 3G systems:
strategic and technological challenges. In: Proc. 4th Int. Conf. on 3G Mobile
Communication Technologies, pp. 299-303

2. Elwan H, Alzaher H, Ismail M (2001) New generation of global wireless compat-
ibility. IEEE Circuits and Devices Magazine 17: 7-19

3. Ahmed A, Abdalla MO, Mengistu ES, Kompa G. (2004) Power Amplifier Mod-
eling Using Memory Polynomial with Non-uniform Delay Taps. In: Proc. IEEE
34th European Microwave Conf., pp. 1457-1460

4. Ku H, Kenney JS (2003) Behavioral Modeling of Nonlinear RF Power Ampli-fiers
considering memory effects. IEEE Trans. Microwave Theory Tech. 51: 2495-2504

5. Root D, Wood J (2005) Fundamentals of Nonlinear Behavioral Modeling for RF
and Microwave design. Artech House, Boston

6. Zhang QJ, Gupta KC, Devabhaktuni VK (2003) Artificial Neural Networks for
RF and Microwave Design - From Theory to practice. IEEE Trans. Microwave
Theory Tech. 51: 1339-1350

7. Zhang QJ, Gupta KC (2000) Neural Networks for RF and Microwave Design.
Artech House, Boston

8. Schreurs D, Verspecht J, Vandamme E, Vellas N, Gaquiere C, Germain M, Borghs
G (2003) ANN model for AlGaN/GaN HEMTs constructed from near-optimal-
load large-signal measurements. IEEE Trans. Microwave Theory Tech. 51: 447-
450

9. Liu T, Boumaiza S, Ghannouchi FM (2004) Dynamic Behavioral Modeling of 3G
Power Amplifiers Using Real-Valued Time-Delay Neural Networks. IEEE Trans.
Microwave Theory Tech. 52: 1025-1033

10. Ahmed A, Srinidhi ER, Kompa G (2005) Efficient PA modelling using Neural
Network and Measurement setup for memory effect characterization in the power
device. In: Proc. IEEE MTT-S International Microwave Symposium, pp. 1871-
1874

11. Alabadelah A, Fernandez T, Mediavilla A, Nauwelaers B, Santarelli A, Schreurs
D, Tazón A, Traverso PA (2004) Nonlinear Models of Microwave Power Devices
and Circuits. In: Proc. 12th GAAS Symposium, pp. 191-194

12. Xu J, Yagoub MCE, Ding R, Zhang QJ (2002) Neural-based dynamic modeling of
nonlinear microwave circuits. IEEE MTT-S Int. Microwave Symp. Dig. 1: 1101-
1104

13. Liu T, Boumaiza S, Ghannouchi FM (2004) Dynamic Behavioral Modeling of 3G
Power Amplifiers using real-valued Time-Delay Neural Networks. IEEE Trans.
Microwave Theory Tech. 52: 1025-1033

14. Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural
networks by choosing initial values of the adaptive weights. In: Proc. IEEE Int.
Joint Conf. Neural Networks, vol. 3, pp. 21-26

15. Marquardt DW (1963) An algorithm for least-squares estimation of non-linear
parameters. Journal of the Society for Industrial and Applied Mathematics 11:
431-441

16. Sjoberg J, Ljung L (1995) Overtraining, regularization and searching for a mini-
mum, with application to neural networks. Int. J. Control 62: 1391-1407


