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Abstract. The purpose of the present article is to investigiathere exist any
such set of temporal stable patterns in temporaeseof meteorological
variables studying series of air temperature, wieped and direction an
atmospheric pressure in a period with meteoroldgémanditions involving
nocturnal inversion of air temperature in Allen, Riegro, Argentina. Our
conjecture is that there exist independent stastebral activities, the mixture
of which give rise to the weather variables; areséhstable activities could be
extracted by Self Organized Maps plus Top Down ttidn Decision Trees
analysis of the data arising from the weather padteviewing them as temporal
signals.

1. Introduction

Classical laws of fluid motion govern the stateshef atmosphere. Atmospheric states
exhibit a great deal of correlations at variougigpband temporal scale. Diagnostic of
such states attempt to capture the dynamics obwsratmospheric variables (like
temperature and pressure) and how physical proxéstieence the behaviour. Thus
weather system can be thought as a complex systamsencomponents interact in
various spatial and temporal scales. It is alsonknthat the atmospheric system is
chaotic and there are limits to the predictabitifiyits future state [Lorenz, 1963,
1965]. Nevertheless, even though daily weather magier certain conditions, exhibit
symptoms of chaos, long-term climatic trends atenseaningful and their study can
provide significant information about climate charmg Statistical approaches to
weather and climate prediction have a long andngjsished history that predates
modelling based on physics and dynamics [Wilks 51 ®hanthanam and Patra, 2001].
Intelligent systems are appearing as useful altee® to traditional statistical
modelling techniques in many scientific disciplingsertz et al, 1991; Rich &
Knight, 1991; Setiono & Liu, 1996; Yao & Liu, 1998ply & Sietsma, 1991; Gallant,
1993; Backet al, 1998; Garcia Martinez & Borrajo, 2000; Grosseal, 2005]. In
their overview of applications of neural networks é€xample of intelligent system) in
the atmospheric sciences, Gardner and Dorling [[L&&&luded that neural networks
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generally give as good or better results than timegthods. So far, little attention has
been paid to combining linear methods with neuraiworks or other types of
intelligent systems in order to enhance the poviehe later. A general rule in this
sort of applications says that the phenomenon tiedmmed by the intelligent system
should be as simple as possible and all advanoemiation should be utilized by pre-
processing [Haykin, 1994]. This trend continuesatowvith newer approaches based
on machine learning algorithms [Hsieh and Tang, 188hahan, 2000].

The term intelligent data mining [Evangelos & Han9@9Michalskiet al, 1998], is
the application of automatic learning methods [Miski et al, 1983; Holsheimer &
Siebes, 1991] to the non-trivial process of extrand present/display implicit
knowledge, previously unknown, potentially usefuldahumanly comprehensible,
from large data sets, with object to predict ofomdted form tendencies and
behaviours; and to describe of automated form nsopledviously unknown, [Cheet
al., 1996; Mannila, 1997; Piatetski-Shapéebal, 1991; 1996; Perichinsky & Garcia-
Martinez, 2000; Perichinskgt al, 2003] involve the use of machine learning
techniques and tools.

2. Problem

The central problem in weather and climate modeintp predict the future states of
the atmospheric system. Since the weather datgearerally voluminous, they can be
mined for occurrence of particular patterns thastidguish specific weather
phenomena. It is therefore possible to view thetleravariables as sources of spatio-
temporal signals. The information from these sptimporal signals can be extracted
using data mining techniques. The variation in tleatler variables can be viewed as
a mixture of several independently occurring spiporal signals with different
strengths. Independent component analysis (ICA) been widely studied in the
domain of signal and image processing where eapfakis viewed as a mixture of
several independently occurring source signals. ednithe assumption of non-
Gaussian mixtures, it is possible to extract theerendently occurring signals from
the mixtures under certain well known constraiftserefore, if the assumption of
independent stable activity in the weather variallelds true then it is also possible
to extract them using the same technique of ICAe ®@asic assumption of this
approach is viewing the weather phenomenon as #uraiof a certain number of
signals with independent stable activity. By ‘stahbktivity’, meaning spatiotemporal
stability, i.e., the activities that do not charyer time and are spatially independent.
The observed weather phenomenon is only a mixtutheasfe stable activities. The
weather changes due to the changes in the mixitigrpa of these stable activities
over time. For linear mixtures, the change in theimg coefficients gives rise to the
changing nature of the global weather [Stone, PoBuchel, and Friston, 1999;
Hyvarinen, 2001].

The purpose of the present article is to investighttere exist any such set of
temporal stable patterns related to the observedhse phenomena. Our conjecture is
that there exist independent stable temporal #éietsyithe mixture of which give rise
to the weather variables; and these stable aesvitiould be extracted by neural
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networks analysis of the data arising from the Wwelatind climate patterns, viewing
them as temporal signals.

3. Proposed Solution

The variables as presented in the paper could aotdmsidered random ones because of
presence of temporal cycles. In addition, a lineahaviour as result of mixture of latent
variables could not be assumed [Hyvarie¢ral, 2001]. In order to establish if there exist any
such set of temporal stable patterns related terebd weather or climate phenomena we
select weather station data described in [Fl@esl 1996]. The records of the observed
weather temporal series [Ambroiseal,2000; Malmgren and Winter, 1999 ; Tiahal, 1999]

are clustered with SOM [Kohonen, 2001; Kaial.,2000; Tirri, 1991; Duller, 1998] and rules
describing each obtained cluster were built applylDIDT [Quinlan, 1993]to each cluster
records. The described process is shown in figure 1

If —

and
and
Then cluster 1

If
and

SOM TDIDT Then cluster 1
—_— —e e e e s
If  —
and
and
Then cluster 4
Set of weather/climate Clusters of weather/climate Resulting weather/
phenomena records phenomena records climate predicting rules

Fig. 1. Process for establishing temporal stable patteriated to observed weather/ climate
phenomena

4. Data for experiments

The original data was a set of temperature, windedpevind direction and

atmospheric pressure observations, taken evemgefiftminutes from 13/10/94 to
17/10/94 in Allen, Rio Negro province, Argentindi€Tweather station was located in
the agricultural region called Upper Rio Negro ¥gl(URNV) encompassing the
lower valleys of the Limay and Neuquén rivers anel tipper valley of the Negro
river. The arable lands of best quality are locatedhe river terraces extending from
the side pediments up to the floodplain. The tesare limited by cliffs and the side
pediments of the Patagonian plateau that surrothmsalleys. The valley is broad
and shallow with steplike edges. The Negro riverleyalhas a WNW-to-ESE

orientation in the study area. The mean height iffees with the North Patagonian
Plateau is 120m for the Rio Negro valley. The weattation data was obtained
during MECIN (stands in spanish for: MEdiciones de&Clapa de Inversion Nocturna:
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Nocturnal Inversion Layer Measurements] field exgeece carried out in the URNV
[Floreset al, 1996] from September through October of the y&8@82 to 1997. The
data was complete, without using any replacemesitnigue. The so called Upper
Rio Negro Valley in Argentina is one of the mostportant fruit and vegetable
production regions of the country. It comprises lineer valleys of the Limay and
Neuquén rivers and the upper Negro river valleyt Outhe 41,671 cultivated
hectares, 84.6% are cultivated with fruit treegeeslly apple, pear and stone fruit
trees [Cogliati, 2001]. Late frosts occurring wheees are sensitive to low
temperatures have a significant impact on the rediproduction. This study presents
an analysis of meteorological variables in one heastation in the Upper Rio Negro
Valley. To such effect, observations made when stoi@gale weather patterns were
favourable for radiative frosts (light wind and alesky) or nocturnal temperature
inversion in the lower layer were used. Calm wimése more frequent within the
valleys. In Allen, air flow behaviour might be asfted with forced channelling
with wind direction following valley direction. Ithe night time, some cases of very
light NNE wind occurred, which may be associatechwdtainage winds from the
barda

5. Results of experiments

The first analysis implementing SOM analysis detaadinine clusters, that could be
associated to different wind directions, maximurd amean wind speed, atmospheric
pressure and temperature. Air temperature inclpeesdic daily variation, that was
included in the analysis to explore relationshighwivind variations. Four of nine
groups identified, included the 94 percent of casab several statistically significant
rules. The detected rules for each group (clusterdescribed in tables 1 to 9.
Groups A and B describe strongest wind cases wikimum wind speed greater
than 5.8 m/s and mean wind speed greater than &3 @nmoup C describe cases
considering greater temperatures and wind speeld wiitd direction from south.
Group D describes cases of wind speed up to 5rons fiorth to south directions and
wind speed up to 5 m/s. In groups F and G and Hscgsesent non obvious
characteristics. Group J discriminates calm wind gnoups 4 and % describes
undeterminated cases. The required frost analysishie nocturnal and diurnal
processes identification, so, the time of obseowatis a variable that might be
included. The inclusion of date and time of oba@on produced a diminution of the
quantity of groups involved, but an important imosmnt in the number of rules (38
rules). This inclusion of new characteristics in fABIDT analysis produced too
much behaviour rules that produces confusion amectiebvious patterns as well as
useful ones. This item would need further additi@malysis. A confidence limit was
pointed in order to study the rules.

Considering confidence level above 0.6 and ruleslining more than 25 cases results
in 11 rules. This rules pointed some groups charetics. Group A includes 135
cases with relative higher air pressure mainhhamorning. The 324 cases in Group
B present lower air pressure and wind speed. Rimyaiind direction was western
sector. Group C discriminated weaker mean winddgless than 0.2 m/s) during the



Patterns in Temporal Series of Meteorological Maleéa Using SOM & TDIDT 5

morning and relative higher air pressure (371 Qasmsl cooler air temperature
mainly from northern to southern direction. GrouppEesented westerly wind but
cooler air temperature (96 cases) and F includdg atiernoon and afternoon cases
(154 cases).

RULES SUPORT| CONFI- RULES SUPORT | CONFI-
DATA DENCE DATA DENCE
IF C5294P >= 992.84 26 0.85 IF C5204P < 992.84 225 0.99
AND C5294VVE < 0.20 AND C5294VMX < 0.65
AND HOUR < 10.33 AND C5294VVE < 0.20
THEN GROUP = A AND HOUR < 8.09
IF C5294P >= 990.64 12 0.92 THEN GROUP =C
AND C5294P < 991.68 IF C5294P < 992.84 5 1
AND C5294VMX >= 0.65 AND C5294VMX < 0.65
AND HOUR >= 10.33 AND C5294VVE < 0.20
AND HOUR < 16.48 AND HOUR >= 8.09
AND C5294TOU >= 16.75 AND HOUR < 10.33
THEN GROUP = A AND C5294TOU < 5.40
IF C5294P >= 991.68 51 1 THEN (1.00) (1) GROUP =C
AND C5294VMX >= 0.65 IF C5294P >= 987.15 6 1
AND HOUR >= 10:33 AND C5294P < 992.84
AND (1) (1) HOUR < 16:48 AND C5294VMX < 0.65
THEN GROUP = A AND C5294VVE < 0.20
IF C5294P >= 989.61 26 1 AND HOUR >= 8.09
AND C5294VVE >= 0.20 AND HOUR < 10.33
AND HOUR >= 6:57 AND C5294TOU >= 5.40
AND HOUR < 10:33 THEN GROUP =C
THEN GROUP = A IF C5294P >= 984.49 2 0.75
AND C5294P < 987.15
AND C5294VMX < 0.65
Table 1.Rules from Group A (Cluster A) | AND C5294VVE <0.20
AND HOUR >= 8.09
AND HOUR < 8.34
AND C5294TOU >= 5.40
RULES SUPORT| CONFI-
DATA DENCE THEN GROUP =C
IF C5294P >= 988.14 29 0.83
IF C5294P < 986.54 24 0.91
AND CE294VVE ot 0.20 AND C5294P < 992.84
; AND C5294VMX >= 0.65
AND HOUR < 10:33
THEN GROUP =B AND C5294VVE < 0.20
AND (1) (1) HOUR >= 8.09
IF C5294P < 989.24 265 0.9
4 AND (1) (1) HOUR < 10.33
AND C5294VMX >= 0.65 !
AND HOUR >= 10:33 THEN GROUP =C
AND C5204T0U >z 15.15 IF C5294P < 992.84 50 0.74
THEN GROUP =B AND C5294VMX >= 0.65
AND C5294VVE < 0.20
IF C5294P < 985.14 6 0.67
4 AND HOUR <8.09
AND C5294VMX >= 0.65
AND C5294TOU >= 10.35
AND C5294VMX < 1.55 )
AND HOUR >= 10:33 THEN GROUP _=C
AND C529470U < 15 15 IF C5294P >= 989.61 35 0.60
THEN GROUP =B AND C5294VVE >= 0.20
— AND HOUR < 6.57
IF C5294P < 986.14 18 1 S
AND C5294VMX >= 1.55 THEN GROUP _=C
AND HOUR >= 10-33 IF C5294P >= 989.05 15 1
AND C5294TOU < 15.15 AND ©5294P < 992.84
THEN GROUP =B AND C5294VMX >= 0.65
= AND C5294VVE < 0.20
IF C5294P >= 986.14 7 1
AND HOUR < 8.09
AND C5294P < 989.24
_ AND C5294TOU < 10.35
AND C5294VMX >= 1.55 THEN BRoUP =G
AND C5294VVE >= 1.10 —
AND HOUR >= 10:33 IF C5294P >= 989.24 12 0.92
AND C5294TOU < 15.15 AND C5294P < 990.64
THEN GROUP =B AND C5294VMX >= 0.65
AND C5294VVE < 0.20
IF C5294P < 979.48 2 1 v
S AND HOUR >= 10.33
AND C5294VMX >= 0.65
AND HOUR < 16.48
AND C5294VVE < 0.20 THEN GROUP 6
AND HOUR < 8:09 =
AND C5294TOU < 10.35
THEN GROUP =B

Table 2.Rules from Group B (Cluster B)

Table 3.Rules from Group C (Cluster C)
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Table 4.Rules from Group D (Cluster D)

AND C5294P < 989.24
AND C5294VMX >= 0.65
AND C5294VMX < 1.55
AND HOUR >= 20:24
AND C5294TOU >= 13.20
AND C5294TOU < 15.15
THEN GROUP =F

RULES SUPORT | CONFI-
DATA DENCE

IF C5294P >=981.17 159 1

AND C5294VMX < 0.65

AND HOUR >=12:45

THEN GROUP =F

IF C5294P >= 985.14 2 1

Table 5.Rules from Group F (Cluster F)

AND C5294P < 987.15
AND C5294VMX < 0.65
AND C5294VVE < 0.20
AND HOUR >= 8:38
AND HOUR < 9:36

AND C5294TOU >= 5.40
THEN GROUP =H

RULES SUPORT | CONFI- RULES SUPORT | CONFI-
DATA DENCE DATA DENCE
IF C5294P >= 979.48 25 0.68 IF C5294P < 981.17 15 0.93
AND C5294P < 989.05 AND C5294VMX < 0.65
AND C5294VMX >= 0.65 AND HOUR >= 10:33
AND C5294VVE < 0.20 THEN GROUP =G
AND HOUR < 8:09 IF C5294P >= 985.14 12 0.92
AND C5294TOU < 10.35 AND C5294P < 989.24
THEN GROUP =D AND C5294VMX >= 0.65
IF C5294P >= 986.54 8 0.63 AND C5294VMX < 1.55
AND C5294P < 989.61 AND HOUR >= 20:24
AND C5294VVE >= 0.20 AND C5294TOU < 13.20
AND HOUR < 10:33 THEN GROUP =G
THEN GROUP =D IF C5294P >= 989.24 20 0.4
IF C5294P >= 989.24 24 0.67 AND C5294VMX >= 0.65
AND C5294VMX >= 2.00 AND C5294VMX < 2.00
AND HOUR >= 16:48 AND HOUR >= 16:48
THEN GROUP =D THEN GROUP =G
IF C5294P >= 989.24 6 0.67
AND C5294P < 990.64
AND C5294VMX >= 0.65 Table 6.Rules from Group G (Cluster G)
AND C5294VVE >= 0.20
AND HOUR >= 10:33
AND HOUR < 16:48 RULES SUPORT | CONFI-
THEN GROUP =D DATA DENCE
IF C5294P >= 990.64 8 0.63 IF C5294P >= 981.17 10 0.9
AND C5294P < 991.68 AND C5294VMX < 0.20
AND C5294VMX >= 0.65 AND HOUR >= 10:33
AND HOUR >= 10:33 AND HOUR < 12:43
AND HOUR < 16:48 THEN GROUP =H
AND C5294TOU < 16.75
IF C5294P < 984.49 11 1
THEN GROUP =D AND C5294VMX < 0.65
IF C5294P >= 986.14 26 0.81 AND CB5294VVE < 0.20
AND C5294P < 989.24 AND HOUR >= 8.09
AND C5294VMX >= 1.55 AND HOUR < 10:33
AND C5294VVE < 1.10 AND >= 5.40
AND HOUR >=10:33 THEN GROUP =H
AND C5294TOU < 15.15 IF C5294P >= 984.49 7 1
THEN GROUP =D AND C5294P < 992.84
IF C5294P >= 984.92 7 1 AND G5294VMX < 0.65
AND C5294P < 988.14 AND C5294VVE < 0.20
AND C5294VMX >= 0.65 AND HOUR >= 9:36
AND C5294VVE < 0.20 AND HOUR < 10:33
AND HOUR >= 8:09 AND C5294TOU >= 5.40
AND HOUR < 10:33 THEN GROUP =H
THEN GROUP =D IF C5294P >= 984.49 5 1

Table 7.Rules from Group H (Cluster H)

AND C5294P < 989.24
AND C5294VMX >= 0.65
AND C5294VMX < 1.55
AND HOUR >=10:33
AND HOUR < 20:24
AND C5294TOU < 15.15
THEN GROUP =J

RULES SUPORT | CONFI-
DATA DENCE
IF C5294P >= 985.14 4 0.5

Table 8.Rules from Group J (Cluster J)
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RULES SUPORT | CONFI- RULES SUPORT | CONFI-
DATA DENCE DATA DENCE

IF C5294P >=981.17 6 0.33 IF C5294P < 984.92 10 0.4

AND C5294VMX >=0.20 AND C5294VMX >= 0.65

AND C5294VMX < 0.65 AND C5294VVE < 0.20

AND HOUR >=10:33 AND HOUR >= 8:09

AND HOUR < 12:43 AND HOUR < 10:33

THEN GROUP =UNDETERMINATE THEN GROUP =UNDETERMINATE

Table 9.Rules from Group Zand 2% (indeterminated cluster)

In “C5294...", “C52" is the meteorological stationdmand “94” is the year (1994).
In “C5294vdd”, “vdd” is the wind orientation. In ‘€294vve”, “vve” is average wind
intensity. In “C5294tou”, “tou” is air temperatu¢€®). In “C5294P", “P” is pressure
(hPa).

The figure 2 presents the maximum wind speed vdomad time for the different
groups selected. The discrimination of different enetlogical situations could
differentiate physical relationships in the anatyzases, further analysis considering
atmospheric temporal variations could improve thlecion, discarding the obvious
deterministic patterns.
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Fig. 2. Scatter plot of different groups data of maximumadwspeed versus time in
Allen (Rio Negro Argentina) from 13/10/94 to 1740/
6. Conclusions

The so called Upper Rio Negro Valley in Argentinane of the most important fruit
and vegetable production regions of the countrgoihprises the lower valleys of the
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Limay and Neuquén rivers and the upper Negro rialey. Late frosts occurring
when trees are sensitive to low temperatures haignificant impact on the regional
production. Time series analysis of air temperatat®ospheric pressure, wind speed
and direction involves a large amount of data asd chining could be an alternative
to statistical traditional methods to find clustesigh stable signals.

This study presents an analysis of meteorologicadbkes in one weather station in
the Upper Rio Negro Valley by means of SOM analgsid applying TDIDT to build
rules. To such effect, observations made when simepale weather patterns were
favourable for radiative frosts (light wind and aesky) or nocturnal temperature
inversion in the lower layer were used. The obtainmetes represent wind,
temperature and pressure characteristics, the greggarate calm, and nocturnal and
diurnal main characteristics according to prioditianal methods analysis (Cogliati,
2001), newer found relationships might be studieddvance.

The inclusion of a larger number of variables suofetand date produces a large
number of rules without defining precise interviflat produces confusion and detect
obvious patterns as well as useful ones. This itemldvneed further extensive study.
The variation in the weather variables can be viewsda mixture of several
independently occurring spatio-temporal signalwlitferent strengths.

Acknowledgementsthe authors would like to thank Jorge Lassig favling the
meteorological data obtained in MECIN field expene

7. References

Ambroise, C., Seze, G., Badran, F., and Thiria, @02Hierarchical clustering of self-
organizing maps for cloud classificatioNeurocomputing, 30(1):47-52

Back, B., Sere, K., & Vanharanta, H. 1998anaging complexity in large data bases using
self-organizing mapsAccounting Management & Information Technologie491-210.

Chen, M., Han, J., Yu, P. 199Pata mining: An overview from database perspectizZE=E
Transactions on Knowledge and Data Engineering 8@3-883.

Cogliati, M.G. 2001 Estudio térmico y del flujo del aire en septiemprectubre en los valles
de los rios Limay, Neuquén y NegBmoctoral Dissertation. University of Buenos Aires.

Dow R. J. y Sietsma J. 199Creating Artificial Neural Networks that GeneralizNeural
Networks . 4(1): 198-209.

Duller, A. W. G. 1998.Self-organizing neural networks: their application treal-world"
problems Australian Journal of Intelligent Information Ressing Systems, 5:175-80

Evangelos, S., Han, J. 199@roceedings of the Second International Conference o
Knowledge Discovery and Data Miningortland, EE.UU.

Flores, A. ; Lassig, J. ; Cogliati, M. ; Palese, Bastanski, M. 1996Mediciones de la Capa de
Inversion Nocturna en los valles de los rios Limiguquén y NegroProceedings VII
Argentine Congress on Meteorology. VII Latinamericamd Iberic Congress on
Meteorology. Buenos Aires.

Gallant, S. 1993\eural Network Learning & Experts Systeta8T Press, Cambridge, MA.

Garcia Martinez, R. y Borrajo, D. 2008n Integrated Approach of Learning, Planning &
Executing Journal of Intelligent & Robotic Systems. 29(17:78.

Gardner, M., Dorling, S. 1998&Artificial neural networks (the multilayer percemph) — a
review of applications in the atmospheric scieno&snospheric Environment 32: 2627-
2636



Patterns in Temporal Series of Meteorological Maleéa Using SOM & TDIDT 9

Grosser, H., Britos, P. y Garcia-Martinez, R. 2dDBtecting Fraud in Mobile Telephony
Using Neural Networks.ecture Notes in Atrtificial Intelligence 3533: 6635.

Haykin, S., 1994Neural networks: A comprehensive foundati®nentice-Hall, Englewood
Cliffs, NJ.

Hertz J., A. Krogh y R. Palmer 199Introduction to the Theory of Neural Computation
Reading, MA: Addison-Wesley.

Holsheimer, M., Siebes, A. 199Data Mining: The Search for Knowledge in Databases
Report CS-R9406, ISSN 0169-118X, Amersterdam, Theé¥lathds.

Hsieh, W. , and Tang, B. 1998pplying neural network models to prediction andadanalysis
in meteorology and oceanograptulletin of American Meteorological Society 79:58
1870.

Hyvarinen, A. 2001Complexity pursuit: Separating interesting compoadmm time-series
Neural Computation 13: 883-898.

Hyvarinen, A., Karhunen, J. and Oja, E. 20@tlependent Component Analyslshn Wiley &
Sons.

Kaski, S., Venna, J., and Kohonen, T. 20@uloring that reveals cluster structures in
multivariate dataAustralian Journal of Intelligent Information Pessing Systems, 6:82—8.

Kohonen, T. 2001Self-Organizing MapsSpringer Series in Information Sciences, Vol. 30,
Springer, Berlin.

Lorenz, E. 1963Deterministic non-periodic flowJournal of Atmospheric Sciences 20: 130-
141.

Malmgren, B. A. and Winter, A. 199€limate zonation in Puerto Rico based on principal
components analysis and an artificial neural netwdournal of Climate, 12:977-85

Mannila, H. 1997Methods and problems in data minifg Proc. of International Conference
on Database Theory, Delphi, Greece.

Michalski, R., Carbonell, J., Mitchell, T. 1988lachine learning I: An Al ApproactMorgan
Kaufmann, Los Altos, CA.

Michalski, R.S., Bratko, I., Kubat, M. 199Blachine Learning and Data Mining, Methods and
Applications John Wiley & Sons Ltd, West Sussex, England.

Monahan, A. 2000Nonlinear principal component analysis by neuralwmks: Theory and
applications to the Lorenz systedournal of Climate 13: 821-835.

Perichinsky, G., Garcia-Martinez, R. 200Q. Data Mining Approach to Computational
TaxonomyProceedings Argentine Computer Science Researdfaissop: 107-110.

Perichinsky, G., Servetto, A., Garcia-Martinez, ®rellana, R., Plastino, A. 2003 axomic
Evidence Applying Algorithms of Intelligent Datariing Asteroid FamiliesProceedings
de la International Conference on Computer Scienoéwa&re Engineering, Information
Technology, e-Bussines & Applications 308-315.

Piatetski-Shapiro, G., Frawley, W., Matheus, C. 199iowledge discovery in databases: an
overview AAAI-MIT Press, Menlo Park, California.

Piatetsky-Shapiro, G., Fayyad, U.M., Smyth, P. 198f6m data mining to knowledge
discovery AAAI Press/MIT Press, CA.

Quinlan, R. 1993C4.5: Programs for Machine Learninflorgan Kaufmann Publishers. San
Mateo California.

Rich E. y Knight, K. 1991Introduction to Artificial NetworksMac Graw-Hill. Publications.

Santhanam M., and Patra, P. 2081atistics of atmospheric correlatiorBhysical Review E
64: 016102-1-1-7.

Setiono R. & Liu. H. 1996Symbolic representation of neural networkEEE Computer
Magazine 29(3): 71-77.

Stone, J., Porrill, J., Buchel, C., and Friston, B94. Spatial, temporal and spatiotemporal
independent component analysis of fMRI d&tal8th Leed Statistical Research Workshop
on Spatiotemporal Mdeling and its Applications. Wnsity of Leeds.



10 Marisa Cogliati, Paola Britos and Ramoén Garcia-Marinez

Tian, B., Shaikh, M. A., Azimi Sadjadi, M. R., Vorrddlaar, T. H., and Reinke, D. L. 1999.
Study of cloud classification with neural networkgg spectral and textural featurd&€EE
Transactions on Neural Networks, 10(1):138-151

Tirri, H. 1991. Implementing Expert System Rule Conditions by NeNetworks New
Generation Computing. 10(1): 55-71.

Wilks, D. 1995 .Statistical methods in Atmospheric Scienéesademic Press, London.

Yao X. y Liu Y. 1998 Toward Designing Artificial Neural Networks by Ewadan. Applied
Mathematics & Computation 91(1): 83-90.



