
Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               1 

Building Hypermedia Artifacts by the systematic use of 
the Flexible Process Model 

 
Luis Antonio OLSINA  

Computer Department, Engineering School, UNLPam; also Ciencias Exactas School, UNLP- Argentina 
E-mail olsinal@unlpin.edu.ar - TelFax   (+54) 302 24711 

 
Abstract  

Most of the current hypermedia model life cycles focus in analysis and design issues, 
ignoring crucial tasks and activities of hypermedia projects. Others do not take care of 
basic Software Engineering concepts such as planning, physical and logical modeling, 
validation and quality assurance, among other issues. In this paper we propose an 
integrated software process model, called Flexible Process Model, useful in building 
hypermedia artifacts. This strategy, when instanciated in a specific project, implies a 
systematic use of model-based constructors, both logical and physical models. 
The main benefits of this process model are: a) it covers all the principal phases and 
tasks of a hypermedia project; b) this clear break down can contribute fairly to project 
planning and can help to establish milestones and metrics; c) it fosters a positive 
balance by a systematic use of logical and physical modeling; d) it facilitates human 
communication; e) it promote process improvement and standardization. 
Therefore, we will discuss and represent, in a medium level of granularity, the phases, 
tasks and activities, mainly in the dynamic modeling phase. Also we will present some 
perspectives, stressing the functional, methodological and behavioral perspectives of 
the three-phased Flexible Process Model. Finally, we will discuss related works and 
concluding remarks. 
 
Keywords: Flexible Process Model, Hypermedia Project, Physical and Logical 
Modeling, Object-Oriented Technology. 
 
1.  Introduction 
 
The development of software artifacts is a process of model building and this is 
reached by a systematic use of strategies. Indeed, the discipline of Software 
Engineering faces new challenges with the development of hypermedia artifacts. We 
have thought that the study of new development processes to build hypermedia 
applications is an indispensable research activity for the nowadays-technological 
challenges. 
 
We define a software process model as an appropriate strategy to abstract, organize, 
execute and control (by means of heuristics, methods, techniques and tools), the 
different phases, tasks, activities, artifacts and resources of the hypermedia project to 
reach the desired goals. A software process model must answer issues such as, what 
to do, how to do it, when and where will it be done, who will do it and what 
dependencies there will exist. 
 
We can benefit greatly from established logical models and researches that put 
emphasis in objects models [Booch 96, Goldberg et al 95, Jacobson 94, Rumbaugh et 
al 91], as from models and principles of hypermedia design discussed, for instance in 
[Isakowitz et al 95, Nanard et al 95, Schwabe et al 96, Thüring et al 95]. Likewise, 
contributions in the world of physical modeling have come from [Boehm 88, Connell et 
al 95, Davis 92, Nanard et al 95], who in some cases apply cycles with prototyping and 
in few cases use O-O methods and techniques [Connell et al 95, Nanard et al 95]. 



Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               2 

 
It is worth stressing that most of the existing hypermedia development processes focus 
chiefly in analysis and design tasks leaving aside the definition of activities that are 
fundamental in an integrated process model that considers Software Engineering 
principles such as project planning, quality assurance strategy and logical and physical 
modeling. Generally no one treats the concept of physical modeling as a fundamental 
strategy to guide the development of hypermedia project that feeds different tasks in 
the way that we propose it. We apply a set of strategies to create and evolve at the 
same time both logical and physical models. Among the first we can develop plan 
model as well as requirement, conceptual, navigational, abstract interfaces and 
validation models. Among the second, we can build sketches and software prototypes 
as physical models.  
 
So that our integrated approach consists of a Flexible Process Model (FPM) [Olsina 
96,   97a, 97c] to support the whole development cycle of hypermedia artifacts in which 
the physical models are built with O-O flexible prototyping strategy [Olsina 97b] and the 
used logical models to develop conceptual, navigational and abstract interfaces model 
respond to O-O Hypermedia Design Method (OOHDM) [Rossi 96, Schwabe et al 96]. 
Also we apply a requirement model similar to Jacobson’s model [Jacobson et al 92] 
and other modeling constructors.  
 
We consider that the logical models improve the consistency of the specifications and 
provide well-defined guides throughout the development cycle but the use of 
appropriate prototyping strategy and experimental feedback loop are also of vital 
importance for the hypermedia process. 
 
We will develop this work as follow: first, we will describe the essential entities of the 
hypermedia project in the context of a flexible process model. Next, we will concentrate 
in the main phases, tasks, artifacts produced and process constructors utilized, mainly 
in the development phase. Next, in section four, we will present the behavioral view of 
the FPM, to finally discuss related works and some concluding remarks. 
 
 
2. Main entities of a Hypermedia Project  
 
First, we will present the main components of the hypermedia project in the context of 
the flexible process. Figure 1 depicts a diagram of classes, relationships and 
subsystems that abstracts a static view of the fundamental responsibilities and 
collaborations of the hypermedia project (here we use a similar notation that specified 
in [Rumbaugh et al 91]).  It must take into account that classes and subsystem 
represents a general set of responsibilities and are not intended to be instanciated as 
in O-O program. We consider the following components: 
• the process model component that abstracts and represents project entities like 

task, resource, role, agent, process constructor, artifact among others. 
• the task entity that represents the basic management unit of any software project. 

A task can be planned, scheduled, enacted and monitored. 
• the goal and objectives that represent the statements of all the outcomes that is 

desirable to be reached. 
• the process constructors component such as strategies, methods, models and 

development criteria. In turn, this class inherits six other classes denominated: Plan 
Model, Requirement Method, Design Method, Aesthetic and Cognitive Criteria, 
Prototyping and Integration Strategy and Quality Assurance Strategy.   

• the resource component, i.e. human, technological, etc. The project coordinator, 



Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               3 

the architect, designers and users who are involved in the process, integrates the 
first; the second are to match software and hardware components, which automate 
tasks and activities.  On the other hand, the project is subject to monetary, 
material, human and time restrictions. 

• the software artifact repository component that acts as input and output in the three 
phases of the FPM. These are the exploration phase, the development phase and 
the operational phase shown in the next section. 

 

Fig. 1.  Diagram of the Hypermedia Project as part of the Flexible Process Model. 
 
We might distinguish a software process model from other types of process modeling 
because many of the issues represented are carried out by humans rather than by 
automated devices. Therefore, a software process model deals with those software 
projects phenomena that occur during creation, evolution, control and maintenance of 
software artifacts.  
 
 



Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               4 

3. General view of Phases and Tasks of the Flexible Process Model. 
 
Although we can abstract different perspectives in process modeling [Curtis et al 92], 
next, we will present a general view, i.e., rather a medium level of granularity of our 
proposed FPM, remarking functional, methodological and behavioral perspectives.  
 
In figure 2 an ellipse represents a task or process; a process can abstract a set of sub-
processes; a sub-process may be composed of one or more cohesive activities. An 
activity is associated to atomic actions. A role has assigned coherent activities and a 
role is “instanciated” with resources. The arrows represent input/output dependencies 
(for instance, a process produce an artifact that serves as input to one or more 
processes or a process can receives one or more messages).  
 

 
 
There are three general phases in the FPM. A first phase is called exploration phase 
wherein initial concepts and users’ needs are elicited; next, if necessary, it is possible 
to carry out a feasibility study and, then, we can build a preliminary plan model. The 
second phase, the development phase, is the core of the dynamic modeling (we will 
concentrate on this phase). The third phase, called operational phase, essentially 
consists of products’ configuration, maintenance and evolution. The latter could imply 



Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               5 

the input to the exploration or development phase.   
 
Prior to beginning the development process, initial insight about the problem and its 
alternative solutions must be highlighted. The A-task input may be at best the 
extension of an operative system or component with documented requirements or 
perhaps the construction of a new system or component (given the novel character 
that has the hypermedia discipline it is difficult to find documented applications). We 
use here some established techniques to capture the users’ needs. For instance, it is 
possible to determine an initial set of action sequences that define the way in which 
distinct actors interact with the system and establish initial use cases. The output of 
this task is an initial requirement specification in natural language.  From these 
descriptions we can later feed logical models and physical models so that we can 
extract information of how the users perform their tasks and we can recognize classes, 
attributes, transformations, navigational contexts or other building primitives. 
 
It is necessary to make an initial model plan, by means of the C task. It will basically 
contain, from the preliminary requirement specification and, if necessary, from a 
feasibility study: a description of the goals and objectives of the hypermedia system to 
be built or extended, the foreseeable scope of the final product and deliverables, the 
developers and users involved and their respective responsibilities, the process model 
strategy to be applied, the selection of the working environment and tools and, also, 
the likelihood to establish metrics.  As we can see, these activities embrace both 
phases, therefore the plan document (the output) should also include the date and 
revision number that will be useful for the project coordinator in subsequent iterations. 
 
As we can see, there are mainly five components mutually necessary in the 
development phase, namely: the D task that is the central process which coordinates 
and controls other processes and activities, the E-G component, that corresponds to 
the construction and validation tasks centered in prototyping strategy, the component 
made up by the H-I processes that accomplish logical modeling and implementation-
independent specification activities, the L task which comprises documentation and 
fosters reuse, and the Q task of quality assurance, which promotes ultimately the 
users’ satisfaction. 
 
3.1. The Development Phase 
 
In this part we will focus in the development phase, its subtasks and produced models 
and we do not deal with roles and assigned resources -the organizational perspective 
of the FPM. This phase is the core of the dynamic modeling process yielding both 
logical and physical models. In figure 3 we have made a process break down for 
development phase. The primary operation center of this phase is the D process that 
works as a pivot and could be functionally summarized in this few words: plan-do-
check-act. The chief role assigned to this task is that of the project manager. It 
essentially coordinates, i.e. sends and receives messages to processes such as 
planning, prototyping, logical modeling, documenting, testing and quality assurance 
among others. Next, we will show for the H, I, J and K processes, their own activities 
and their produced logical models and artifacts that feed a documentation task.  



Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               6 

 
 

 
Fig. 4.  Some logical and physical models yielded by FPM  

 
Figure 4 shows a diagram of a logical models that are created and evolved by the FPM 
in the development phase, namely: the requirement model as well as conceptual, 
navigational and abstract interfaces models (we will not discuss some other models to 
support testing and quality assurance). It also shows physical models. 
 
As previously explained the exploration phase produces a preliminary requirement 
specification that serves as input to the requirement modeling (H-task). From these 
natural language descriptions we can refine them and feed the use-case model as well 
as the interface and glossary models (fig. 5) that will be the output for the H process. 
We will briefly describe the requirement model because we use some adaptation to 
hypermedia applications of Jacobson’s well-known requirement model [Jacobson 92]. 
We share the author’s point of view that among the first software models to be created 
is the requirement model since it describes the system, the environment and their 
relationships, reflecting an external view of the system. 



Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               7 

 
 

Fig. 5.  The main components of the Requirement Model 
  
A use-case model [Jacobson 94] is a graph with two kinds of nodes: use-case nodes 
and actor nodes. Besides, it has communication arcs. A communication arc links use-
case and actor nodes so that an actor node is linked to at least one use-case node and 
the latter is linked to at least one actor node. This model treats each node as a class to 
be instanciated. An actor instance can create use-case instances. A communication 
arc between an actor node and an use-case node implies that it is able to send stimuli 
between instances of actor class and instances of use-case class.  
 
The difference between use-cases of the requirement model and classes of the 
conceptual model (that will be the I-task’s output) is that, classes communicate 
between each other inside the system, while use-cases are not able to communicate 
with other use-cases inside the same system for simplicity reasons. Finally, an actor is 
an entity that is modeled outside of the system, i.e., in the context, whereas a use-case 
is modeled inside the intended system.  When an actor uses the system then it 
executes a use-case, i.e., a sequence of one or more atomic actions. The use-case 
collection represents the whole system functionality. 
 
The glossary model is a subset of a domain object model (from Jacobson). 
Nevertheless, it is powerful enough to capture essential problem domain keywords. 
These keywords and their related concepts are specified in a classified list, written in a 
natural language, that later feed the conceptual modeling (I-task) or the navigational 
modeling (J-task). It is an important means to communicate the key concepts in early 
stages between practitioners. 
 
The interface model uses physical models such as paper sketches and software 
prototypes. (Despite the fact that we are discussing logical model, and an abstract 
interface model is a logic one, here we place physical model for the sake of clarity. 
However, prototypes and prototyping will be widely discussed in this section). These 
working models help to elicit functional and aesthetic requirements involving the users 
in the earlier activities. In hypermedia application building the right interfaces and the 
coherent navigational units are of crucial importance.      
 
As was previously said, our hypermedia development process use OOHDMs’ 
conceptual, navigational and abstract interfaces models because its independent-
implementation models, are useful for specification and documentation activities and 
favor the reuse strategy. 
 
During the conceptual modeling process (I-task) the developers use primitives such as 
classes, attributes (multiple-typed attributes), relationships and sub-systems (see fig. 
6). The main objective of this task is to analyze and to specify the semantics of the 
problem domain. Software Engineering’s well-known mechanisms such as 
generalization/specialization, aggregation and classification are applied. An important 



Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               8 

technique that help documenting and maintenance tasks, is the specification cards in 
which they provide, in a structured textual style, details of the salient parts of the sub-
systems, classes, objects and relationships allowing, on the other hand, to introduce 
information for traceability issues. 
 

 
 

Fig. 6.  Aggregate diagram of the Conceptual Model 
 
During the navigational modeling process (J-task), the architects and developers work 
in the follow primitives: nodes, links, navigational classes and navigational contexts 
(see fig. 7). Navigational transformation models specify the dynamic. Nodes can be 
atomic or composed. Links attributes and behavior, their cardinality and their source 
and target navigational objects can be specified. We can also define access structures 
and guided tours that are useful for an intended user to find and to navigate 
information spaces. Nodes, links and anchors are navigational classes and we can 
build their related specification cards taking into account traceability issues (backward 
and forward).  
 
The navigational context is a way to organize the navigation. It is a design primitive (or 
a design pattern) that is composed of nodes, links and other navigational contexts 
(maybe nested). This constructor allows to represent a coherent unit of related 
concepts and to establish appropriate semantic relationships fostering user orientation 
[Schwabe et al 96, Thüring et al 95]. Both navigational classes and navigational 
contexts abstract the static structure of a hypermedia application. To specify the 
dynamics, OOHDM offers a statechart-based constructor that allows building up 
Transformation Diagrams. 
 

 
 

Fig. 7.  Main components of the Navigational Model 
 

In the abstract interface modeling process (K-task in fig. 3), we take into account what 
events will intervene in the action language and what interfaces objects the user will 
perceive, what transformations will be carried out and how the interfaces objects will be 
synchronized.  In Rossi et al 95, we can look at the models developed to represent the 
static and dynamic behavior. The products of the K-task output are ADV (Abstract Data 
View) to represent the perceivable objects and the configuration diagrams that model 
the static relationships between ADV, external events initiated by user and the 
interface objects that cause navigation. To show the dynamics, we can specify, for 



Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               9 

each ADV, its correspondent ADV-chart (fig. 8). 
 

 
 

Fig. 8.  Aggregate diagram of the Abstract Interface Model 
 
Our physical modeling process (E-task) is achieved by a systematic use of prototyping 
that we consider as a software development strategy. This strategy essentially 
promotes the learning, construction, demonstration and validation cycle (E-F-G tasks) 
based on the experimental feedback loop between developers and users. It helps to 
discover and specify functional and non-functional requirements [IEEE 93], to 
experiment analysis and design alternatives and to make an evolutionary base of the 
future system grow. The prototyping strategy benefits the apprenticeship process by 
minimizing the subsystems building risks. It is characterized by a high degree of 
iterations and parallelisms with other activities, by a user’s high level participation, and 
by a great use of working models and advanced production tools. The E-F-G process 
outputs are paper sketches and mainly software prototypes.  
 
By software prototype we mean a physical and dynamic model built on computers that 
is a partial implementation of the entire system or from components of it, and it is used 
to learn, discover, evaluate and evolve functional and non-functional requirements. 
 
• Our proposal hierarchically classifies the strategy in three concrete classes: rapid-
functional prototyping (RFP), evolutionary prototyping (EP), and O-O flexible 
prototyping (OOFP) that inherit the behavior from both RFP and EP.  In figure 9 we 
see the main responsibilities modules for the strategy. 
 

 
 

Fig. 9.  Diagram of the main responsibilities of the O-O flexible prototyping strategy. 
 

Some attributes and objectives of the rapid-functional prototype and the strategy are, 
namely: 
• it is built as quickly as possible, sacrifying the completeness though not the 
correctness and the aesthetics of the interfaces.  
• it must be planned if the prototype will be discarded or will be able to reuse it and 



Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               10 

extend it. 
• it permits to evaluate functional requirements understood by the developer but that 
need to be experimentally validated with the user; it also allows to dynamically capture 
poorly understood requirements. 
• it allows to discover aesthetic and interactive aspects of interfaces and navigational 
objects.   
it permits to yields inputs to specifications of the requirement model as well as to the 
conceptual, navigational and abstract interfaces models (behavior and attributes, 
controls, navigational contexts and transformations).  
 
Some attributes and objectives of the evolutionary prototype and the strategy are: 
• the completeness, correctness and quality attributes of the developed prototype 
are very important. It is slower than the RFP although planned to evolve toward the 
final component or subsystem version.   
• the input to the E process may be the evolution of components prototyped and 
validated by means of a RFP or from components yielded in the operational phase. 
• it allows to build upon solid bases the understood critical requirements, and to 
discover architectural aspects of design and to verify non-functional requirements such 
as performance, security, etc. 
• it permits to yields inputs to specifications of the conceptual, navigational, abstract 
interfaces and verification models.  
 
O-O flexible prototyping inherits the previously stated features and it is flexible in two 
ways. First, because depending on the problem to attack, it already has either the RFP 
strategy or the EP strategy, or both at once. At best it applies EP to build and to evolve 
the better understood and consensuated requirements, while it applies an RF strategy 
for the poorly understood features or for those that require user validation.  So the 
OOFP offers a software base that is the foundation upon which the system evolves, 
using the working development environment of the final versions as much as possible. 
Secondly, the strategy is flexible by the potential balance that takes place between the 
prototyping heuristics and tools and the logical models for specification and design 
based mainly on mechanisms that support the object-oriented principles and 
techniques. 
 
Finally, we can observe input-output dependencies between logical and physical 
models with some detail in fig. 10, which intends to complement the processes and 
dependencies that were shown in fig. 3 and the products yielded as previously 
discussed.   
 
We see how flexible prototyping implements a requirement, navigational and abstract 
interface model helping in specification and documentation tasks. Likewise, one logical 
model feeds another logical model or a physical model feeds a logical one or vices 
versa. For instance, in the navigational model, a node maps a logical window from the 
defined classes in the conceptual model and it is able to group attributes from one or 
many classes (relationship “correspond to”). On the other hand, links in the 
navigational model are mapped from relationships of the conceptual model. It is 
important to point out that we can design “n” navigational views from a conceptual 
model (link "mapped from"). This allows us to construct different hypermedia 
applications for different user profiles from the same conceptual schema. Such 
mechanism facilitates architectural pattern and model reuse. (If we will build only a 
user profile we could avoid, for cost and time restrictions, to build the conceptual model 
and work directly in a navigational model). 
 



Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               11 

 
Fig. 10. Details of the Requirement, Conceptual, Navigational and Abstract Interfaces models 

and their relationships with Flexible Prototyping strategy. 
 
 
4. Behavioral perspective of the flexible process model. 
 
The hypermedia development process (and any software process in general) proceeds 
on several directions and stages simultaneously respecting some order. A process 
model strategy gives guidelines to help in making better choices in the development 
process at any time, but it should not prescribe rigid rules that will be valid for all the 
circumstances. However, building hypermedia artifacts by the systematic use of a 
process model is good enough.  
 
As was said in the introduction section, the flexible process model, when executed, is 
carried out in a mix of iterative, parallel and opportunistic style allowing the partitioning 
of a problem into sub-problems so as to attack incrementally portions of less 



Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               12 

complexity. 
 
The iterative behavior is by definition the key of the flexible prototyping cycle: to iterate 
means that certain activities will be performed more than once to reach models 
improvement.  By each E-F-G cycle (fig. 3) the physical model is demonstrated to the 
users in order to discover additional requirements, to define architectural aspects and 
to validate the correctness and usability of the prototype. 
 
This strategy also allows concurrent activities between logical and physical models. In 
each cycle we can work in the prototype and update the specifications. Besides, there 
could exist a parallelism between activities of a navigational design stage and activities 
of an abstract interface design stage at any moment, and it is possible to work 
concurrently in a RFP while an evolutionary prototype is being implemented. So, the 
parallelism is a consequence of the no secuentiality between certain tasks, of the 
strategy of problem partitioning and of the evolutionary approach. 
 
We will also say that the development process is incremental: this means that, by each 
iteration, there will be generic increments of the requirement, conceptual, navigational 
and abstract interface models as well as of the physical models.  With each cycle the 
prototype will be refined and increased and after n iterations along the project, the 
requirements will be complete and the products will be in the operative phase. 
 
The opportunistic behavior is such that, as long as the developers are engaged in 
prototyping and specification tasks, they follow an order dictated neither by formalisms 
nor by rules, but rather by following a creative mental process, as is rightly observed by 
Nanard et al . It is common that a hypermedia developer passes from prototyping an 
interface node to specifying a recently discovered navigational context (opportu-
nistically). Then it starts to sketch it and next it goes to work in a RFP, and so on.  
 
 
5. Related Works 
 
The proposed FPM has taken into account some ideas from traditional process models 
such as the waterfall model and the spiral model [Boehm 88] as well as some ideas 
from the newer process model, that fit better with O-O constructors, such as the 
recursive/parallel proposal [Berard 93] or the fountain proposal [Henderson et al 90]. 
However, these process models do not adequately fit hypermedia development 
artifacts because there are models, tasks, activities and resources that pertain to the 
new fields of hypermedia discipline. 
 
On the other hand, during the last years, a good number of criteria, models and 
techniques that put emphasis in structuring and producing hypermedia application 
have been published [Conklin 87, Garzotto et al 91, Grønbaek et al 94, Nanard et al 
91], and, most recently hypermedia methodologies and development processes that 
consider some Software Engineering principles have emerged, namely: HDM 
[Garzzoto et al 93], RMM [Isakowitz et al 95], EORM [Lange 94], OOHDM [Schwabe et 
al 96], among others. Most of them  (HDM, EORM, OOHDM) focus chiefly in analysis 
and design phases and, a little degree, in the construction phase. For instance, 
OOHDM is a four-stepped method that, at each stage, produces or modifies a model. 
We use its O-O and logical models because they establish a clear separation of 
concern between conceptual, navigational and abstract interfaces, as was previously 
discussed. Although EORM also use O-O models, such a clear separation of concerns 
does not exist. RMM covers almost all the phases, tasks and activities but leaves aside 



Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               13 

the definition of tasks such as project planning, quality assurance tasks and, on the 
other hand, its logical models are not O-O based. 
 
Generally, no one treats the concept of physical modeling as a fundamental strategy to 
guide the development of hypermedia subsystems that feeds specification, design, 
coding, integration and validation/verification as we propose it. We apply a set of 
strategies to create and evolve at the same time both logical and physical models. We 
consider that the logical models improve the consistency of the specifications and 
provide well-defined guides throughout the development cycle but the use of 
appropriate prototyping strategy and experimental feedback loop are also of vital 
importance for the hypermedia process. 
 
 
6. Conclusions 
 
We have proposed a novel approach for building hypermedia artifacts called Flexible 
Process Model and we have discussed the foundations of logical and physical 
modeling. Besides, we have presented a view of functional, methodological and 
behavioral aspects of the process model, stressing, in a medium level of granularity, 
the main phases, tasks and activities. 
 
This process model was motivated by the fact that a more rigorous and systematic use 
of established Software Engineering’s principles, methods and models to develop 
hypermedia artifacts can contribute essentially to improve quality products and users’ 
satisfaction. Some benefits of the FPM that would be desirable to point out are: 
 
1) it covers all the essential phases and tasks of an hypermedia project. 
2) this clear break down produces greater visibility to the hypermedia project that, 
ultimately, contributes to project planning and scheduling, and helps to establish 
milestones and metrics. 
3) it fosters a positive balance by a systematic use of logical and physical modeling. 
4) it facilitates human communication. 
5) it propitiates process improvement and standardization. 
 
We are now working among others things, in defining a canonical conceptual model to 
process modeling domain that can help to understand the inherent complexity and can 
contribute to build the different views. An initial area of research is the designing and 
construction of Process-Centered Software Engineering Environments that takes into 
account some or all of these perspectives, to support guidance and/or enactment of 
software processes.  
 
 
References 

 
[Berard 93]  Berard, E. ,1993, “Essays on Object-Oriented Engineering”,  Vol 1. 

Prentince Hall. 
[Booch 96]  Booch, G. ,1996, “Object Solution: Managing the Object-Oriented Project”, 

Benjamin/Cummings 
[Boehm 88]  Boehm,  B., 1988, “A Spiral model of Software Development and 

Enhancement”, IEEE Comp. 21, 5 (May 88). 
[Conklin 87]  Conklin, J., 1987, “Hypertext: an introduction and survey”, IEEE Comp. 20, 

9,  pp.17-40 
[Connell et al 95] Connell, J.L.; Shafer, L., 1995, “Object-Oriented Rapid Prototyping”, 

Prentice Hall. 



Proceedings                                                                                                                                 CACIC ‘97 
Ingeniería de Software. Bases de Datos                                                                                            UNLP 

Departamento de Informática - Facultad de Ciencias Exactas                                                               14 

[Curtis et. al 92]  Curtis, B.; Kellner, M.; Over, J., 1992, “Process Modelling”, Comm. ACM 
35, 9;   pp. 75-90. 

[Davis 92]  Davis A., 1992, “Operational Prototyping: a new development approach”, 
IEEE Software 9 ,5 (Nov 92) pp.70-78 

[Garzotto et al 91]  Garzotto, F.; Paolini, P., Schwabe, D.; 1991, “HDM, a model for a design 
of Hypertext Application”, Proceed. of Hypertext’91, ACM Press. 

[Garzotto et al 93]  Garzotto, F.; Schwabe, D.; Paolini, P., 1993, “HDM, a model based 
approach to Hypermedia Application Design ”, ACM Transaction on 
Information System, Vol. 11, 1, Jan 93, pp. 1-26. 

[Goldberg et al 95]  Goldberg, A.; Rubin, K., 1995, “Succeeding with Objects: decision 
frameworks for project management”, Addison-Wesley. 

[Grønbaek et al 94]  Grønbaek, K.; Trigg, R.H., 1994, “Design issues for a Dexter-based  
hypermedia system”,  Comm. ACM 37, 2 (Feb94) pp. 40-49 

[Henderson et al 90] Henderson-Sellers, B; Edwards, J., 1990, “The Object-Oriented systems 
lifecycle”, Comm. ACM 33, 9.  

[IEEE 93]  IEEE Recommended Practice for Software Requirements 
Specifications, 830-1993 Standard 

[Isakowitz et al 95]  Isakowitz,T.; Stohr, E.; Balasubramanian, P., 1995, “RMM:  a 
methodology for structured hypermedia design”, Comm. ACM 38, 8 (Aug 
95) pp. 34-48 

[Jacobson 94]  Jacobson, I., 1994, “Scenario-based Design”, J. Caroll Ed. ACM Press, Ch 
12 : pp. 309-336. 

[Lange 94]  Lange, D., 1994, “An Object-Oriented design method for hypermedia 
information system”, Proceed. of the 27th Annual Hawaii International 
Conference on System Science. 

[Nanard et al 91]  Nanard, J.; Nanard, M., 1991, “Using Structured Types to Incorporate 
Knowledge in Hypertext”, Proceed. of Hypertext’91, ACM Press, pp. 329. 

[Nanard et al 95]  Nanard, J.; Nanard, M., 1995, “Hypertext Design Environment and the 
Hypertext Design Process”, Comm. ACM 38, 8 (Aug 95) pp. 49-56 

[Olsina 96]  Olsina, L. , “View of a Process Model to Develop Hypermedia” (in 
Spanish), Proceed. of the IV Congress of the SCCC (Computer Science 
Chilean Society), Valdivia, Chile, 1996.  

[Olsina 97a]  Olsina, L., 1997, “Systematic use of Flexible Process Model to build 
Hypermedia Artifacts”.  Poster Session, Hypertext 97, Southampton, UK. 

[Olsina 97b]  Olsina, L., 1997, “Object-Oriented Flexible Prototyping to support 
Hypermedia Flexible Process Model”.  III Workshop em Sistemas 
Multimídia e Hipermídia (WoMH 97), pp. 3-14, Sao Carlos, Brasil. 

[Olsina 97c]  Olsina, L., 1997, Applying the Flexible Process Model to build Hypermedia 
Products”. Hypertext and Hypermedia: Tools, Products, Methods  (HHTPM 
97), (paper accepted), Paris, France. 

[Rossi et al 95]  Rossi, G. ; Schwabe, D.; Lucena C.J.P. ; Cowan, D.D. , 1995, “An 
Object-Oriented design Model for Designing the Human-Computer 
Interface of Hypermedia Application”, Proceed. of the International 
Workshop on Hypermedia Design (IWHD95), Springer Verlag . 

[Rossi 96]   Rossi, G., 1996, “Uma metodologia Orientada a Objetos para o projeto de 
aplicativos Hipermídia”, Doctoral Thesis, PUC-RIO, RJ, Br. 

[Rumbaugh et al 91] Rumbaugh, J; Blaha, M; Premerlani, W; Eddy, F; Lorensen, W., 1991, 
“Object-Oriented Modeling and Design”, Prentice Hall. 

[Schwabe et al 96] Schwabe, D.; Rossi, G. Barbosa, S , 1996, “Systematic Hypermedia 
Application Design with OOHDM”, Hypertext 96, US 

[Thüring et al 95]  Thüring, M.; Hannemann, J.; Haake, J., 1995, “Hypermedia and 
Cognition: Designing for Comprehension”, Comm. ACM 38, 8 pp. 57-66 


