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Abstract. This paper introduces an automatic procedure to assist on
the interpretation of a large dataset when a similarity metric is available.
We propose a visualization approach based on a graph layout method-
ology that uses a Quadratic Assignment Problem (QAP) formulation.
The methodology is presented using as testbed a time series dataset of
the Standard & Poor’s 100, one the leading stock market indicators in
the United States. A weighted graph is created with the stocks repre-
sented by the nodes and the edges’ weights are related to the correlation
between the stocks’ time series. A heuristic for clustering is then pro-
posed; it is based on the graph partition into disconnected subgraphs
allowing the identification of clusters of highly-correlated stocks. The
final layout corresponds well with the perceived market notion of the
different industrial sectors. We compare the output of this procedure
with a traditional dendogram approach of hierarchical clustering.

1 Introduction

The Standard & Poor’s 100 index is one the leading stock market indicators
in the United States. It measures the performance of the 100 largest U.S. com-
panies, corresponding to over US$ 6 trillion in terms of market capitalization1

and it is composed of stocks from different sectors.In the stock market, the
changes of the value of a given company are highly correlated with the time
series of its stock price. Two contributions to the study of market dynamics
([1];[2]) reported on the application of Self-Organizing Maps and Chaotic Map

Synchronization to two different datasets composed of the price variation of
the stocks in the Dow Jones index. A graph-based approach using 6,546 finan-

cial instruments (stocks, indexes, etc.) traded in the US markets has also been
recently introduced [3].

1 http://www2.standardandpoors.com/spf/pdf/index/factsheet sp100.pdf
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In this paper we propose a new graph layout visualization method and use
it to uncover interesting relationships between the stocks of the S&P100 index
used as a case study. We will consider that each stock corresponds to a node
of a graph; the edges’ weights will be related to the correlation between stocks.
The method recursively divides the graph in disconnected subgraphs. Once the
subgraphs (clusters) are defined, we solve a sequence of Quadratic Assignment
Problems (QAP) using a memetic algorithm (MA) which will determine their
relative position in the layout. Finally, another instance of the QAP is solved to
find how the clusters are distributed, now considering each cluster as a single
element.

The Quadratic Assignment Problem (QAP) belongs to the NP-hard [4] class
and is a well-studied combinatorial optimization problem [5, 6, 7]. Informally,
we are given a set of n facilities and m locations (m ≥ n), and the task is
to assign each facility to a location taking into account the flow between each
facility and the distance between the locations. The objective is to minimize
the overall transportation cost between all the facilities. For our case study, we
will use the correlation between stocks to determine the flow between facilities.
The locations will be points in a grid, with the distances between them given by
the Euclidean metric. We have as input a flow matrix between the stocks, and
from this matrix we create a weighted graph. We can understand this graph
as a proximity graph; its edges will also have a strong influence in the layout
process as will be described later. The result is a graph layout where clusters
of stocks with similar dynamical behavior are promptly identified, and no user-
intervention is required during the process.

The use of MAs to address the QAP can be dated back to Carrizo et
al.(1992) [8] and Merz and Freisleben (1999) [9]. In this paper, we employ a sim-
ilar MA to those successfully used before for other combinatorial optimization
problems, including Number Partitioning [10] and the Asymmetric Travelling
Salesman [11] problems among others. Two local search methods are used; one
of them has an embedded Tabu Search [12].

This paper is organized as follows. In Sec. 2 we describe the graph layout
procedure. Section 3 describes the memetic algorithm for the QAP. The result
of applying this method on the S&P100 dataset is presented in Sec. 4, followed
by the conclusions in Sec. 5.

2 Graph Layout Procedure

The graph layout procedure proposed in this paper is composed of 3 steps:
creation of a distance matrix , proximity graph clustering algorithm and creation

of QAP instances that will be solved using the MA. We explain each step using
the S&P100 dataset.
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2.1 Distance Matrix

To create the distance matrix D of the S&P100 dataset, we took the second
derivative of the weekly closing price variation of the stocks that compose the
index, between the years 1999 and 2004. The work of Ausloos and Ivanova
(2002) [13] advocates the use of the second derivative (which represents the
acceleration of the stock price), arguing in their studies of “pressure, acceleration

and force indicators” that it contains more information than the first derivative.
The expression of the three-point rule for the second derivative of the stock price
at time t is given by

yi(t) =
Pi(t − h) − 2.Pi(t) + Pi(t + h)

h2
, (1)

where Pi(t) represents the closing price of the stock i in the week t and h

represents the interval used to calculate the derivative; in this case, h = 1 week.
At the end, we normalize the result by dividing it by Pi(t−h), so to eliminate any
bias introduced by the actual price of the stock. The distance matrix D = {dij}
is defined as dij = 1 − ρij , where ρij is the Pearson correlation between stocks
i and j using the values calculated with function 1. The two most correlated
stocks (ρ = 0.802) are Schlumberger Ltd. and Baker Hughes Inc., while the two
most anti-correlated (ρ = −0.38) are Alcoa Inc. and Anheuser-Busch Co. There
are only 459 pairs of stocks with ρ < 0.

2.2 Proximity graph clustering algorithm

We use the matrix D to build our ad-hoc proximity graph using the mini-

mum spanning tree and the k-nearest neighbors graphs, which we will refer
to as GMST and GkNN respectively, as follows: Initially, we create a com-
plete undirected weighted graph G(V, E, w), using the matrix D, where the
weight wij = dij . The minimum spanning tree GMST (V, EMST ) is defined
as a connected, acyclic subgraph containing all the nodes of G and whose
edges sum has minimum total weight. The graph GkNN is represented by
GkNN (V, EkNN ), where eij ∈ EkNN iff j is one of the k nearest neighbors of
i. Our proximity graph, namely Gcluster(V, Ecluster), is constructed such that
Ecluster = EMST ∩ EkNN . This type of proximity graphs was used also in
González-Barrios and Quiroz (2003) [14]. In this work we decided to set k as
the minimal value such that GkNN is still connected while in Ref. [14] they have
a different approach.

2.3 Creating and solving QAP instances

We consider the QAP with n elements and m > n positions. The QAP has as
input a matrix F = {fij} of flows between the n elements and a matrix L = {lij}
of distances between m grid locations. The objective is to assign the n elements
to the m locations such that the function Cost(S) =

∑n

i=1

∑n

j=1 fij lS(i)S(j) is
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minimized, where the notation S(i) represents the assigned location of element
i in solution S. The flow matrix F is created using distance matrix D according
to:

fij =

{

1000
dij

if eij ∈ Ecluster ;
1

dij
otherwise.

(2)

Clearly, higher (respectively lower) flows will correspond to elements that are
similar (respectively dissimilar). A good solution for the QAP will thus put
the elements with a high flow closer in the layout, which is exactly our goal.
Additionally, two elements with an edge in Gcluster have their flow multiplied
by a factor of 1,000, thus enforcing their proximity in the final layout. The
matrix L is generated from the distances of points in a square grid of m = g2

positions, with m ≫ n. In this work, we set ⌈g = 2
√

n⌉ and lqp is the Euclidean
distance between each locations p and q for all 1 ≤ q, p ≤ m).

Assume that the graph Gcluster contains c disconnected subgraphs (G1
cluster ,

G2
cluster , ..., G

c
cluster). Then each subgraph Gi

cluster becomes a QAP instance and
is solved separately. Finally, we solve one last QAP, where each element is a
subgraph Gi

cluster . The instance for this problem is created by building a fully
connected graph GC(VC , EC , wC) where |VC | = c and the weight wCij

corre-

sponds to the flow between subgraphs Gi
cluster and G

j
cluster , calculated as:

wCij
=

∑

p∈Gi

∑

q∈Gj
fpq

|V i
cluster | ∗ |V

j
cluster |

. (3)

In the next section, we will describe the main characteristics of the memetic
algorithm used to tackle the QAP problem.

3 Memetic Algorithm

Memetic Algorithms (MAs) is a name that designates a class of powerful
population-based metaheuristics with many successful practical applications
([15, 16, 17]). In our MA implementation (see the pseudo-code in Figure 1),
we have a population of agents composed of two solutions (namely pocket and
current). The idea behind this is that while the current solutions are con-
stantly being modified by recombination and mutation, the pockets maintain
a memory of the best solutions found. The population is organized with a hi-
erarchical ternary tree structure, divided in four overlapped subpopulations of
four agents each (one leader and three supporters). The supporters of the first
subpopulation are the leaders of the others. This population structure has been
used before [10] and in Ref. [11] this was the best structure in a comprehen-
sive test of alternative topologies. The method updatePop() is responsible for
making the best solutions climb the tree towards the upper agents. The method
initially verifies the pocket solution of each agent, checking whether it is worse
than the current one. Whenever that happens, the pocket is replaced by the
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memeticAlgorithm()
pop = initializePop(); updatePop(pop)
repeat

for i=0 to 12
offspring =recombination(selectSol(parentA,parentB))
localSearchTS(offspring)

updatePop(pop); 8-neighborLS(agent0pocket)
until max number of generations

Fig. 1. Pseudo-code of the memetic algorithm implemented for the QAP.

current. Then, for each subpopulation, the method replaces the leader’s pocket

solution with the best supporter’s pocket whenever the latter has better cost.
A solution is represented as an integer array S of size n, where S(i) = k means
that the element i is assigned to location k. The agents are initialized with
random solutions, where the elements are spread uniformly at random across
all the available locations. Also during the initialization step, we optimize the
pocket solutions by applying a local search that incorporate a Tabu Search (see
Section 3.2).

3.1 Recombination

Concerning the selection of the parent solutions, the method selectSol() uses
two strategies, depending on whether the population has lost diversity or not.
We consider that a population is diverse if its pocket solutions differ at least
in one value from a set of 20% of randomly chosen positions. If diversity has

not been lost , one of the parents is the pocket solution of a leader agent. The
second parent is the pocket solution from a supporter agent within the same

subpopulation. The new solution created replaces the current solution of the
supporter agent selected. On the contrary, if diversity has been lost, both parents
are pocket solutions from supporter agents. However, in this case the agents

belong to different subpopulations. The offspring replaces the current solution
in one of the supporter agent. Once the parents were selected, a recombination
algorithm is used to create a new solution. Our memetic algorithm uses a similar
recombination to that introduced by Merz [9] and it is explained with the help of
a step-by-step example described in Figure 2. Initially, all the elements assigned
to the same location in both parents are copied to the offspring (elements A and
E). Afterwards, we select at random an unassigned element from the offspring,
say D, and look at its location in one of the parents, say parent 2. Thus, the
method assigns location #3 to element D. Next, we look at the location of D in
parent 1 (i.e. location #1) and check which element is in location #1 in parent
2 (i.e. element G), assigning its location to the offspring (i.e. element G goes
to location #1). The process is repeated, now checking the location of element
G in parent 1 (location #4). However, as location #4 is not present in parent
2, the process stops. We repeat the process starting with element H in parent
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1. After processing all the elements in the offspring, element B still does not
have a location because both locations #3 and #12 have already been taken.
This does not happen when n = m. In Ref. [9] the authors do not envision
this possibility because they considered only the case n = m. In this case, we
consider a straight path between those locations and choose a random location
over it, in this case location #6. If all the locations along the line have already
been taken, a random one from any of the parents is chosen. Complementary to
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Fig. 2. A step-by-step description of the crossover procedure for the QAP problem.

the recombination operator, the mutation swaps the locations of three randomly
selected elements in the solution. We use a 3-element swap scheme because in
the localSearchTS() method (explained next in Section 3.2) all the 2-element
swap movements are already considered. Mutation is always applied over the
offspring after recombination.

3.2 Local Search algorithms

We implemented two local search methods (see Figure 1). (localSearchTS())
includes a Tabu Search implementation [12] and it is described next. The neigh-
borhood of a solution S is defined by the swap of all pairs of elements of S.
The algorithm chooses the swap that causes the best improvement in the QAP
objective function. If such swap does not exist, we perform the swap that least
worsens the solution. After a swap is done, any swap that brings the elements
back to their previous positions become tabu for a number of iterations. How-
ever, a tabu swap shall be accepted if the objective function value of the new
solution is better than the incumbent – i.e. an aspiration criterion. This local
search is applied on each pocket solution of the population at the beginning of
the MA and on each current solution after the recombination phase.

The second local search method (8-neighborLS()) iteratively selects an
element at random and tries to move it to the eight surrounding locations in
the grid, using a best-improvement strategy. Every time an element is moved to
a new position, we test again its eight adjacent locations, until no improvement
is possible anymore. The process iterates for all elements of the solution. As
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this algorithm performs just a fine-tuning of the solution, it is applied only to
the pocket solution of the leader agent of the population.

4 Computational Results

The memetic algorithm was coded using Java SDK 1.5.1 and generated the
graph layout for the S&P100 dataset in less than 20 seconds of CPU time in a
3.0 GHz Pentium IV machine with 512Mb of RAM. The resulting graph contains
10 clusters and is shown in Figure 3. In this instance all the elements are labelled
according to the industrial sector that they belong to; this allows us to better
analyze the quality of the layout. Initially, this analysis takes into consideration
each cluster defined by the proximity graph, as we expect those clusters to
reflect the classification by industrial sector. Then, within each cluster, we will
analyze any relevant structure uncovered by the QAP. Because of the space
restrictions, we only give the analysis of one cluster.

Cluster #8 could be easily classified as a services cluster because 10 of its 17
elements belong to that sector. However, a better classification of the elements
in this cluster could be obtained using the information from the layout produced
by our method. In the left side of the layout there are four companies related
with the packaging industry (Alcoa, Du Pont, Allegheny Technologies and
3M) and two related with paper products (OfficeMax and Weyerhaeuser).
These companies have been joined together with International Paper, which
has a participation in both industries. Next to them, we can find the two railroad
companies, Norfolk Southern and Burlington Northern Santa Fe. Finally
there is a group of seven companies (Black & Decker, Limited Brands, May

Department Stores, Wal-Mart, Radioshack, Home Depot and Sears)
mainly related with the stores industry. The last company of this cluster is
Rockwell Automation. It has no clear relation with the other companies,
but as a conglomerate we cannot consider it an outlier. To compare our layout
we use the classical dendogram (Figure 4) obtained with a hierarchical cluster-
ing method provided by the European Bioinformatics Institute (EBI)2, using
average linkage (UPGMA) clustering based on “correlation measure based dis-
tance” (uncentered). Even though the clustering methods developed at EBI are
aimed to analyze biological datasets, their hierarchical clustering is a general
approach which can be used in datasets from any source. The input is also
the second derivatives of the weekly stock prices. While some technological sec-
tors seems present, the dendogram analysis has its problems. Clusters are only
defined when we “cut” the tree. Our methodology managed to automatically
separate most of the sectors into distinct natural clusters uncovering similari-
ties in the dynamics of groups of stocks. In addition, for the clusters without a
sound sector majority, the QAP created a layout where the elements from dif-
ferent sectors were organized into smaller groups (e.g. clusters #7 and #8). The

2 http://ep.ebi.ac.uk/EP/EPCLUST/
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Fig. 3. Graph layout for the S&P100 dataset. The memetic algorithm solved one QAP
for each cluster and an extra QAP considering each cluster as a single element, ob-
taining the final layout. Each shape indicates a different industrial sector represented
in the dataset.

quality of the results for the S&P100 dataset supports the use of this method as
a new clustering/visualization tool for other time-series data analysis problems.
Our visualization methodology is not restricted to the clustering method used
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Fig. 4. Dendogram representing the average linkage hierarchical clustering from EBI.

here and the use of the QAP model and a memetic algorithm can be a good
alternative for another approach to the automatic layout of weighted graphs.

5 Conclusions

A methodology for correlated data visualization based on the Quadratic As-
signment Problem (QAP) was introduced in this paper. It uses a recursive
partition approach that divides the dataset into small clusters. A memetic al-
gorithm solves a separate QAP for each subgraph. The final solution obtained
by our methodology correctly identifies the majority of the sectors present in a
stock market dataset. In some cases, elements from distinct sectors but similar
dynamical behaviors are located within the same component of the proximity
graph. The success in obtaining a high-quality layout for a financial market
instance – which is a challenge due to their inherent near-chaotic behaviour
– makes us believe that this technique can be very useful for other problem
domains.
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