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1 Introduction

1.1 Motivation

This paper proposes an original generic hierarchical framework in order to fa-
cilitate the modeling stage of complex autonomous robotics mission planning
problems with action uncertainties. Such stochastic planning problems can be
modeled as Markov Decision Processes [5]. This work is motivated by a real
application to autonomous search and rescue rotorcraft within the ReSSAC1

project at ONERA. As shown in Figure 1.a, an autonomous rotorcraft must fly
and explore over regions, using waypoints, and in order to find one (roughly lo-
calized) person per region (dark small areas). Uncertainties can come from the
unpredictability of the environment (wind, visibility) or from a partial knowl-
edge of it: map of obstacles, or elevation map etc. After a short presentation
of the framework of structured Markov Decision Processes (MDPs), we present
a new original hierarchical MDP model based on generic Dynamic Bayesian
Network templates. We illustrate the benefits of our approach on the basis of
search and rescue missions of the ReSSAC project.

1.2 Factored Markov Decision Processes

MDPs [5] are a classical model for decision-making under uncertainty. A MDP
is a tuple 〈S,A,P ,R〉 where S is the set of agent’s states, A is the set of
its actions, P and R respectively are the markovian probability and reward
transitions between states for each action. A solution of a MDP is a mapping
π : S → A named policy, that can be iteratively computed on the basis of the
Bellman’s equation [5].

Factored Markov Decision Processes (MDPs) [1, 3] are an extension of MDPs
where the state space S is defined as a cartesian product of n subspaces V
corresponding to an equal number of state variables S = ⊗n

i=1Vi. State variable
transitions are defined using Dynamic Bayesian Networks (DBNs) [1]. For each

1 http://www.cert.fr/dcsd/RESSAC/
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Fig. 1. (a) Search and rescue autonomous rotorcraft mission: 3 persons must be res-
cued in the 3 regions of the navigation subspace (software screenshot). (b) Local policy
defined in the region τ (π) = x̃2. Stochastic outcomes are regions ζ(π) = {x̃1; x̃3}.

action, a DBN represents the stochastic dependencies between post-action state
variables (X ′

i)
n

i=1 and pre-action state variables (Xi)
n

i=1 (see Figure 6.a).
For each post-action state variable Xi, a probability tree encodes the

stochastic distribution of X ′
i values (tree’s leafs) knowing the other state vari-

ables values (nodes), as shown in Figure 6.b. The reward transitions are encoded
as a single decision tree for each action. Classical MDP optimization algorithms
are generalized in structured algorithms [1, 3].

1.3 A hierarchical approach

Modeling autonomous robotics problems with factored MDPs remains difficult.
In the very simple search and rescue mission of Figure 1.a, with 5 actions: west,
east, north, south, statio, and 4 state variables: the rotorcraft’s localization
and the status of the 3 persons to rescue, the localization variable has 24 possible
values (as many as the number of waypoints), that must be enumerated in any
decision tree containing a waypoint node. More complicated missions can have
hundreds of waypoints, which makes it a burden to model by hand the problem
because the trees’ sizes are polynomial in the arity of state variables.

Our hierarchical model allows to tackle larger state spaces by reducing the
size of the decision trees used to model the problem. We use state abstractions
in order to decompose the problem with respect to its variables of highest
arity: in the search and rescue example of Figure 1, the localization variable (24
positions) is decomposed into a region variable of arity 3.
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2 Hierarchical factored MDP

2.1 State subspace splitting

Let Xp be a state variable with a large arity. The state subspace generated by Xp

(navigation subspace) is a graph Vp that can be partitioned into smaller weakly

coupled abstract subgraphs Ṽp. The partition can be either a mission input, or
the result of an automatic partition process [6]. The resulting abstracted states
can be considered as the values of a new abstracted state variable X̃p, which
is an abstraction of the original state variable Xp. The abstract state space of

the factored MDP becomes Ṽ = (⊗i6=pVi) × Ṽp. Let us consider the mission

of Figure 1: whereas a Xp node would have 24 subtrees, the corresponding X̃p

node only has 3 subtrees.

2.2 Local policies

Actions need to be abstracted correspondingly into macro-actions. At the region
level, abstract actions correspond to local policies defined and applied within
the regions of the partition Ṽp. Let π be such a local policy, defined in a region

ṽp. Let Πp be a set of local policies defined on each region of the partition Ṽp.
A minimal set of local policies can be automatically generated [2, 4], in such
a way that an optimal policies can be obtained as a combination of such local
policies in the regions. Extra local policies can be added by other methods.

Unfortunately, in both cases, the number of local policies can be very large.
In theory, the maximum number of local policies is

∑

ṽp∈Ṽp
|A||ṽp|, each of which

should have a corresponding DBN encoding for the dependencies between the
pre- and post-action variables.

In order to keep a substantial benefit from the decomposition, it is useful
to notice that in most problems, all the local policies DBNs share a common
structure. It is indeed possible to define a single DBN structure, where the
corresponding local policy, the region where it is applicable, and the reachable
regions appear as parameters that can be automatically instantiated when the
local policies are computed.

3 Abstract generic Dynamic Bayesian Network

In this section, we present the syntax of our abstract generic DBN for mod-
eling factored stochastic autonomous robotics problems. Our generic DBN is
parametrized by a local policy π ∈ Πp. Since a local policy is defined for a sin-

gle region of the reduced variable X̃p, we can define the mapping τ : Πp → Ṽp

between local policies and the region where they are each one defined.
We illustrate our approach with a small academic instance of a search and

rescue autonomous rotorcraft mission (see Figure 1.b). The decomposed sub-
space matches the localization variable, whose arity is 24, abstracted in 3 re-
gions (X̃). We will consider a local policy π defined in the second region x̃2,
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that consists in going out towards the regions x̃1 and x̃3 with respectively the
probabilities 1 − p and p. Last but not least, each region contains a person to
rescue: these subgoals are represented by 3 binary state variables

(

Y x̃i
)

16i63

indicating if each person was already rescued or not.

3.1 Reduced state variable modeling

Let us consider a decision tree (probability tree or reward tree) containing a
node of the reduced variable X̃p. The local policy π is only defined in τ(π)

so that the node X̃p only has two abstract subtrees: one corresponding to the
value τ(π), and one other representing the other values where the policy is not
applicable, noted τ(π) = Ṽp \ {τ(π)}.

Since π is only applicable over τ(π), the τ(π)-subtree of any X̃p variable in
probability trees is symbolically represented as a nil leaf. Instead of defining
these nil leafs inside each probability tree, it is better to define a binary mask
tree that indicates where the local policy is applicable. This mask tree should
contain at least a node of the state variable X̃p, as shown in Figure 2.

X̃p

ST

τ (π)

0

τ (π)

AUTOMATIC

INSTANTIATION

=⇒
local policy
of Figure 1.b

X̃p

0

ṽ1

ST

ṽ2

0

ṽ3

Fig. 2. Generic mask tree example and one of its instantiations

The function that automatically instantiates the subtrees of a X̃p node in
any decision tree is presented in Algorithm 1. It calls the function
InstantiateTree, that instantiates the τ(π)-subtree of the generic node T
(see Algorithm 6). The τ(π)-subtrees are nil leafs (nil leaf).

Algorithm 1: Function InstantiateXpSubtrees

Data: T (generic node), T π (instantiated node), π, τ , ζ, [ṽ′

p = −1]
Result: T π (instantiated tree)
begin

subtree← T .son(‘τ (π)’);
for ṽp ∈ Ṽp do

if ṽp = τ (π) then T π.sons().push(InstantiateTree(subtree, π, τ, ζ, ṽ′

p));
else T π.sons().push(nil leaf);

return T π;

end
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The treatment of a X̃ ′
p node is slightly different from a X̃p node. Let ζ :

Πp → Ṽp be the mapping from a local policy to its reachable regions. It means
that π transforms τ(π) into ζ(π). In our small instance depicted in Figure 1.b,
only the regions x̃1 and x̃3 are reachable with π : ζ(π) = {x̃1; x̃3}.

A X̃ ′
p node can only have 2 abstract subtrees: one for the value ζ(π) and

one other for the value ζ(π) = Ṽp \ ζ(π). Each subtree must be transformed
into as many subtrees as the cardinality of the corresponding abstract value
(see Figure 3 and Algorithm 2).

X̃ ′

p

ST1

ζ(π)

ST2

ζ(π)

AUTOMATIC

INSTANTIATION

=⇒
local policy
of Figure 1.b
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x̃2

ST1

x̃3

Fig. 3. Example of a decision tree containing a X̃ ′

p node and one of its instantiations

Algorithm 2: Function InstantiateXppSubtrees

Data: T (generic node), T π (instantiated node), π, τ , ζ

Result: T π (instantiated tree)
begin

st1 ← T .son(‘ζ(π)’);
st2 ← T .son(‘ζ(π)’);
for ṽ′

p ∈ Ṽp do

if ṽ′

p ∈ ζ(π) then T π.sons().push(InstantiateTree(st1, π, τ, ζ, ṽ′

p));
else T π.sons().push(InstantiateTree(st2, π, τ, ζ, ṽ′

p));

return T π;

end

3.2 State variables depending on the reduced state variable

We can take advantage of our abstract model to introduce state variables that
are defined for each value of the reduced state variable. In the case of our
small exploration mission (Figure 1), let us consider a person to rescue in each
region of the navigation subspace. Each value ṽp of the abstract navigation
state variable corresponds to a subgoal to achieve, represented by a binary
state variable Y ṽp (see Figure 1.b).

Only can be achieved the subgoal corresponding to the region where the un-
known local policy of our generic DBN is defined. The other subgoals can not be
realized with this local policy, since it is not applicable inside the regions where
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they are enclosed. Therefore, for each set
(

Y ṽp
)

ṽp∈Ṽp
of variables depending on

the reduced variable, the generic DBN defines 2 abstract variables: the variable

Y τ(π) defined for the abstract value τ(π), and the variable Y τ(π) representing
all the variables defined in the regions τ(π).

Figure 4 depicts the decision trees of Y τ(π) and Y τ(π) and an instance of
their automatic instantiation for a given local policy. A decision tree containing
a Y τ(π) node is illustrated too.

Y τ(π)

tree:

T1

Y τ(π)

tree:

T2

Any decision tree:

Y τ(π)

ST1

y
τ(π)
1

ST2

y
τ(π)
2

AUTOMATIC

INSTANTIATION

=⇒
local policy
of Figure 1.b

Y x̃1 tree:
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T1

Y x̃3 tree:

T2

Any decision tree:

Y x̃2

ST1

y
x̃2
1

ST2

y
x̃2
2

Fig. 4. Example of the decision trees of Y τ(π) and Y τ(π), and of a decision tree
containing a Y τ(π) node. An automatic instantiation is presented.

Algorithm 3 details the automatic instantiation of the two abstract probabil-
ity trees TY τ(π) and T

Y τ(π) . Since a node of any decision tree can be an abstract

Y τ(π) node (primed or not), it must be analyzed before being instantiated, as
done in Algorithm 4.

Algorithm 3: Function InstantiateYpTrees

Data: TY ‘τ(π)’ , T
Y ‘τ(π)’ , π, τ , ζ

Result:
`

T π

Y ṽp

´

ṽp∈Ṽp

T π

Y τ(π) ← InstantiateTree(TY ‘τ(π)’ , π, τ, ζ);

for ṽp ∈ τ (π) do T π

Y ṽp ← InstantiateTree(T
Y ‘τ(π)’ , π, τ, ζ);

3.3 Abstract leafs of the generic probability trees

Due to action uncertainties, the outcome of a local policy is not deterministic.
Let us consider for instance the local policy depicted in Figure 1.b: starting
from region x̃2, the local policy can lead to regions x̃1 and x̃3 with respectively
probabilities 1 − p and p. Let P̃π be the abstract probability transition distri-
bution over the partitioned subspace Ṽp for the local policy π: this distribution
is the stationary probability distribution of the markov chain resulting from
application of the local policy π inside τ(π) [2].
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Algorithm 4: Function InstantiateNode

Data: n (generic node), π, τ

Result: nπ (instantiated node)
begin

if n = Y ‘τ(π)’[
′]

then nπ ← Y τ(π)[
′]
;

else nπ ← n;
return nπ;

end

The probabilities of obtaining the different values of any state variable may
depend on the local policy probability distribution. These state variable prob-
abilities are stored in the leafs of their probability trees. We suppose that they
can be expressed as functions of 2 abstract local policy probabilities:

– pτ(π): probability of staying in the region τ(π)
– pζ(π): if the reduced post-action state variable (X̃ ′

p) is a parent node, proba-
bility of going to the value of the parent reduced state variable

An example of abstract probability leaf and one of its possible instantiations
are shown in Figure 5. The abstract leaf is a formal algebraic expression of
pτ(π) and pζ(π). Given the abstract probability transition distribution P̃π over
the partitioned subspace Ṽp for the local policy π, Algorithm 5 computes the
probability of an instantiated leaf. It calls the function Evaluate from the
computer algebra library to assess the leaf. If ṽ′

p 6= −1, it means that X̃ ′
p is a

parent node of the leaf l, and l belongs to the ṽ′
p-subtree of the X̃ ′

p parent node.

X̃ ′

p

ζ(π)

f
“

pτ(π), pζ(π)
”

ζ(π)

AUTOMATIC

INSTANTIATION

=⇒
local policy
of Figure 1.b

X̃ ′

p

x̃′

1

f(0, 1− p)

x̃′

2
x̃′

3

f(0, p)

Fig. 5. Generic probability leaf example and one of its instantiations

3.4 Abstract leafs of the generic reward tree

Local policy transition probabilities are associated with local policy transition
rewards. Let R̃π be the transition rewards defined for the local policy π over
the reduced state variable subspace. These reward transitions can be computed
on the basis of the local policy transition probabilities just defined.
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Algorithm 5: Function InstantiateLeaf

Data: l (generic leaf), π, τ , ζ, [ṽ′

p = −1]
Result: lπ (instantiated leaf)
pτ(π) ← P̃π(τ (π), τ (π));
if ṽ′

p 6= −1 then pζ(π) ← P̃π(τ (π), ṽ′

p);

lπ ← Evaluate(l, ‘pτ(π)’ = pτ(π), [‘pζ(π)’ = pζ(π)]);

As for the local policy transition probabilities, we suppose that the local
policy transition rewards are formal algebraic expressions of:

– rτ(π): average reward obtained if staying in τ(π)
– rζ(π): if the reduced post-action state variable (X̃ ′

p) is a parent node, average
reward if going to the value of the parent reduced state variable

Figure 5 still is a good example of a generic reward tree and its instantiation for
the local policy of Figure 1.b, with the proviso of replacing p· by r·. In the same
way, Algorithm 5 presents the automatic reward leaf instantiation algorithm,
with the proviso of replacing p· by r· and P̃ by R̃.

3.5 Main automatic DBN instantiation algorithm

Algorithm 6 automatically instantiates a decision tree for a given local policy.
The version of our algorithm presented in this paper is recursive. It is called
from functions InstantiateXpSubtrees and InstantiateXppSubtrees, when
instantiating the subtrees of the nodes X̃p and X̃ ′

p (see Algorithms 1 and 2). No-
tice that the optional argument ṽ′

p is not an input of InstantiateXppSubtrees:

otherwise, it would mean that X̃ ′
p is a parent node of itself, what is impossible.

4 Application to a search and rescue mission

We applied our generic MDP model to search and rescue missions described in
section 1.1. We tested our generic model with 4 state variables (see Figure 6):

– R : regions of the environment (stands for X̃p)
– O. : person to rescue in the region where the unknown local policy is defined

(stands for Y ‘τ(π)’)

– O : persons to rescue in the other regions (stands for Y ‘τ(π)’)
– A : rotorcraft’s autonomy (binary variable, full or empty)

In ‘O.’ probability tree leafs, Lp. stands for ‘pτ(π)’ and Lp = 1− Lp. = pτ(π).
Table 1 shows the elapsed time comparison between automatic instantiation

and optimization stages, when increasing the sizes of both the state and action
spaces. Note that the same generic DBN was used to model all of the tested
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Algorithm 6: Function InstantiateTree (recursive)

Data: T (generic decision tree), π, τ , ζ, [ṽ′

p = −1]
Result: T π (instantiated decision tree)
begin

if T .root().type() = leaf then T π ← InstantiateLeaf(T .root(), π, τ, ζ, ṽ′

p);
else
T π ← InstantiateNode(T .root(), π, τ );
switch T .root() do

case X̃p: T
π ← InstantiateXpSubtrees(T .root(), T π, π, τ, ζ, ṽ′

p);

case X̃ ′

p: T
π ← InstantiateXppSubtrees(T .root(), T π, π, τ, ζ);

otherwise

for subtree ∈ T .root().sons() do

T π.sons().push(InstantiateTree(subtree, π, τ, ζ, ṽ′

p));

return T π;

end

(a) (b)

Fig. 6. (a) Generic DBN and (b) O. generic probability tree (software screenshot)

Nb of enume- Nb of regions Nb of generated DBNs instan- MDP optimi-
rated states (states per region) local policies tiation time zation time

82944 9 (9) 21 0.01 0.12

746496 9 (81) 61 0.01 16.77

58982400 17 (9) 69 0.03 1621.62

530841600 17 (81) 117 0.06 > 1 hour

Table 1. Elapsed time comparison between instantiation and optimization stages, for
growing size search and rescue missions (in seconds, with a P4-2.8GHz processor)
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instances. First, it appears that the number of states exponentially grows with
number of regions, so that unstructured enumerated models of MDP would
have been very tedious and quite impossible to model. Second, the number of
generated local policies (automatic generation algorithm of [4]) is round 100,
what means that usual factored MDP models would have required to manually
input a hundred or even more DBNs, in order to define our real search and
rescue missions. On the contrary, our generic hierarchical DBN model enables
to define only one DBN for the whole mission. Third, the automatic DBNs
intanciation time is insignificant compared to the optimization time (< 1%): it
confirms the modeling and effectiveness benefits of our approach.

5 Conclusion

In this paper, we proposed an original generic hierarchical framework for mod-
eling large factored Markov Decision Processes. Our approach is based on a
decomposition into regions of the state subspaces engendered by the state vari-
ables with large arity. The regions are macro-states of the thus abstracted MDP.
Local policies can then be computed (or defined by other means) in each region
of the decomposition and taken as macro-action of the abstract MDP. The fac-
tored MDP model is then defined at the abstract level. A generic DBN template
can be defined, symbolically parametrized by the local policies. We illustrated
and showed the significance of our method on real instances of search and res-
cue aerial robotics missions (within the ReSSAC project) where the navigation
subspace can easily be decomposed into regions: the use of classical unstruc-
tured MDP models would have been very tedious and perhaps impossible for
the kind of real planning missions we tackle.
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