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ABSTRACT 

 

Modern computers present a big gap between peak performance and sustained performance. There 
are many reasons for this situation, but mainly involving an inefficient usage of computational resources. 
Nowadays the memory system is the most critical component because of its growing inability to keep up 
with the processor requests. Technological trends have produced a large and growing gap between CPU 
speeds and DRAM speeds. 

Much research has focused this memory system problem, including program optimizing techniques, 
data locality enhancement, hardware and software prefetching, decoupled architectures, mutithreading, 
speculative loads and execution. These techniques have got a relative success, but they focus only one 
component in the hardware or software systems. 

We present here a new strategy for memory management in high-performance computer systems, 
named COMMUNION. The basic idea behind this strategy is cooperation. We introduce some interaction 
possibilities among system programs that are responsible to generate and execute application programs. So, 
we investigate two specific interactions: between the compiler and the operating system, and among the 
compiling system components. 

The experimental results show that it’s possible to get improvements of about 10 times in execution 
time, and about 5 times in memory demand. In the interaction between compiler and operating system, 
named Compiler-Aided Page Replacement (CAPR), we achieved a reduction of about 10% in space-time 
product, with an increase of only 0.5% in the total execution time. All these results show that it’s possible to 
manage main memory with a better efficiency than current systems. 

                                                           
 This research was supported in part by Finep and RHAE/CNPq. 
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1. Introduction 

Studies show that programs usually present an average performance that is only up to 15% of the 
peak performance in vector supercomputers, like NEC SX-3R and Cray C90. The main reason is the 
inefficient use of computational resources like vector registers and instructions, vector pipelines and 
interleaved memory banks. 

 Modern parallel computers, like NEC SX-4 and Cray T3E have the same problem. But the reasons 
are completely different. Such class of machines adopts a large number of processors and a complex 
hierarchy of main memory. These characteristics contribute to the high complexity for programming these 
machines. In order to get high performance programs, the programmer has to deal with two aspects: 
efficiently exploiting of parallelism and adequate use of the complex memory hierarchy. The first aspect has 
been studied for a long time [POLY88]. On the other hand, only recently researchers started to analyze the 
second aspect. 

 The impressive progress in arithmetic performance achieved by the latest generation of 
microprocessors tends to widen the gap between the CPU speed and the memory bandwidth. This issue, 
critical for monoprocessors, is worse for shared-memory multiprocessors where memory contention can 
severely degrade main memory performance. To overcome this problem, one of the most widely used 
techniques consists in designing hierarchically organized memory systems with several levels. 

 This work presents some aspects that may be considered when developing a program in modern 
high-performance computers. Here we concentrate on shared memory multiprocessors, although the results 
can be extended to distributed memory multiprocessors. The structure of this paper is the following. We first 
present some characteristics of modern high-performance computers in section 2. Then we analyze the 
memory management techniques in section 3, describing our strategies. The next section presents the 
traditional phase-based approach for memory management. The section 5 introduces our proposal for future 
generation memory management.  In sections 6 and 7 we present some experimental results in the CAPR 
strategy and the prototype system in development, and in the locality optimization techniques, respectively. 
Finally, we present our conclusions in section 8. 

2. High-Performance Computing 

Shared-memory multiprocessor machines1

 A typical NUMA organization is shown in figure 1. The memory modules are associated with 
processors, which can access their local modules much faster than remote modules. As in the case of UMA 
machines, processors can have private caches, adding another level to the hierarchy of memory accesses. For 
example, SGI Power Challenge has a 2-level cache memory for each processor. 

 can be classified as having uniform memory access 
(UMA) or nonuniform memory access (NUMA). In UMA machines, the access time to all memory locations 
is constant. For NUMA machines, each processor has a preferred section of the address space, which it can 
access faster than the rest of the address space. Usually, this preferred section represents memory that is 
physically local to each processor or to a cluster of processors. 

 Modern high-performance computing systems, like NEC SX-4, have a NUMA organization with a 
multi-level memory hierarchy implemented by hardware and software. Usually they provide a shared 
memory programming model for their users. Such model is implemented by some form of distributed shared 
memory (DSM) system. Nowadays parallel systems with hundreds or thousands of processors are becoming 
available. For example, the largest model of NEC SX-4 has up to 512 processors. 

 Such shared memory model can also be used in a NOW (Network Of Workstations) running UNIX-
like operating systems by using DSM library packages, like Treadmarks, Munin and Pulsar [MARI96]. 

 

                                                           
1For additional information on high-performance computer systems see [HWAN93]. 
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Figure 1 - Typical NUMA machine organization. 

3. Virtual Memory and Memory Management Techniques 

Today high-performance computers support some form of virtual memory for their users. Although 
these machines have hundreds of megabytes of main memory, some application programs require bigger 
memory in order to run. This tendency has been observed since the early sixties. Paraphrasing Parkinson’s 
law, “Programs expand to fill the memory available to hold then.” [TANE97] 

 Memory is an important resource that must be carefully managed. Research in virtual memory has 
been conducted in monoprocessor systems since the sixties, but only recently researchers had applied 
studies to parallel computers. 

 Some characteristics are very important when we want to study the behavior of programs: their size 
in pages, use of dynamic memory allocation, locality of references, page management algorithms adopted by 
the operating system, memory access patterns and some hardware parameters.2

 Modern computers characteristics, such as 64-bit address space, gigabyte main memory and multi-
level main memory hierarchies, impose research studies in new strategies to manage memory efficiently. 
This research has been conducted in Polytechnic School of University of São Paulo. 

 

 Our research is divided in two main areas: first, some new algorithms to page replacement are being 
proposed. The main contribution in this area is the integration of the operating system and the compiler in 
managing main memory pages. This integration provides better selection of the page being removed. The 
second area concentrates in techniques to modify the application programs in order to improve their locality 
of reference. This part involves the implementation of some program transformations3

 In the next sections we introduce each of these research areas. First we describe our approach and 
then we present an evaluation study conducted in order to verify its performance. Although our research is 
in an initial phase, the results presented here show that it is possible to get higher performance by applying 
our approach. 

 into the compiling 
system, in particular, to the optimization phase. In this way, we can say that our primary goal is to optimize 
the use of modern computers memory hierarchy so that we can get programs with higher performance. 

4. Phases of Memory Management 

The memory management of a computer system is distributed across many different overlapping 
phases (figure 2). The programmer is responsible for the first step when he organize the application data in 
program variables (symbolic references). Next there is a translation of the program source files written in a 
high-level programming language into a machine-specific code. In these object files all symbolic 
instructions, operands, and addresses are converted into numerical values. This step is conducted by the 
compiler. After that, the linker combines several object files to make a binary file, basically resolving 
external references. Later on the executable code is generated by the loader by relocating the memory 
                                                           
2Parameters like cache line size, page size, data cache size, transfer rate between memory and disk. 
3These transformations can be divided in two classes: control transformations and data transformations. For further information see 
[TAKA95]. 

Interconnection Network 

P 

M M 

P P P 

M M 

... 



Proceedings                                                                                                                                                  CACIC 97 
Procesamiento Distribuido y Paralelo - Tratamiento de Señales                                                                     UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                                               4 

references. Finally the program dynamic memory requests are served by the operating system and run-time 
system during its execution. The operating system manages the allocation of the system main memory while 
the run-time system is responsible for controlling the program resources. 

Figure 2 - Phases of memory management. 

 The current approach of system optimizing techniques is based on the following strategies: 

• given a program source file, its memory access pattern is analyzed and, based on the results of 
this analysis, the variable addresses is reorganized (relocation) and the structure of vectors and 
arrays is modified by some data transformations. This strategy is adopted by current restructuring 
compilers being developed for distributed memory multiprocessors [KREM95]; 

• given the memory access pattern behavior of a program execution, the system can change some 
operating system parameters in order to improve performance. Examples of Solaris 2.x control 
parameters are the number of pages of usable physical memory, maximum number of page out 
I/O operations per second, number of pages scanned per second by the paging algorithm, and the 
maximum age of a modified filesystem page in memory [COCK95]. 

 The first strategy has the advantage of being implemented by automatic restructuring tools, and so, 
users don’t need to have specialized knowledge about memory optimization techniques. The main drawback 
is that these automatic tools don’t know the semantic of the program, and in this way it’s not possible for 
them to suggest the best data organization. That means this strategy only works with the program variables 
in the way they were defined by the programmer. There is no interaction with the programmer. 

 The second strategy assumes an unchangeable application program and tries to adjust internal 
parameters of the operating system to tune the system for its execution. The main drawback of this strategy 
comes from the fact that the optimum performance is not achievable due to the unchangeability of program 
memory access pattern. Furthermore, a small change in a global operating system parameter may strongly 
affect the execution of the other programs in the system. 

5. Communion: A New Strategy for Memory Management 

 Current systems use the sequential approach of separate phases for memory management of 
application programs. In this traditional approach described in section 4, each system component is 
responsible for just one task and executes it as best as possible (at least tries to). Although a component 
could possibly help another one, there is no interaction among them. There are many possibilities to explore 
such interactive approach. We present some examples: 

• during the execution of an application program, the operating system can collect information 
about the memory access pattern, memory demand of different processing stages of the 
application, and the system behavior. Such data could be examined and used by the compiling 
system to generate an improved executable program that is better adjusted to the computer 
system; 
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• the execution data collected by the operating system can also be used by the linker to modify the 
composing strategy of object modules to create the executable program. Current linkers use 
simple strategies, like inserting the object modules in the same sequence of input files or 
ordering them by size (ex. Gnu C); 

• based on the memory access pattern, the programmer could restructure his source program, 
organizing its variables in a different way. For example, defining a matrix of structured types 
instead of a set of simple matrixes; 

• the compiler has the knowledge of general structure of the program. So, it can insert some special 
directives to inform the operating system about future behavior of the program. Examples of 
some decision areas that can be aided by this situation are page replacement, dynamic memory 
management, garbage collection and memory-conscious process scheduling). 

 We are investigating the viability of such interactive approach among the system programs. Under 
our proposal, named COMMUNION, the system programs “work together” in order to achieve enhanced 
performance. The figure 3 shows a diagram of the COMMUNION approach. 

Figure 3 - Interaction among system components. 

 It can be noted from figure 3 that our approach includes the programmer. It is our belief that the 
most important component of a computer system is the one that design and implements the application. If 
the program isn’t well designed, although the other components do their best, all they can achieve is just 
“order the messy”. In order to achieve such objective, it’s necessary to supply the programmer with some 
program execution behavior information. Traditional systems only provide the total execution time and 
average memory usage. Modern computer systems require a new approach to program design and tuning, an 
integrated approach. 

In the next sections we investigate two specific interactions: between the compiler and the operating 
system (named CAPR), and among the compiling system components. Our preliminary studies concentrate 
in these areas. 

6. Compiler-Aided Page Replacement 

 CAPR is the first developed strategy of COMMUNION. It is a form of interaction between the 
compiler and the operating system. In this section we first review the nature of page replacement algorithms 
to detect their weaknesses, and propose this novel memory management technique. Later we present a brief 
evaluation. 

6.1 - Page replacement algorithms 

In a virtual memory system, one of the most important management policies is the one that controls 
the choice of pages to be removed from the memory in order to make room for the page to be brought in. 
This policy is implemented by page replacement algorithms. 

 There are several algorithms proposed in the literature in the last three decades. The criteria for 
choosing the page and the variability of program resident set size are some characteristics that differentiate 
these algorithms. Two classes of algorithms are often used in modern systems: fixed partitioning and 
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variable partitioning. The main difference between them is the number of pages in the resident set. If the 
resident set size is a fixed constant, then it’s said that a fixed partitioning approach is being used. Otherwise, 
we say that the algorithm has a variable partitioning approach. LRU, FIFO, Clock, NRU and LFU are some 
examples of fixed partitioning algorithms. Examples of the other approach are Working Set and PFF. 

 We can say that all page replacement algorithms must answer the following question: “among the 
pages in main memory, which one is that will be referenced aftermost in future?”. All the algorithms above 
have one point in common: the choice of the page is based on the knowledge of past behavior of the 
program. The basic strategy adopted by all these algorithms is “use the past and/or the present as an 
indication of the future.” Consider the following examples: 

• LRU (“least recently used”): make the choice based on an analysis of the recent past, where it is 
determined by the page that is not referenced for the longest time. 

• Clock: discard pages not referenced since last clock scan in a circular list of pages (it is an 
approximation of LRU). 

• PFF (“page-fault frequency”): identify localities transitions measuring the page fault rate and 
discard the pages of the old locality based in a time window parameter. 

• WS (“working set”): maintain in memory only those pages that were accessed during a time 
window (in past). 

 However, studies show that “the past and the present are not good indications of the future.” So, it’s 
clear we need to adopt a new strategy for the replacement algorithms. This need is confirmed in 
[FRANK78] that presents a study of behavior anomalies in some classical replacement algorithms. 

6.2 - The CAPR strategy 

An alternative is to endow the operating system with some source of information about the future 
behavior of the programs. Thus, it is possible to get more precise indication of the future and then make a 
better choice. In order to do this it is necessary to know the programs structure, detect their localities and 
their transitions. Among the system programs, it is the compiler that has such an information. 

 Our strategy, named CAPR (“compiler-aided page replacement”), presents a new memory 
management technique based on the interaction between the compiler and the operating system. In CAPR, 
both system programs exchange information related to the memory requirements and usage. 

 After analyzing the source program, the compiler detects possible sources of locality and 
automatically inserts directives to inform the operating system. Examples of such directives are: 

• locality change 
• change in memory requirement 
• change in algorithm specific parameters 
• change the management algorithm 
• lock / unlock pages in memory 

 On the other hand, after executing the program, the operating system can send all data collected 
during the execution to the compiler informing the memory access patterns and localities characteristics. 
Using this information, the compiler can restructure the program code and data in order to improve 
performance. Examples of information that the operating system can send to the compiler are: 

• page-fault rate of selected sections of the program 
• average resident set size 
• total execution time 
• selected program sections execution time 
• execution space-time product 

 So, this strategy proposes a custom memory management technique that is the most adequate for 
that program. The figure 4 illustrates the interaction between the compiler and the operating system.  
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Figure 4 - Interaction between compiler and operating system under CAPR strategy. 

 The main objectives of the CAPR strategy are: 

• to get a better system performance; 
• to lower the page fault rate; 
• to enhance the memory system usage. 

 CAPR does not propose new page replacement algorithms as the Compiler Directed (CD) approach 
of Mohammad Malkawi [MALK86]. Our approach consists in augmenting each traditional algorithms with 
additional functionalities, like controlling the resident set size and dynamically modifying some parameters. 
For example, for the Working Set algorithm, it’s possible under CAPR approach to define upper and lower 
limits of the resident set size and to have different virtual time windows in some sections of code. 

6.3 - Evaluation 

In order to evaluate our strategy, we had implemented a memory systems simulator. This simulator 
uses the execution-driven simulation technique, so it’s not necessary to use the traditional execution traces. 
It interprets the processor instructions and analyzes all memory references. The current version implements 
LRU, FIFO, LFU, Clock, Second Chance, WS and PFF algorithms. The simulation output is composed by 
total simulation time, number of memory accesses, number of page faults, and execution space time product. 
Our evaluation studies were developed in a Silicon Graphics Power Series 4D/480 VGX computer, which 
has eight processors and 256 Mbytes of memory. The internal structure of the simulator is presented in 
figure 5. 

 

Figure 5 - Memory systems simulator internal structure. 

 The simulator is based on the MINT package, developed at Rochester University [VEEN94]. MINT 
is a software package designed to ease the process of constructing event-driven memory hierarchy 
simulators for multiprocessors. It provides a set of simulated processors that run standard UNIX executable 
files compiled for a MIPS R3000 based multiprocessor. The input to MINT is a statically-linked Irix 
executable file and it is not necessary to instrument application code for simulation or to recompile. The 
internal structure of a simulator is composed by two main parts: a memory reference generator (the “front-
end”), and a target system simulator (the “back-end”). MINT communicates memory references to the 
simulator back-end through special event routines (sim_read() and sim_write()). The figure 6 shows 
the graphical interface of the memory systems simulator. 
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Figure 6 - Graphical interface of the memory system simulator. 

 In order to confirm the effectiveness of CAPR strategy, we conducted a study of the execution 
behavior of an example program under LRU and FIFO algorithms. The figure 7 shows the number of page 
faults in function of the memory size. This example program can be described as being composed by two 
processing phases, each of these phases with distinct localities and different sizes. The first phase has 33 
pages of size and the second has 21 pages. 

 For comparing the performance of CAPR with LRU and FIFO, we chose the space-time product 
metric. We can say that space-time product is a number that represents the memory demand of one program 
over the entire execution time. 
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Figure 7 - Number of page-faults in function of memory size for the example program study. 

 Due to the chosen example program, we decide to use a CAPR directive that informs a change in 
localities, determining a new memory requirement. We use the “N1 ⇒ N2” notation to represent the CAPR 
directive used to inform the operating system a change from N1-page locality to the new N2-page locality 
during the execution of the program. The table 1 below shows a comparison between LRU and CAPR/LRU. 
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Table 1 - Comparison between LRU and CAPR/LRU. 

Algorithm Memory size 
(pages) 

Space-time product 
(pages x cycles) 

Total simulation time 
(cycles) 

 11 2.028.286.920 184.389.720 
 12 2.191.388.640 182.615.720 
 13 1.211.778.360 93.213.720 

LRU 14 1.175.646.080 83.974.720 
 15 1.259.560.800 83.970.720 
 51 4.266.237.720 83.651.720 
 14   9 1.181.216.760 175.539.550 
 14   10 1.102.337.380 91.165.638 

CAPR/LRU 14   11 1.067.094.768 84.007.638 
 14   12 1.103.156.156 83.984.638 

 
 Denning affirms that, in a multitasking environment, the optimum multiprogramming level is 
associated with running each process at its minimum space-time product [DENN80]. Analyzing the table, 
we confirm the effectiveness of CAPR. The best resident set size for LRU algorithm is 14 pages. And for 
CAPR/LRU, the case 14   11 presents the smaller space-time product. Comparing both situations, there 
was a reduction of 9.2% in space-time product and an increase of only 0.04% in execution time. Considering 
the best allocation case in terms of execution time (51 pages allocated to the program), with our strategy, 
there was a reduction of 75% in space-time product, with only an increase of 0.43% in the simulation time.  

 Now let’s consider the data relating to the FIFO algorithm (table 2). The best cases now are 
allocating 14 pages for the traditional LRU algorithm and the case 14   10 for CAPR/FIFO. 

Table 2 - Comparison between FIFO and CAPR/FIFO. 

Algorithm Memory size 
(pages) 

Space-time product 
(pages x cycles) 

Total simulation time 
(cycles) 

 11 2.438.025.920 221.628.720 
 12 2.598.788.640 216.565.720 
 13 1.222.048.360 94.003.720 

FIFO 14 1.176.108.080 84.007.720 
 15 1.260.565.800 84.037.720 
 51 4.266.237.720 83.651.720 
 14   9 1.048.731.760 90.009.550 

CAPR/FIFO 14   10 1.031.863.380 84.094.638 
 14   11 1.068.019.768 84.075.638 

 
The results obtained with FIFO algorithm are a reduction of 12.3% in space-time product and an 

increase of only 0.1% in execution time. Comparing with the 51-page case, CAPR/FIFO provided a 
reduction of 75.8% in space-time product and a small increase of 0.53% in execution time. 

The above results verify that CAPR can not only be used to improve performance of one single 
program but also the performance of the entire system. So we conclude that CAPR can achieve additional 
performance improvements that can’t be obtained by using traditional techniques. 

7. Locality of Reference Optimization 

 The hierarchical organization of main memory of modern high-performance computers can be 
explored by programs with improved data locality. This can be done by optimizing its temporal locality (a 
same memory address referenced several times) and its spatial locality (references to consecutive memory 
addresses) with the application of program transformations. 
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 The technology of program transformations was developed by researchers of automatic parallelizing 
compilers. The basic concepts are the data dependence and program transformations [POLY88][WOLF96]. 
Examples of transformations for optimization of locality of reference are scalar replacement, unroll-and-
jam, loop interchange, tiling, memory copying, and data alignment.4

 Our research in this area can be divided in two objectives: first, analyze the effect of some 
transformations on the memory access behavior (locality of reference). Two classes of transformations are 
being studied, namely control transformations and data transformations. The second objective is the 
implementation of a prototype system that automatically restructures programs that improve data locality. 

 

7.1 - Transformations for optimizing data locality 

One of the problems of programs concerning locality of reference is the memory access pattern. 
Given a 2-dimensional matrix, for example, the elements can be accessed by line, by column or by diagonal. 
Depending on the way these elements are organized in memory one access pattern can result in a poor 
locality. 

 Consider one program written in C language. The elements of a matrix are organized by line5

7.1.1. Influence on execution time of sequential programs 

. If one 
program access this matrix by column, this will result in a bad access pattern. There are two ways to deal 
with this problem: first, change the way that the program accesses the elements. This can be done by the 
application of control program transformations. Loop interchange is an example of such a transformation. 
The basic idea is to change the order of two loops in a loop nest. The other alternative is to reorganize the 
elements in memory, so that they are stored in the same way they are accessed. This strategy involves the 
application of data program transformations. One example of data transformation is data copying. The main 
objective is to copy non-contiguous data in a contiguous area with the purpose of improve data locality. 

 We have applied two transformations in a LU decomposition program and in a matrix multiplication 
program in order to study their profitability. The experimental results are shown in table 3 and table 4. 

Table 3 - Experimental results with LU decomposition program. 

program original LU LU with loop interchange LU with copying 
execution time (sec) 198.0 107.3 108.3 
speed-up 1 1.85 1.83 

 

 It can be observed that both transformations produced good results with speed-ups of 1.85 
and 1.83. We conclude that the application of transformations can improve data locality and so improve 
performance of modern computers. The table 3 shows speed-ups of 2.43 and 2.37 for the matrix 
multiplication program, indicating the validity of our approach. Similar results were obtained with other 
programs. 

Table 4 - Experimental results with matrix multiplication program. 

program original 
MM 

MM with loop 
interchange 

MM with 
copying 

execution time (sec) 414.4 170.5 174.8 
speed-up 1 2.43 2.37 

 

 Once we have verified the effect of transformations in the execution time, we conducted an 
investigation on the memory demand of programs. The purpose was to understand how these 
transformations affect the resident set size during the execution of programs. The set of transformations is 
listed in table 5 below. 

                                                           
4For further information see [POLY88][WOLF96]. 
5This means that all elements of the same line are organized contiguously in memory. 
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Table 5 - Set of transformations. 

suffix transformation 

li loop interchange 
dt data transformation 
sr scalar replacement 
uj unroll-and-jam 
t tiling 

7.1.2. Influence on execution time of parallel programs 

 We have also conducted the same study in parallel versions of both programs. Due to space problem 
we will examine in detail the results for the matrix multiplication program. The initial version of the 
program (mm

for (i=0; i<N; i++)   /* parallelized loop */ 
    for (j=0; j<N; j++) 
        for (k=0; k<N; k++) 
            c[i][j] += a[i][k] * b[k][j]; 

) adopts the canonical implementation based on the calculation of inner products: 

 Observing the memory access pattern of matrix b, we conclude it’s accessed by column. This 
problem is solved applying loop interchange (mm-li). In order to enhance its code we have applied the 
scalar replacement (mm-sr) and unroll-and-jam (mm-uj) program transformations. The combined effect of 
both transformations is verified in mm-li-uj-sr. Finally, in order to get better locality, we have applied the 
tiling transformation (mm-li-uj-sr-t

 The execution time of each program version is presented in table 6 and figure 8. We have executed 
these programs in the Silicon 4D/480 parallel machine. 

) 

Table 6 - Execution time of parallel matrix multiplication program. 

number of 
processors 

mm mm-li mm-li-sr mm-li-uj mm-li-uj-sr mm-li-uj-sr-t 

1 480.0 171.6 140.3 133 117.5 79.3 
2 245.0 86.2 71.1 68.1 60.3 40.2 
3 178.0 58.2 48.3 46.2 41.2 27.7 
4 161.9 44.8 37.4 35.4 31.2 20.8 
5 154.5 36.3 30.4 29.0 26.1 17.2 
6 140.6 31.6 26.0 25.8 23.6 14.4 
7 124.5 27.3 22.0 22.1 20.6 12.4 
8 111.9 24.1 19.7 19.8 18.1 11.2 

 

 Observing the results it’s possible to verify the good performance enhancement comparing the 
original version (mm) and the last one (mm-li-uj-sr-t). This improvement gets better as the number of 
processors increases. For one processor, the performance is 6 times better, and it reaches 10 times for the 
case of 8 processors. This result verifies the syntonization among program transformations, data locality and 
parallelism. 
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Figure 8 - Execution times for parallel matrix multiplication. 

 The effect of these transformations can also be studied by the speed-up graph (figure 9). Analyzing 
each curve, it’s possible to enhance the memory access behavior. The maximum speed-up for mm version is 
4.29 to 8 processors. For the other versions, the average speed-up is 7 for the same number of processors. 
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Figure 9 - Speed-up for parallel matrix multiplication. 

 The same behavior is observable from the efficiency analysis (figure 10). The efficiency of mm 
version diminishes up to 54% to 8 processors. The transformed versions exhibit much better performance 
(the worst version is mm-li-uj-sr that presents an efficiency of 81%). 
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Figure 10 - Efficiency for parallel matrix multiplication. 

7.1.3. Influence on memory demand 

 The first objective of program transformations is the reduction of the execution time. This first 
result was the only one studied for many years. Recently, some research groups are analyzing the use of 
such program transformations to enhance the access pattern of complex memory hierarchies by studying 
their influence on memory demand. We analyzed both programs (lu and mm) in terms of memory demand 
during their execution period.  

In order to evaluate the memory demand of a program, we have used the process accounting 
subsystem of UNIX systems (pacct). This subsystem collects some information during the program 
execution that can be accessed later. One of these informations is the average resident set size (in 
Kbytes/minute). 

 The experimental studies were conducted in three different platforms presented in table 7. Each 
machine is different in some aspects, for example, processor speed, bus width, main memory organization, 
cache memory associativity, internal memory management algorithms. 

Table 7 - Description of utilized machines. 

Machine Processor Main Memory Cache Memory Operating 
System 

SGI Power 4D/480 

VGX 

 

MIPS R3000A (8) 

 

256 Mbytes 

64 Kbytes Icache 
64 Kbytes Dcache 
1 Mbyte Dcache 

IRIX 5.3 

Bull ISM 

Server 490 
Power PC 601 128 Mbytes 

32 Kbytes 
I&DCache AIX 3.2 

Sun SPARCStation 20 

MP 712 

 

SuperSPARC II (2) 

 

128 Mbytes 

20 Kbytes Icache 
16 Kbytes Dcache 
1 Mbyte Dcache 

SunOS 5.5 

(Solaris 2.5) 

 
The figure 11 shows the results obtained for the LU decomposition program. In general, both 

transformations used in this study resulted in an enhanced version of the original program. The improvement 
varies from 1.2 for the scalar replacement (lu-sr) in SGI up to 1.97 for combined transformation (lu-
sr-uj) in Bull machine. Then we conclude that it’s possible to get a new version of the LU decomposition 
program that requires only half of memory during its execution. 
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Figure 11 - Effect in memory demand for LU decomposition program. 

The same study was conducted for a matrix multiplication program, and the results are presented in 
figure 12. Here we got a better improvement: the combined application of transformations resulted in a 
memory demand that is 4 (Bull and Sun) to 5 (SGI) times smaller than the original program.  
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Figure 12 - Effect in memory demand for matrix multiplication program. 

 All these results show that program transformation can be used not only to reduce the execution 
time of a program, but also to diminish its memory demand. So it is possible to enhance system performance 
by allowing the increase of the multiprogramming level. 

 This study shows that one reason for the effectiveness of program transformation related to 
diminishing programs execution times is associated to their effect in memory demand. 

7.2 - Prototype system 

Considering the good results of previous work, we decided to implement a system that automatically 
analyzes a program and applies some transformation in order to improve locality of reference. Our system 
has one additional goal that is to parallelize the program whenever it is possible. 
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 The set of transformations implemented comprises the so-called unimodular transformations 
[BAN88]. The unimodular transformations are a unified theory of a class of loop transformations. It is based 
on the theory of unimodular matrixes, so that the analysis of its application can be easily studied. 

 In order to decide which transformation we apply, it was chosen a metric for locality of reference, 
the reference window [EISE90]. In a general way, the concept of reference window is related to a set of 
matrix elements referenced by two statements that carry a data dependence. We used the size of reference 
windows to have an indication of data locality (cost). 

 We have conducted a study with a parallel program that multiply two matrixes with the following 
dimensions, 1024128 and 128256. This program was executed in a parallel computer with eight 
processors, a Silicon Graphics Power Series 4D/480 VGX. 

 Applying this program in our prototype, we got the following output (table 8). 

Table 8 - Output of our prototype system. 

program version ijk ikj jik jki kij kji 
cost 33,155 33,153 263,425 263,429 132,225 132,233 

 

 Executing each version of the program in a real machine, we got the execution time in function of 
the number of processors. The figure 13 and table 9 below resume the results. 

Table 9 - Execution time of each version of the matrix multiplication program. 

 Execution time (sec) 
number of processors 

  program version 
1 2 3 4 5 6 7 8 

  ijk 65.53 33.32 22.29 16.72 13.57 11.40 9.86 8.62 
  ikj 36.42 18.21 12.19 9.27 7.52 6.39 5.50 4.82 
  jik 71.45 36.32 24.36 18.42 14.86 13.30 11.68 9.55 
  jki 151.85 90.93 67.07 60.50 55.38 55.67 52.18 46.62 
  kij 148.66 78.15 56.17 43.44 38.81 32.84 29.21 24.73 
  kji 258.54 140.80 105.25 87.04 80.01 72.07 66.41 60.36 

 The results show that our prototype system chose the correct version as the one with better locality, 
the ikj version. This proves that our approach is valid, and it is possible to automatically optimize the 
memory access pattern and integrate optimization of locality of reference and parallelism. 
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Figure 13 - Execution time for matrix multiplication program versions. 
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8. Conclusion and Future Work 

This paper presented our research in methods to obtain high-performance programs, by presenting 
COMMUNION. Communion is a new memory management strategy that emphasizes cooperation of system 
programs. Unfortunately, this area is restricted to specialists in parallel processing and memory management 
by now because it requires some specific knowledge. 

 The evaluation studies had shown that our approach is valid. We got very good results with a 
performance gain in both techniques presented. The CAPR is a novel page management technique that is 
based on the integration of the operating system and the compiler. This integration can be applied in other 
situations, like for scheduling parallel programs or distributing data across memory modules. 

 The application of program transformations in order to improve data locality has proved to be very 
effective. The speed-ups confirm our expectations. And the prototype system that implements this approach 
has shown to be very efficient to improve program performance. 

 As future work, we are planning to complete the implementation of the automatic optimizing system 
in order to provide such a tool for non-specialist users. In this way, more people can make use of these 
modern machines. On the other hand, we want to continue to research new techniques to improve program 
performance: in CAPR, we plan to test new directives and in program transformations, new optimizations 
will be tested. 

 This research is important because of its primary objective, which is to allow the use of modern 
parallel machines for all users that are not specialists in parallel processing. We aim that all scientific 
community can make use of these new generation computers. 
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