
A Job Allocation Algorithm for Parallel Processors

Nodari Vakhania

Facultad de Ciencias

Universidad Autonoma del Estado de Morelos

Av. Universidad 1001

Cuernavaca 62210, Mor., Mexico

Abstract

We are given a �nite set of jobs of equal processing times with readiness times and

tails and a set of identical processors. The aim is to schedule the given set of jobs on the

given set of processors to minimize the total processing time (or makespan). An algorithm

for that problem with the time complexity O(n logn) was proposed earlier in [10]. This

algorithm improves the running time of the previously known best algorithm [9] under the

assumption that the tails of all jobs are bounded by some constant. In this paper we show

that an algorithm based on the ideas of the algorithm from [10] can be constructed in which

the above restriction is removed.

Key words: scheduling, identical machines, readiness time, tail, computational

complexity.

1. Introduction. We consider the following machine sequencing problem P1:

there are given a set I = f1; 2; :::; ng of jobs and a set M = f1; 2; :::;mg of machines

(or processors). Each job has to be performed on any of the given m machines;

the processing time of any job (on any machine) is a given integer number p. Job

i (i = 1; 2; :::; n) is available at its integer readiness time a

i

(this job cannot be

started before the time a

i

) and has an integer tail q

i

(interpreted as an additional

amount of time needed for the termination of job i once it is processed on a machine).

A schedule is a function which assigns to each job a machine and starting time (on

that machine). An (integer) starting time t

S

i

of job i (in the schedule S) is the time

at which this job is scheduled to be performed on a machine. The completion time

of job i on a machine c

S

i

= t

S

i

+ p. The full completion time of job i in the schedule

S is c

S

i

+ q

i

(notice that q

i

doesn't require any machine time). Each machine can

handle at most one job at a time, that is, if jobs i and j are scheduled on the same

machine then either c

S

i

� t

S

j

or c

S

j

� t

S

i

. The preemption of jobs is not allowed, that

is, each job is performed during the time interval [t

S

i

; t

S

i

+p] on a machine. A feasible

schedule is a schedule which satis�es the above restrictions. The objective is to �nd

1

an optimal schedule, that is, a feasible schedule which minimizes the makespan (the

maximum full completion time of all jobs).

An alternate formulation of the above problem is the one with the due dates

(abbreviated as P2): instead of the tail q

i

for each job i an integer due date d

i

is

given (d

i

is the desirable completion time of job i). The lateness L

S

i

of job i in a

schedule S is de�ned as:

L

S

i

=

�

0; if c

S

i

� d

i

;

c

S

i

� d

i

; otherwise:

The objective is to �nd an optimal schedule, that is, a feasible schedule which

minimizes the maximum lateness L

S

max

= maxfL

S

i

ji = 1; 2; :::ng:

The equivalence between problems P1 and P2 is established by a simple trans-

formation (see [2]).

If we allow in P1 and P2 di�erent processing times we get strongly NP -complete

problem even in the single-machine case (see [1,2,4,5,7]).

If we replace in P2 due dates with deadlines and we look for a feasible schedule,

we get the corresponding feasibility problem PF (by PF1 the one-machine version

of PF is abbreviated). In a feasible schedule S of PF no job can be delayed, that

is, c

S

i

� d

i

, for i = 1; 2; :::; n (in a feasible schedule of P2 we allow the existence of

such jobs and we look for a schedule which minimizes the maximum delay).

It has been proved that PF is solvable in polynomial time.

An O(n

2

logn) algorithm for PF1 is described in [3]. In this algorithm the so-

called active schedules are generated; U is an active (partial) schedule if t

U

i

+p � d

i

,

for any job i 2 U and d

j

> y

U

for any unscheduled job J , where y

U

= maxft

U

i

+pji 2

Ug; x{active schedule U

x

is an active schedule with y

U

x

< x. Beginning at the time

x = 0, in the algorithm x{active schedules are generated, selecting at the moment

x the job with the minimal due date among the jobs, which were not scheduled in

U

x�p

and available in the time interval [x� p; x]. This way new urgent job which

becomes available at the moment x, can replace the earlier scheduled less urgent

one when the latter job delays it. The resulting x{active schedule is feasible if it

contains all the jobs, otherwise there is no feasible schedule.

An algorithm with the better performance for the same problem was proposed in

[6]. This O(n logn) algorithm uses the so-called forbidden regions for the construc-

tion of a feasible schedule. A forbidden region is a time interval in a schedule in

which it is forbidden to start any job. The algorithm consists of two parts. In part I

the forbidden regions are de�ned and a failure is declared if there exists no feasible

schedule. In part II schedule is generated using the \earliest deadline scheduling

rule" and forbidden regions declared in part I.

The �rst polynomial algorithms for PF were proposed in [8] and [9] with the

time complexity O(n

3

log logn) and O(n

2

m) respectively. Both algorithms apply

the concept of the forbidden regions introduced in [6]. The algorithm in [8] uses

the earliest deadline scheduling rule for the construction of feasible schedules, while

2

each time the next scheduled job failures to meet its deadline backtracking is ac-

complished and a new forbidden region (or barrier) is declared. In the algorithm

from [9] a more sophisticated method is used for the generation of the forbidden

regions before the jobs are actually scheduled what yields the better computation

complexity results.

The minimization problem P2 can be solved by the repeated application of an

algorithm for the corresponding feasibility problem PF : We iteratively increase

the due dates of all jobs by some constant until we �nd a feasible schedule of the

feasibility problem with the modi�ed data. Since the maximum lateness will depend

on the number of jobs, we may need to apply such an algorithm O(n) times. Thus,

algorithms [8,9] if applied to problem P1 have the time complexity O(n

4

log logn)

and O(n

3

m), respectively.

Recently in [10] was proposed an algorithm for problem P1 which gives the bet-

ter running time but under the assumption that the maximal job tail is bounded

by some constant. Its time complexity is O(n logn), though without the above

assumption it is O(q

max

3

n logn) (here q

max

is the maximal job tail), which makes

it pseudo-polynomial. This algorithm accomplishes a "limited" enumeration of the

set of the special kind of feasible schedules, the so called complementary sched-

ules. Special behaviour alternatives are introduced for these schedules and they are

repeatedly analyzed during the search.

The algorithm which we propose here uses the concepts of the one from [10] though

it removes the restriction about the maximal job tail. It has the time complexity

O(mn logn), where can take any of the values q

max

or n. So, the proposed here

algorithm improves the running time of the algorithm from [10] for the general case,

as well as it improves the running time of the algorithms from [8] and [9]. Moreover,

while the bounds of the latter algorithms are tight (the preprocessing stage in these

algorithms takes the �xed amount of time), our algorithm applies an enumeration

tree and, speaking informally, it is very unlike that the above bound will be ever

reached. With the nodes of our enumeration tree, as in the algorithm from [10], the

complementary schedules are associated. The complementary schedules are com-

plete schedules obtained by the application of the greatest tail scheduling heuristic

to a specially modi�ed problem instance. With each complementary schedule we

associate conjunctive graph. Our search for an optimal solution is accomplished on

the bases of analysis of a critical path behavior in that graphs.

In the next Section 2 we introduce the basic de�nitions and notations. In Section

3 we give some properties of the greatest tail schedules. Section 4 we study the

complementary schedules, we describe the algorithm and indicate its computational

complexity. In the �nal Section 5 we give the concluding remarks.

2. Basic Concepts. A schedule S can be represented by a directed weighted

graph G

S

= (X;E [E

S

), where X is the set of nodes in G

S

, E is the set of initial

arcs and E

S

is the set of complementary arcs. The set X consists of n + 2 nodes

3

0; 1; :::; n; �, where node j 2 X; j 62 f0; �g represents the unique job j 2 I (for the

simplicity, from now on we may refer to node i 2 G

S

as to job i); 0 and � are

�ctitious source and sink nodes. For each j 2 I we have (0; j) 2 E, (j; �) 2 E. We

associate the weight a

j

(respectively, p+q

j

) with each arc (0; j) (respectively, (j; �))

fromE. The set E

S

we form in the following way. We add an arc (i; j) (i; j 62 f0; �g)

to E

S

with the associated weight p, when we schedule job j directly after job i, both

on the same machine. The makespan of S is then the length of a critical path in

G

S

. Notice that a critical path in G

S

can be found in time O(n).

G

S

contains m unconnected 'chains', each of them consisting of jobs scheduled

successively on one particular machine. First such a chain consists of jobs scheduled

on machine 1, the second such a chain consists of jobs scheduled on machine 2 and

so on, the last chain consists of jobs scheduled on the last machine m (we number

our set of machines arbitrarily so that we can distinguish them by indexes). Each

of these chains may contain one or more critical paths. Among all critical paths in

G

S

we distinguish the ones associated with the machine (or equivalently, with the

chain) with the greatest index and call them the rightmost critical paths. Among

critical paths of one particular chain we distinguish critical paths with the maximal

number of jobs. The �rst such a path in a chain we call the maximal path. We

will be further interested mainly in the rightmost maximal paths. Notice that such

a path is de�ned uniquely in any schedule. The rightmost maximal path in S we

denote by �(S).

Let j

1

; j

2

; :::; j

n

be a permutation of n jobs from I in a schedule S. We say that

job j

i

; i = 1; 2; :::; n has the ordinal number i in S. The ordinal number of job j in

S we denote by ord(j; S).

In a schedule we distinguish n positions on the given m machines. These posi-

tions are successively �lled out by the jobs scheduled in turn on adjacent machines

(adjacent to machine k is machine k + 1 for k = 1; 2; :::; m� 1, and adjacent to

machine m is machine 1). The starting time of kth position in S, t(k; S), is the

starting time of the job scheduled in that position.

The complete schedules with which we deal in our algorithm are represented as a

nodes in the solution tree T . We apply the greatest tail heuristic (abbreviated GTH)

to generate these schedules. As we describe later, we iteratively modify our current

problem instance in a special way and apply the GTH to the modi�ed instances,

generating in this way di�erent schedules with our heuristic. The greatest tail

heuristic is an adaptation of the smallest due date heuristic for a single machine:

We repeatedly determine a ready job with the greatest tail and schedule it on the

next adjacent machine. Below is the description.

PROCEDURE GREATEST TAIL.

f returns the GTS g

BEGINfgreatest tailg

(0) t := minfa

i

ji 2 Ig; A := I ;

R(k) := 0; k = 1; 2; :::;m;

f R

k

is the release time of machine k g

4

(1) Among the unscheduled jobs l 2 A with a

l

� t schedule next job j with

the greatest tail on machine k, k = ord(j) mod m (break ties arbitrarily);

t

j

:= maxft; R

k

g; R

k

:= t

j

+ p

j

; A := A n fjg;

k

0

:= (ord(j) + 1) mod m; f k

0

is the next available machineg

IF A 6= ; THEN t := maxfR

k

0

;minfa

i

ji 2 Agg; go to (1)

ELSE GREATEST TAIL:= ft

j

g (j = 1; 2; :::; n);

RETURN;

END.fgreatest tailg

Schedules generated by the application of the above algorithm we call the greatest

tail schedules (abbreviated GTS). All schedules we will be dealing with in this paper

are the greatest tail schedules.

Proposition 1. If ord(j; S) > ord(i; S) (i; j 2 S) then t

S

j

� t

S

i

, for any greatest

tail schedule S.

Proof. Easily follows from the GTH. Indeed, for the �rst m positions the claim

is obvious: Either all the jobs will start at time 0 or otherwise, if some job starts

later, then that job has the minimal readiness time among all unscheduled jobs.

Now take next m jobs with the ordinal numbers m+ 1; m+ 2; � � � ; 2m and assume

that we have two successively scheduled jobs i and j (ord(j) = ord(i)+1) such that

t

j

< t

i

. Since the release time of the position in which i is scheduled cannot be

more than that of the position in which j is scheduled (this we already showed) this

implies that r

j

< r

i

. But then by the GTH j would be scheduled before i. Similarly

we show the claim for all the remained jobs.//

A gap in a schedule is a time interval which is not occupied by any job. The

greatest tail schedules consist of the sequence of one or more blocks. Intuitively,

block is an 'isolated' part of a schedule. Any block, di�erent from the last block

(or equivalently, the �rst one, if they are the same) in any schedule contains the

number of jobs which is multiple of m. Formally, block is the maximal sequence of

successively scheduled jobs on adjacent machines such that the �rst m jobs in it are

preceded by gaps or are the earliest scheduled jobs on their respective machines,

and the last m scheduled jobs (k < m jobs, correspondingly) are succeeded by gaps

(are the latest scheduled jobs on their respective machines, correspondingly). For

any two blocks B

1

; B

2

2 S either B

1

> B

2

or B

1

< B

2

holds, that is, either B

1

precedes B

2

in S or vice versa. In a given schedule, the critical block is the block

containing the rightmost maximal path.

We give some other de�nitions.

The last scheduled job of the rightmost maximal path in S we call its overow

job and denote it by r or r(S). Let B be the critical block in S. A job l 2 B such

that ord(l) < ord(r) we call an emerge job in S if q

l

< q

r

. We denote by K

0

(S) the

set of all emerge jobs in S.

The sequence of jobs scheduled in S between the emerge job l with the maximal

ordinal number and the overow job r (including this job) we call the emerge se-

quence and denote it by C(S). An emerge job in S is said to be emerge for C(S).

5

Notice that jobs of C(S) are scheduled successively on adjacent machines and hence

may belong to di�erent paths in G

S

.

We denote by L(S) the length of the (rightmost) maximal path in G

S

and by

L(S; j) the length of a longest path to the node j in G

S

.

We deal with the special kind of the greatest tail schedules which we call the

complementary schedules. Our �rst GTS we obtain by the application of the GTH

to the initial problem instance (we call it the initial complementary schedule). Then

iteratively, we modify our current problem instance and we build new GTS applying

the GTH to the modi�ed instance. Let S be a GTS and let l 2 K

0

(S). A comple-

mentary schedule of S, S

l

is a GTS constructed for the problem instance specially

modi�ed from the current problem instance in such a way that job l is rescheduled

after C(S) and no job scheduled in S after C(S) occurs before C(S). Below we

describe how the complementary schedules are built.

Let I

�

contains all jobs scheduled before C(S) in S except job l 2 K

0

(S) and all

jobs of C(S). Let, further S

�

be the (partial) schedule obtained by the application

of the GTH to the jobs of I

�

. We rede�ne the readiness times of all jobs i 2 I n I

�

(including job l) as follows: a

i

:= maxft

S

�

r

; a

i

g (the value t

S

�

r

is called the threshold

value for l). If we now apply the GTH to the remained jobs from I n I

�

, extending

the partial schedule S

�

, we obtain the �nal complementary schedule S

l

.

In a modi�ed problem instance the tails of all jobs are the same as in the initial

problem instance, although the readiness times of some jobs (namely, all the emerge

jobs) are increased arti�cially by the repeated application of the above described

procedure. The threshold value of l t

S

�

r

is de�ned in such a way that these jobs

are 'forced' and scheduled after more urgent jobs leaving for them some additional

space.

From the de�nition of the complementary schedule it follows that job j with the

minimal starting time in C(S) will occupy the position ord(S; j)�1 and the overow

job r = r(S) will be shifted one position left in S

l

. Clearly, the aim of generating

complementary schedule S

l

is to decrease the lenght of the rightmost maximal path

in S.

The rightmost maximal path and the respective overow job might alternate in

di�erent ways in a newly generated complementary schedule, that is, the conse-

quences of rescheduling of an emerge job after an emerge sequence might be di�er-

ent. We distinguish �ve behavior alternatives of the rightmost maximal path (and

the emerge job) of S in S

l

.

The critical path in S

l

is said to be:

(a) unmoved if r(S

l

) = r(S);

(b) rested on l if r(S

l

) = l;

(c) shifted forward (respectively, (d) shifted backward) if r(S

l

) and r(S) are in the

same block (r(S

l

) 6= r(S); r(S

l

) 6= l) and ord(r(S

l

); S

l

) > ord(r(S); S

l

) (respec-

tively, ord(r(S

l

); S

l

) < ord(r(S); S

l

));

otherwise, the critical path is said to be (e) relocated, that is, r(S

l

) and r(S)

belong to di�erent blocks.

6

Thus, for the instances of alternative (a) the overow job of S

l

is the same as

that of S; for the instances of alternative (b) the overow job in S

l

becomes the

rescheduled emerge job of S l. In the case of the instances of alternative (c) (re-

spectively, alternative (d)) the overow jobs of S

l

and S still belong to the same

block and the overow job of S

l

is scheduled after (respectively, before) the over-

ow job of S in S

l

. Finally, for the instances of alternative (e) the overow job

in S

l

"moves" to a block, di�erent from the block to which the overow job of S

belongs. So, all the alternatives except the latter one are "local": For the instances

of the �rst four alternatives we 'stay' in the old critical block (making further the

necessary rearrangement) while with an instance of alternative �ve we "leave" the

old critical block and make the necessary rearrangement in the new critical block.

We repeatedly analyze the behaviour of the critical path in the newly generated

complementary schedules (as it will be described later, di�erent alternatives cause

di�erent computational e�orts).

It is easy to check that all the �ve alternatives are attainable. The �ve alternatives

are also exhaustive (we can refer to one of them in any S

l

): The overow job in S

l

may remain the same as in S (the alternative (a)) or change to l (the alternative

(b)). Otherwise, either it can move to another block (the alternative (e)) or stay

in the current block. For the latter case we have two possibilities: Either r(S

l

) is

scheduled after r(S) in S

l

(the alternative (c)) or it is scheduled before r(S) (the

alternative (d)). Thus, we proved the following

Proposition 2. The alternatives (a){(e) are attainable and exhaustive.

3. Properties of the Complementary Schedules. Let S be a GTS and

l 2 K

0

(S). We have the following

Lemma 1. There arises at least one gap in S

l

between the (ord(l; S) � 1)st

scheduled job and the overow job r.

Proof. Let j be a job with the minimal readiness time among all jobs of C(S) and

jobs scheduled between job l and C(S) in S. Assume �rst that j is not an emerge

job. Then q

j

> q

l

. This yields a

j

> t

S

l

, since otherwise job j would be scheduled

at the moment t

S

l

in S by the GTH. From the de�nition of the complementary

schedule we have that no job from those which were scheduled after C(S) in S can

occupy any interval before C(S) in S

l

. Then we obviously there is a gap [t

S

l

; a

j

) in

S

l

.

Now suppose j is an emerge job with q

j

� q

l

and a

j

� t

S

l

(if a

j

> t

S

l

then we

have a gap [t

S

l

; a

j

)). Again, by the GTH and the de�nition of the complementary

schedule, j will be ord(l; S)st scheduled job in S

l

and there will be a gap in S

l

strictly before (ord(j; S) + 1)st scheduled job if j is the only remained emerge job.

Suppose not, and suppose the next position is also occupied by another emerge job.

Then we look for the position next to next and continue in this manner until we

�nd the �rst non-emerge job (obviously, such a job will appear) and then we will a

gap strictly before that job.//

7

The other useful properties of the complementary and greatest tail schedules we

give in the following three lemmas and in Theorem 1.

Lemma 2. The makespan of a GTS cannot be improved by rescheduling any non-

emerge job.

Proof. Obviously follows from the de�nition of a non-emerge job and Proposition

1.//

Lemma 3. The makespan of a GTS S cannot be improved by reordering jobs of

the emerge sequence C(S).

Proof. Suppose that in the emerge sequence C(S) job m precedes job l and that

we have interchanged the order of these two jobs in the schedule S

0

. Consider the

two following possibilities: a

l

� t

S

m

and a

l

> t

S

m

.

If a

l

� t

S

m

then q

m

� q

l

(by the GTH). Job m can be scheduled before or after

the overow job r in S

0

. The �rst alternative is obvious (see Proposition 1). For

the second one we easily obtain L(S

0

; m) > L(S; r) since q

m

� q

r

.

If a

l

> t

S

m

then we have a gap inside C(S) in S

0

. Again, job m can be scheduled

before or after the overow job r. In the �rst case we obviously have L(S

0

; r) �

L(S; r). In the second case, L(S

0

; m) � L(S; r) (since q

m

� q

r

).//

Let �

S

= c

S

l

� a

j

, where l is the latest scheduled emerge job in the GTS S and

a

j

= minfa

i

ji 2 C(S)g.

Lemma 4. The lower bound on the value of an optimal schedule is L(S)� �

S

.

Proof. L = t

S

r

+ p + q

r

is the makespan of S. We cannot improve this value by

reordering of jobs of the emerge sequence (Lemma 3). Then we can improve it only

if we reschedule some other jobs in such a way that jobs from C(S) would start

their processing earlier. But by the de�nition of �

S

and the GTH, none of the jobs

i 2 C(S) can start their processing earlier than at time t

S

i

� �

S

. Then the value

L(S) = L(S; r) can be decreased at most by �

S

and hence L(S)��

S

is the resulting

lower bound.//

We switch now to the complementary schedules.

Theorem 1. An optimal schedule belongs to the set of complementary schedules.

Proof. Consider any GTS S. We claim that if this schedule is not optimal then

we can improve it only by generating complementary schedules. Coming from the

de�nition of a complementary schedule, then we have to show that S cannot be

improved by:

1. Rescheduling of any non-emerge job. This we have from Lemma 2;

2. Reordering the jobs of C(S). We have this from Lemma 3;

3. Rescheduling an emerge job inside the emerge sequence. If we reschedule an

emerge job inside the emerge sequence C(S) then we can decrease L(S) at most by

�

S

(Lemma 4) while we increase it by p (�

S

< p);

4. Reordering the jobs of a block di�erent from the critical block. This case is

obvious.//

Let S be a complementary schedule with the rightmost maximal path �. Consider

the set of the complementary schedules S

l

, l 2 K

0

(S) and the magnitude, by which

the length of � is reduced in each of these schedules. As the following lemma shows

8

this magnitude may only decrease while we apply an emerge job which has an

ordinal number less than that of an already applied emerge job.

Lemma 6. L(S

l

; r) � L(S

k

; r) if ord(l; S)> ord(k; S) (l; k 2 K

0

(S)).

Proof. Consider the complementary schedule S

k

with job j scheduled in

ord(k; S)st position in it. From the GTH we have that t

S

l

j

� t

S

l

and we have

the similar condition for all the jobs scheduled between job k and the overow

job r in S (in the other words, the starting time of a job, scheduled in ith,

ord(k; S) � i � ord(r; S), position in S

k

is equal to or more than that of a job

scheduled in the same position in S). Analogously, the �rst late position in S

l

is

ord(l; S)th position. Now the condition of the lemma obviously implies inequalities

of the form t(s; S

l

) � t(s; S

k

); s = ord(l; S); ord(l; S)+1; :::; r (that is, all positions

between the positions ord(l; S) and r in S

l

will start no later than in S

k

). Then

our claim is proved since in both S

l

and S

k

job r is scheduled in (ord(r; S)� 1)th

position.//

In our solution tree T we destinguish two kinds of schedules, an open and closed

ones. A closed schedule is a schedule without successors which cannot have succes-

sors, while an open schedule is a schedule which is not closed and has no successors.

Intuitively, it should be clear that if the critical path in S

l

is rested on l then this

schedule can be closed:

Lemma 7. Suppose in the complementary schedule S

l

; l 2 K

0

(S), the critical path

is rested on l. Then:

1. S

l

can be closed;

2. Any complementary schedule S

k

, such that ord(k; S) < ord(l; S) and q

k

� q

l

can

be neglected.

Proof. Part 1. Suppose l

0

is an emerge job in S

l

(if there is no such a job

then S

l

can be closed, see Lemma 2). This job is also emerge in S since q

l

0

< q

l

.

If ord(l

0

; S) > ord(l; S) then S

l

can be neglected (this lemma, part 2). Let now

ord(l

0

; S) < ord(l; S). Consider the complementary schedule (S

l

)

l

0

. If L((S

l

)

l

0

; l

0

) �

L(S

l

; l) then obviously (S

l

)

l

0

can be neglected. Assume L((S

l

)

l

0

; l

0

) < L(S

l

; l). Then

also L(S

l

0

; l

0

) < L(S

l

; l) since job l

0

in S

l

0

will be scheduled in an earlier position

than in (S

l

)

l

0

(see Proposition 1), hence L(S

l

0

) < L(S

l

) and again S

l

can be closed.

Part 2. Obviously follows from Lemma 6.//

The following lemma, like Lemma 5, enables us to reduce the number of comple-

mentary schedules we generate. In a sense, it extends Lemma 6.

Lemma 8. If ord(l; S) > ord(k; S) and q

l

� q

k

l; k 2 K

0

(S), S 2 T then the

complementary schedule S

k

can be neglected if the complementary schedule S

l

is

generated.

Proof. Suppose that the critical path in S

l

is rested on l. Then it is rested on

k in S

k

and L(S

l

; l) � L(S

k

; k) since q

l

� q

k

. If the critical path in S

l

is unmoved

then from Lemma 6 we have

L(S

l

; r) � L(S

k

; r) (

�

)

and obviously the schedule S

k

can be neglected.

9

Let the critical path in S

l

be shifted forward. If the critical path in S

k

is rested

on k then this schedule cannot be further improved (Lemma 7); also it cannot be

better than S

l

since q

l

� q

k

and ord(l; S)> ord(k; S) (Lemma 6).

Suppose the critical path in S

l

is unmoved. Again from Lemma 6 we have

L(S

l

) < L(S

l

; r) � L(S

k

; r) = L(S

k

) and obviously to decrease L(S

k

; r) we have

to generate a complementary schedule of the form (S

k

)

k

0

; k

0

2 K

0

(S); k

0

> k

(as we already showed in Theorem 1, an optimal schedule is among the com-

plementary schedules). We have (S

k

)

k

0

= (S

k

0

)

k

. Then if there exists no

k

00

2 K

0

(S); ord(k; S) > ord(k

00

; S) > ord(k

0

; S) such that q

k

00

� q

k

0

, according

to this thorem (S

k

0

)

k

will be generated and (S

k

)

k

0

can be neglected. Otherwise, we

continue to apply recursively this reasoning �rst to job k

00

and then to the remained

emerge jobs with the similar property until we �nd a complementary schedule which

is generated by the conditions of the theorem.

If the critical path in S

k

is shifted backward then again from Lemma 6 we have

that L(S

k

) � L(S

l

) and due to the equal processing times, obviously, none of the

complementary schedules, the successors of S

k

, can have makespan better than that

of S

l

(speaking informally, if we succeed in S

k

we will be brought to a schedule which

cannot be better than S

l

).

Let now, in both S

l

and S

k

, a critical path be shifted forward and consider

the sequence of the successively generated complementary schedules of the form

(::(S

l

)

l

: : :)

l

; (::(S

k

)

k

::)

k

(these schedules are obtained from S

l

and S

k

by reschedul-

ing repeatedly jobs l and k, respectively, as an emerge jobs). Observe that, if k is

emerge in (::(S

k

)

k

::)

k

, than l is also emerge in (::(S

l

)

l

::)

l

since q

l

� q

k

. Besides, the

ordinal number of l in (::(S

l

)

l

: : :)

l

is greater than or equal to the ordinal number

of k in (::(S

k

)

k

::)

k

(again, because q

l

� q

k

). This again implies inequality of the

form (*). The lengths of a critical paths in the considered schedules are decreasing

step{by{step and the number of such schedules is bounded by the maximal tail (for

the details we refer to our proof of Theorem 2). As a result, we are brought either

to the situation when the job k, or both l and k become non{emerge (these jobs

cannot be further used for a schedule improvement), or to one of the situations

considered above while for all intermediate complementary schedules inequalities of

the form (*) are satis�ed.

Suppose now that the critical path in S

l

is shifted backward. Let r

0

be the

overow job in S

l

. Then clearly, L(S

k

) cannot be less than L(S

l

) = L(S

l

; r

0

) (again

Lemma 6) and L(S

k

) = L(S

l

) only if L(S

k

) = L(S

k

; r

0

). To conclude this case, to

any successor of S

k

we apply a reasoning applied above for the di�erent behaviour

alternatives.

Now the alternative (e) obviously reduces to one of the alternatives (a)-(c) and

the lemma is proved.//

Relying on Lemma 8 we can reduce the set of emerge jobs we consider: A subset

K(S) of K

0

(S) we call the reduced set of emerge jobs if for any pair of jobs k; l in

K(S), such that ord(l; S) < ord(k; S) we have q

l

< q

k

.

10

4. The algorithm.

4.1. The r-restricted complementary schedules.

In this section we study one of the major types of the complementary schedules,

the so called r-restricted complementary schedules and we give an upper bound on

their maximal number in T .

Let r 2 I . The complementary schedule S is called a simple complementary

schedule of r if it is the �rst generated complementary schedule in which r is the

overow job.

A successor of a simple complementary schedule of r S is an r-restricted com-

plementary schedule if job r = r(S) is the overow job in it (the second r in this

de�nition is not a variable, its a letter).

From Lemma 7 of the previous section we immediately get that we can have at

most one instance of alternative (b) for any r. Hence, we have the following

Proposition 3. In an r-restricted complementary schedule we may have only an

instance of one of the alternatives (a), (c), (d), (e).

Before we give an upper bound on the number of r-restricted complementary

schedules we need to introduce an auxiliary notions.

Let S be the son of S

0

. We say that job r is perturbed in S if t

S

r

> t

S

0

r

. Assume that

the overow job r is perturbed in S. Then clearly, only an instance of alternative

(c) is possible in S and that will occur as a result of rearrangement of some jobs

scheduled before r in S, namely, as a result of rescheduling an emerge job after an

emerge sequence. So, the emerge sequence of S

0

precedes r in S.

It is easy to observe that the number of jobs scheduled before r in S should be

the same as that in its parent S

0

if r is perturbed in S: clearly, by the GTH, it

cannot be more; if it is less than that in S

0

then r cannot be perturbed since a new

arisen gap in S (see Lemma 1) has a length less than the job processing time.

Now we concentrate our attention on the overow jobs which are perturbed. As-

sume S is an r-restricted complementary schedule with the overow job r perturbed

in it, let C be the emerge sequence in the parent of S and let C

0

be the �rst former

emerge sequence succeeding C in S. Let, further � be the total number of jobs

scheduled between C and C

0

in S. We have the following lemma:

Proposition 4. In any successor of S the number of jobs scheduled between C and

C

0

can be bounded by � � 1, that is, only successors of S in which no more than

� � 1 jobs are scheduled between C and C

0

can be considered.

Proof. Let S

�

be any successor of S such that the number of jobs scheduled in it

between C and C

0

is equal or more than �. The jobs of C might be shifted one (or

more) position(s) left in S

�

(in comparison with S), or not. Only in the �rst case

the jobs of C

0

might start earlier in S

�

than in S. Consider the two cases separately.

For the second case (i.e., for the case when jobs of C do not start earlier), because

of the equality of the processing times, obviously, we will have L(S

�

; r) � L(S; r)

what shows our claim.

Consider the �rst case. The positions which occupy the jobs of C in S

�

cannot

start in S

�

earlier than in S since the jobs which occupy these positions in S

�

11

have the readiness times more than or equal to that of jobs which occupied these

positions in S (by the GTH). For that reason, the released positions in S

�

occupied

in S by the (last) jobs of C cannot start in S

�

earlier than in S. Hence, there are

no positions before C

0

in S

�

which start earlier than in S and so, similarly to the

case above, we have L(S

�

; r) � L(S; r) and the lemma is proved.//

On the basis of the above proposition we restrict the set of the complementary

schedules we create. Assume we generate an r-restricted complementary schedule S

such that its overow job is perturbed (in the other words, S is the complementary

schedule which overow job is the overow job of at least one its predecessor and

that job is perturbed in S). We bound the number of jobs which might be scheduled

before r in any successor of S declaring the interlock number for C, �(C). We set

�(C) = � � 1 (we keep all the notations from above). Let S

�

be a successor of

S. We say that the interlock number �(C) is respected in S

�

if exactly �(C) jobs

are scheduled between C and the next to C emerge sequence C

0

in that schedule.

From now on we consider only the complementary schedules which respect all the

interlock numbers. We describe later in this section how we build them.

Let O be the set of the overow jobs in the algorithm and let � = jOj. Assume

C

1

; C

2

; :::; C

�

is the succession of the respective emerge sequences (we may have

repetitions in it). Let, further � = minfmax

k=1;2;:::;�

jC

k

j; mg.

Lemma 9. The total number of r-restricted complementary schedules in T is

bounded by O(��).

Proof. We devide the proof into two parts. In part 1 we show our claim under the

assumption that no job from O is perturbed in the algorithm. In part 2 we remove

this restriction and we show that the bound of part 1 still holds.

Part 1. We have no interaction between the di�erent emerge sequences in the

algorithm, i.e., no rearrangement carried out in our complementary schedules will

'disturb' the already 'arranged' parts.

We show that for any S and r the creation of at most � successors of S will

be necessary to obtain a successor of S, S

�

, with the 'desired' property. Then we

indicate that we can close S

�

if it is still r-restricted.

Indeed, consider the sequence of r-restricted complementary schedules of S,

(S

1

; S

2

; :::; S

�

), obtained successively by rescheduling in turn the respective emerge

jobs. Let j be a job from C(S) with the minimal readiness time. Then in S

1

job j will occupy the position ord(j; S)� 1 and will be preceded by a gap (by the

de�nition of the complementary schedule and Lemma 1). Analogously, in S

2

job

j will occupy the position ord(j; S)� 2 while the next job from C(S) will occupy

the position ord(j; S)� 1 and both jobs will be preceded by a gap. Now, similarly,

in S

�

the �rst � jobs of C(S) will be preceded by gaps. Then these jobs start at

their earliest possible starting times and hence L(S

�

) = L(S

�

; r) cannot be further

improved (if � � m this claim is obvious, otherwise, we apply Lemma 3). Therefore

S

�

can be closed and the bound of the lemma is obvious.

Part 2. Assume S is an r-restricted complementary schedule with the perturbed

overow job r

1

. Let in general, r

i

be the overow job corresponding to the emerge

12

sequence C

i

and let C

2

be the emerge sequence in the parent of S (as we already

noticed, C

2

precedes C

1

in S).

Assume S

�

is the sun of S. No more than �(C

2

) jobs will be scheduled between

C

2

and C

1

in S

�

, that is, the number of jobs scheduled before C

1

in S

�

is one less

then that in S. Clearly, S

�

is a complementary schedule. So we have a new gap

between C

2

and C

1

in S

�

(see Lemma 1). But a gap cannot have a length more

than or equal to the job processing time. Consequently, r

1

cannot be perturbed in

S

�

and in any its successor as a result of rearrangement of jobs scheduled after C

2

.

Thus, r

1

and clearly, r

2

, can be only perturbed as a result of rearrangement of

jobs scheduled before C

2

. Assume that one of the jobs r

1

or r

2

is the overow job

in the r-restricted complementary schedule S

1

, a successor of S

�

and that this job

is perturbed in S

1

. Analogously, assume C

3

is the emerge sequence of S

1

directly

preceding C

2

. In S

�

1

, the son of S

1

no more than �(C

3

) jobs are scheduled between

C

3

and C

2

. Again, in S

�

1

and in any its successor neither of the jobs r

1

or r

2

can

be perturbed as a result of rearrangement of jobs scheduled after C

3

, and the total

number of generated schedules with r

1

or r

2

perturbed is 2 (the total number of the

overow jobs which belong to C

1

or C

2

).

Similarly, for k > 2 we have the succession of the respective emerge sequences

C

k

; C

k�1

; :::; C

1

. The total number of times the overow jobs from C

1

; C

2

; :::; C

k

are

perturbed is k and each new perturbation causes the creation of a single comple-

mentary schedule.

Now, relying on the result of Part 1 and applying that k � � we get the following

bound for the total number of r-restricted complementary schedules:

k +

� times

z }| {

� + � � �+ � � �(� + 1) = O(��):

The lemma is proved.//

Although the succession C = C

k

; :::; C

1

discussed in the above proof consists of

the separate emerge sequences, they are tighted in the one connected sequence in

the following sense: Whenever a job r

i

2 C

i

is perturbed, we shall respect the

interlock numbers of all the succeeding sequences C

i�1

; :::; C

2

. The number of jobs

scheduled before r

i

should be decreased by one. Hence, some job, l, scheduled before

C

i

should be rescheduled after C

1

. Clearly, l should be an emerge job for C

1

, that

is, we should have q

l

< q

r

1

.

From the above discussion we can easily see that for the generation of the com-

plementary schedules which respect the interlock numbers we can use the technique

similar to that which we apply for the construction of the complementary schedules.

There is a slight modi�cation: Now we have to look for a job l which is emerge not

only for C

i

but also for C

1

and then we have to modify the readiness time of that

job in such a way that it will be rescheduled after C

1

by the GTH. So, keeping the

notations from the procedure of section 2, for the threshold value of l we take now

the completion time of the last job of C

1

(not C

i

) in the schedule S

�

.

13

4.2. The l-restricted complementary schedules.

In the previous section we gave a bound on the total number of r-restricted

complementary schedules. These schedules involve the instances of alternatives (a),

(c), (d), (e). Now we consider the instances of alternative (b). Let r be the overow

job in S 2 T and let the critical path in the complementary schedule S

l

(l 2 K(S))

be rested on l (the tail of l is not 'small enough' to be applied further). Then we

look for another emerge job l

0

, with q

l

0

< q

l

. If the tail of this job again turns out

not to be 'small enough' we look for the next emerge job, and we continue similarly.

Let B = B(S) be the critical block in S 2 T and suppose we generate a com-

plementary schedule S

l

rescheduling l 2 K(S) after C(S). Then the block B in S

l

may split, that is, from one block B 2 S we may get two or more new blocks in

S

l

(in the proof of Lemma 9, Part I we had an example of block splitting when we

constructed the complementary schedule with the 'desired' property).

Any block raised as a result of block splitting we call a secondary block. Blocks

raised as a result of splitting of one particular block we call relative blocks.

The special care is necessary to be taken whenever the critical block in a given

complementary schedule is secondary. Speaking roughly, a block split "violates" the

"natural way" of how we "normally" would treat a complementary schedule and it

may cause the "loss" of a "potential" emerge job.

Consider the complementary schedule of stage h, S(h) = S and assume that its

critical block B = B(S) is splited into relative secondary blocks B

1

and B

2

in the

son of S S(h + 1) on stage h + 1. Let, further B

2

be the critical block of stage

h

0

(h

0

> h). Clearly, we cannot restart earlier any job from our critical block B

2

by rescheduling jobs of B

1

(we may only increase the gap between the two blocks).

But a "potential" emerge job for S(h

0

) may belong to the block B

1

, this will be the

case when some unapplied job from K(S) has the tail "small enough" and hence

"theoretically" could be applied in S

0

(notice that the set K(S) is splited into two

parts in S(h

0

): Job l belongs to the block B

2

while all the rest of jobs from K(S)

are in B

1

.)

So, we may have "potential" emerge jobs which are not "practically available"

in S(h

0

). In order to make them available, we made the necessary correction in

our current problem instance in such a way that blocks B

1

and B

2

again merge

into block B. Let MERGE(B

1

; B

2

) be the procedure which carries out the above

merging.

Assume that we executed the procedure MERGE(B

1

; B

2

) and assume that the

set of emerge jobs in the resulting schedule is empty, that is, there is no "po-

tential" emerge job for S(h

0

) in B

1

. We may have two possibilities. First, B is

non-secondary; second, B is secondary. In the �rst case there can exist no "poten-

tial" emerge job and we can close the current schedule. Consider the second case

and suppose that B

0

, B

0

< B is relative to B block, directly preceding B. Then

we may have a hope that a "potential" emerge job belongs to B

0

. Hence, we again

apply procedure MERGE(B

0

; B). In the case if there are no emerge jobs in the

resulting schedule and the resulting block in still secondary we repeat the process.

14

We terminate it when the resulting block is non-secondary.

An application of a "potential" emerge job might be necessary in two cases which

we specify below:

First, assume we have an instance of alternative (b) in a complementary schedule

of S S

l

, l 2 K(S). Where we have to look for the next appropriate emerge job?

Clearly, �rst, in K(S). But, shall we stop trying if there are no more jobs in K(S)

which have not being already tried? As we already noticed, not if the critical block

of S is secondary. Second, assume we are brought to a schedule with an empty set

of emerge jobs . Similarly, we apply the "potential" emerge jobs if the critical block

of that schedule is secondary.

Procedure MERGE(B

1

; B

2

) is accomplished by modifying the current problem

instance of stage h

0

. In order to merge the blocks B

1

and B

2

we restore the readiness

time of the last applied emerge job l of K(S) (this job is not "good enough" to be

applied further). Let � be the current readiness time of l. We reassign �rst to l its

readiness time, prior to the current one. Then we check if there exists an emerge

job in the resulting schedule. If so, we take the �rst such a job l

0

(the unapplied

emerge job with the greatest ordinal number) and we set a

l

0

:= �. In this way we

"activate" l

0

rescheduling it after all jobs of C(S).

Whenever we have an instance of alternative (b) in a complementary schedule S

l

we close it (Lemma 7) and backtrack to the parent S of that schedule and try the

next emerge job from K(S). Assume that there are no "untried" emerge jobs left in

K(S) (the �rst case above), or the set of emerge jobs in S is originally empty (the

second case above). Let B be the critical block in S. If B is not secondary we know

that there can exist no "potential" emerge job for S and we close it. Otherwise,

we call the above described procedure. We repeat the process for any of the two

above cases until we are brought to the non-secondary critical block. Then we close

the current schedule. How many times we have to keep trying? As below Lemma

10 shows no more than p times. Before stating this lemma we give the following

de�nition.

A complementary schedule S

l

in which the critical path is rested on l, or such

that K(S

l

) = ; we call the l-restricted complementary schedule if the critical block

in it is secondary.

Lemma 10. For each S 2 T , the total number of l-restricted complementary

schedules of S in T is no more than p.

Proof. Let S

l

be the l-restricted complementary schedule of S and let j be the job

with the ordinal number ord(l; S

l

)� 1 in S

l

(i.e., the job scheduled strictly before l

in S

l

). From the GTH we have that q

j

� q

l

, but we also have that q

j

� q

l

� p since

otherwise the critical path in G

S

l

would pass through the node j (by the de�nition

of S

l

). Now in each of the newly generated l-restricted schedule we have to apply

an emerge job with the tail, stricly less than that of the previous one. Then, in at

most (p + 1)st such a generated schedule j will become the overow job and this

proves the lemma.//

15

4.3. The Formal Description and the Computational Complexity of

the Algorithm.

In this section we give the description of our algorithm. The algorithm enumerates

the generated complementary schedules in the solution tree T . A complementary

schedule is associated with each node of T while the root of T represents the initial

complementary schedule.

We number the nodes of T in the order as they are created and with each node

we associate a stage in the algorithm. A stage characterizes certain state in the

algorithm with the already generated set of complementary schedules. At any stage

h we construct one complementary schedule S(h) obtained by rescheduling one

emerge job l in its parent-schedule. For l we take the emerge job of the parent-

schedule with the maximal ordinal number. Although we construct one successor

for each S 2 T at ones, as we described in section 4.2., for instances of alternative

(b) we may backtrack to S and generate its another successor applying the next

emerge job of K(S) with the greatest ordinal number.

When we generate the initial complementary schedule S

I

, we determine the right-

most maximal path, the overow job r(S

I

) and the set of emerge jobs in it. If the

latter set is empty we stop (S

I

is an optimal solution, see Lemma 2). Otherwise,

we mark the overow job r(S

I

) and we generate one successor (S

I

)

l

of S

I

, where l

is the emerge job with the maximal ordinal number in S

I

. Iteratively, let S 2 T be

the complementary schedule of stage h and let S

l

be the son of S respecting all the

interlock numbers (again, l is the emerge job with the maximal ordinal number in

S). If the critical block B(S) of S is splited in S

l

, we mark the new arisen blocks

and we keep the current stage number (section 4.2). We analyze the behaviour

alternative in S

l

after we determine the overow job and the set of emerge jobs in

it. If the overow job r(S

l

) is marked (i.e., S

l

is the r-restricted complementary

schedule) and that job is perturbed, we declare the new interlock number and we

generate a new complementary schedule respecting new interlock number (section

4.1.).

We close S

l

if the critical path in it is rested on l (Lemma 7). If B(S

l

) is not

marked, we go back to S and generate the complementary schedule S

l

0

, applying

the next emerge job l

0

2 K

0

(S), if such a job exists, if not, we stop. Otherwise (if

B(S

l

) is marked), we go back to the stage speci�ed for that block and we build the

new complementary schedule as it was described in section 4.2.

Regardless of the behaviour alternative in S

l

, we stop, if the set of emerge jobs

in S

l

is empty and the critical block in this schedule is not marked.

In the description below we use some notations. Being at stage h, LAST (K(S))

is the last applied emerge job from the set K(S) by that stage, or it is the last

job of K(S) (the one with the greatest ordinal number) if no job from K(S) is

yet applied by stage h. NEXT (K(S)) is the job, next to the job LAST (K(S)) in

K(S); if there exists no such a job then NEXT (K(S)) = ;. Further, OLD(a

l

) is

the readiness time of job l, prior to its current readiness time. B(S) is the critical

block of S. INTERLOCK(S) creates the interlock number for C(S) as decribed

16

in section 4.1.

ALGORITHM EQD;

BEGIN

PROCEDURE BACKTRACK(h);

BEGIN fbacktrackg

S := S(h); l := NEXT (K(S));

IF l = ; THEN STOP

k := LAST (K(S)); a

l

:= a

k

; a

k

:= OLD(a

k

);

h := h+ 1;

S(h) := S

l

=GREATEST TAIL;

RETURN

END; fbacktrackg

(0) initial settings

For each block B 2 S and each i 2 I : TAG(B) := ;; TAG(i) := false;

IF K(S) = emptyset THEN STOP; f S is an optimal solutiong

ELSE

BEGIN

TAG(r(S)) :=true;

l := LAST (K(S)) f l is such that ord(l; S) = maxford(i; S) j i 2 K(S)gg

MODIFY(l);

h := 0;

S(h) := S

l

=GREATEST TAIL;

END

(1)

IF (K(S

l

) = ; and B(S

l

) is not marked) THEN STOP

IF the critical path in S

l

is rested on l

THEN BEGIN Close S

l

;

IF B(S

l

) is marked THEN

BEGIN BACKTRACK(Tag(B(S

l

))); GO TO (1) END

ELSE BEGIN l := NEXT (K(S));

IF l 6= ; THEN

BEGIN

MODIFY(l);

h := h+ 1;

S(h) := S

l

=GREATEST TAIL; GO TO (1)

END

ELSE STOP

END;

END frestedg;

IF B(S) 2 S

l

is splited into B

1

; :::; B

k

THEN TAG(B

i

) := h; i = 2; :::; k;

IF TAG(r(S

l

)) = true and r(S

l

) is perturbed THEN

17

BEGIN

INTERLOCK(S

l

);

MODIFY(l);

h := h+ 1;

S(h) := S

END

END. feqdg

Theorem 2. The time complexity of the algorithm is O(mn logn), where can

take any of the values q

max

or n.

Proof. First we show that the number of schedules created in T is no more than

m.

This claim is easy for = n. Indeed, the total number of overow jobs cannot

exceed n. We can have up to n simple complementary schedules. For the number

of r-restricted complementary schedules we have the bound O(mn), with � = n

(Lemma 9). Hence, the total number of schedules cannot exceed O(mn + n) =

O(mn).

Now assume = q

max

. In each S 2 T an instance of one of the behaviour

alternative should occur (Proposition 2). We consider each of them separately.

Assume �rst that we have consequent instances of alternative (c) in the con-

structed complementary schedules in T . We generate one complementary schedule

at each level in T . We show that the number of levels in T will not exceed q

max

.

Indeed, let in the complementary schedule of the �rst level S

l

the critical path is

shifted forward to job j (j = r(S

l

)) and let r = r(S), where S is the parent-schedule

of S

l

, i.e., the initial GTS. We claim that q

j

� q

r

� 1. Indeed, there can be sched-

uled no more than m� 1 (m is the number of machines) jobs in S

l

(di�erent from

job r) started at time t

S

l

r

and having the tail equal to q

r

. There can exist no job

started in S

l

at time t

S

l

r

or later and having the tail greater than q

r

since otherwise

a critical path in S would pass through this job. All of the jobs with the tail equal

to q

r

are scheduled before job r in S

l

since r belongs to the rightmost critical path.

Thus a critical path cannot be shifted forward to any of these jobs and we get that

q

j

� q

r

� 1.

Assume in the complementary schedule S

0

= (S

l

)

l

0

of level 2 (l

0

2 K(S

l

)) the

critical path is shifted forward to job j

0

(j

0

> j). We use the reasoning similar to

the above and get that q

j

0
� q

r

� 2; for the complementary schedule of level 3 we

get q

j

00

� q

r

� 3, and so on. Thus the number of created schedules, or, equivalently,

the number of emerge jobs will not exceed q

r

.

The instances of alternative (d) are treated similarly as the instances of alternative

(c): using the analogous reasoning, we show that the total number of levels in T

will not be more than �q = q

max

� q

min

; q

min

= minfq

i

ji = 1; 2; :::; ng (if a critical

path is shifted from job j to job j

0

; j

0

< j we should have q

j

0

� q

j

+ 1; from this

inequality we can easily get the above bound).

18

The instances of alternative (e) we devide into two parts. Suppose the critical

path is relocated from block B

0

to B

00

; then either B

0

< B

00

or B

0

> B

00

. Clearly,

the instances in the �rst case can be treated similarly as the instances of alternative

(c) and the instances in the second case can be treated similarly as the instances of

alternative (d).

The instances of alternative (b) cause an additional factor of p (Lemma 10) and

the instances of alternative (a) are covered by the bound O(m) from Lemma 9 (see

Part I of the proof). Now applying this lemma with � = q

max

p we obtain the overall

bound O(mq

max

p) = O(mq

max

) (the constant factor p can be excluded by deviding

all the data in our initial problem instance by p).

For each schedule S 2 T we apply the GTH with the time complexity O(n logn)

and spend time O(n) to �nd an emerge sequence and overow job in G

S

. We also

spend time O(n) to �nd the set of emerge jobs. Then we add in constant time new

boundary interval to the current set of boundary intervals.

Altogether, we have the time complexity O(mq

max

)(O(n logn) +O(n) +O(n)) =

O(mn lognq

max

).

The Theorem is proved.//

5. Concluding Remarks. The algorithm proposed improves the running time

of the previously known best algorithms. Algorithms from [8,9], as well as the one

from [6], are based on the concept of the forbidden regions. In fact, we showed

that we can avoid the construction of the forbidden regions what takes time O(n

2

)

(without special preprocessing). In the solution tree generated by our algorithm,

the number of nodes, or the constructed complementary schedules, is bounded by a

polynomial on the maximum tail and the number of machines. In the constructed

complementary schedules we obtain the gaps which, in fact, serve the same purpose

as the forbidden regions in [6,8,9].

19

References:

[1] K.R. Baker and Zaw{Sing Su. Sequencing with due dates and early start times

to minimize maximum tardiness. Naval Res. logist. Quart. 21, 171{177 (1974).

[2] P. Bratley, M. Florian and P. Robillard. On sequencing with earliest start times

and due{dates with application to computing bounds for (n/m/G/F

max

) problem.

Naval Res. logist. Quart. 20, 57{67 (1973).

[3] J. Carlier. Probl�emes d'ordonnancement �a dur�ees �egales. Technical report

(1981) Institut de Programm�ation, Universit�e Paris, IV{75012 Paris, France.

[4] J. Carlier. The one{machine sequencing problem. European J. of Operational

Research. 11, 42{47 (1982).

[5] M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP{completeness (Freeman, San Francisco, 1979).

[6] M.R. Garey, D.S. Johnson, B.B. Simons and R.E. Tarjan. Scheduling unit{

time tasks with arbitrary release times and deadlines. SIAM J. Comput. 10, 256{

269 (1981).

[7] G. McMahon and M. Florian. On scheduling with ready times and due dates

to minimize maximum lateness. Operations Research. 23, 475{482 (1975).

[8] B. Simons. Multiprocessor scheduling of unit-time jobs with arbitrary release

times and deadlines. SIAM J. Comput. 12, 294-299 (1983).

[9] B. Simons, M. Warmuth. A fast algorithm for multiprocGTSor scheduling of

unit-length jobs. SIAM J. Comput. 18, 690-710 (1989).

[10] N. Vakhania. Sequencing with readiness times and tails on parallel machines.

Proc. of the Twelfth ACM symposium on Applied Computing, 438-446 (1997).

20

