
Finite Presheaf categories as a nice setting for doing generic

programming.

Matias Menni

LIFIA, Departamento de inform�atica, Universidad Nacional de la Plata.

C.C. 11, Correo Central,

1900, La Plata, Buenos Aires, Rep�ublica Argentina

E-mail: matias@sol.info.unlp.edu.ar

URL: http://www-lifia.info.unlp.edu.ar

Abstract

The purpose of this paper is to describe how some theorems about constructions

in categories can be seen as a way of doing generic programming. No prior knowledge

of category theory is required to understand the paper.

We explore the class of �nite presheaf categories. Each of these categories can be

seen as a type or universe of structures parameterized by a diagram (actually a �nite

category) C. Examples of these categories are: graphs, labeled graphs, �nite automata

and evolutive sets.

Limits and colimits are very general ways of combining objects in categories in such

a way that a new object is built and satis�es a certain universal property. When con-

centrating on �nite presheaf categories and interpreting them as types or structures,

limits and colimits can be interpreted as very general operations on types. Theorems

on the construction of limits and colimits in arbitrary categories will provide a generic

implementation of these operations.

Also, �nite presheaf categories are toposes. Because of this, each of these categories

has an internal logic. We are going to show that some theorems about the truth of

sentences of this logic can be interpreted as a way an implementing a generic theorem

prover.

The paper discusses non trivial theorems and de�nitions from category and topos

theory but the emphasis is put on their computational content and in what way they

provide rich and abstract data structures and algorithms.

1 Preliminaries

This paper is about data structures and algorithms. Their peculiarity is that they are

extracted from theorems from the branch of mathematics called Category Theory [10, 1, 5].

The paper is thought for readers with no knowledge of Category Theory.

Category Theory has been extensively applied to computer science [17, 12] (this last

book has an extensive annotated bibliography). For example, the Constructive Algorith-

mics community [4, 11, 3] has used it as a vehicle for specifying recursive datatypes and

deriving algorithms. Also realted to programming, monads (a categorical notion) have

been used as a means to structure programs [16]. On the other hand, Category Theory

has shown to be a very rich and powerful framework in which to unify several aspects of

the semantics of programming languages [9, 6, 2] and references therein.

In this paper we describe how some constructions and theorems of category theory

specialize to data structures and algorithms. First we observe that certain categories can

be seen as types in the sense that their objects can be stored in a computer's memory.

Examples of these categories or types are: graphs, labeled graphs, �nite automata and

evolutive sets. One advantage of using Category Theory to model these types is that they

all can be described uniformly as �nite presheaf categories.

Then we describe limits and colimits which can be seen as very general ways of com-

bining objects. We show that in the case of �nite presheaf categories, the construction

of limits and colimits can be implemented. In these way we obtain algorithms that work

generically with any �nite presheaf category! A very clear example of the power of this ap-

proach is that the construction of the product of two graphs or �nite automata or evolutive

sets is performed by one generic program!

Also, �nite presheaf categories are topoi. This means that they have (among other

things) enough structure to interpret the usual conectives and quanti�ers of �rst order

logic. But this interpretation is very non standard and this gives rise to non standard

logics with non standard truth values and a non standard notion of validity. In these

paper we show an example of one of these logics and we argue that although we lack of

clear examples, we believe that they could be used as a powerful programming tool. The

evidence for this is that we can build a program to calculate the validity of a formula of

the internal logic of any �nite presheaf category.

In order to present these ideas in their full generality, non trivial notions from Category

Theory must be introduced. We do this in sections 2 and 3. In section 2 there are also

some examples close to computer science.

In sections 4 and 5, we describe how very generic algorithms are obtained as special

cases of known theorems about limits in categories. We also present some examples in

order to exemplify their genericity.

Section 6 steams from the fact that the category C-Structures (for every �nite cate-

gory C) is a topos [8, 15]. As such, it has an internal logic. The key observation is that

this logic can be implemented and that the program obtained works for any category of

C-structures. In this section, though, the categorical notions are not introduced as they

are not needed to describe the algorithm.

2 What is a Category?

De�nition 2.1 A category C is given by the following data:

a class Obj(C) 'of objects'

a class Arr(C) 'of arrows among objects'

two functions dom,cod:Arr(C)! Obj(C) called 'domain' and 'codomain',

if dom(f) = a and cod(f) = b we write f:a ! b

a function id

(�)

:Obj(C) ! Arr(C) giving the 'identity arrow' for each object

a partial function �:Arr(C) � Arr(C) ! Arr(C) called 'composition'

These data satisfy the following axioms:

dom(id

a

) = cod(id

a

) = a

f � g is de�ned if and only if dom(f) = cod(g)

If g:a ! b and f:b ! c then f � g:a ! c

If f:a ! b then id

b

� f = f � id

a

= f

f � (g � h) = (f � g) � h (in case compositions are de�ned)

The �rst example that comes to mind is the category of sets usually denoted by Set. Its

objects are sets and its arrows are the functions among them. Usually, any mathematical

structure together with the morphisms among them will form a category. For example,

there exist categories of monoids and monoid morphisms, groups and group morphisms,

rings and ring morphisms and in general for any algebraic structure. Another example

(one that is going to be used a lot in this paper) is the category FinSet. Its objects are

the �nite sets and its arrows are the functions among them. Also, any set can be seen as

a category. A set is just a category such that the only arrows are the identities.

We say that a category is �nite if it has a �nite number of arrows.

One curious fact about categories is that you can always turn around all the arrows

and what you get is again a category. More precisely:

De�nition 2.2 Given a category C, we de�ne C

op

to be the category whose objects and

arrows are those of C but with functions dom

op

, cod

op

and �

op

de�ned by:

dom

op

(f) = cod(f), cod

op

(f) = dom(f) and f �

op

g = g � f.

Note that, (C

op

)

op

= C.

Arrows should not be assumed to be always functions that preserve some structure

(in the examples above: the operations of the algebras). For example, any monoid can be

seen as a category with just one object and the elements of the monoid as arrows. The

composition of arrows is the monoid's operation and the identity arrow is the identity of

the monoid.

Preorders are another source of examples. In fact any preorder can be seen as a

category. The elements of the preorder are the objects of the category and there is an

arrow between a and b if and only if a � b. Note two things: �rst, every object has an

identity because the preorder is a re
exive relation and second, there is only one arrow

between any two objects (actually, we could rede�ne a preorder as a category with this

last condition).

We can draw some very small examples of categories.

Figure 1: 1

op

Figure 1 is the category with just one point and its identity arrow (note that we are

ommiting the identity arrow in the drawing) and �gure 2 is the category with two points.

1 2

Figure 2: 2

op

For these two examples holds that the opposite category is the same as the original.

That is 1

op

= 1 and 2

op

= 2.

Figure 3 is the category with two points and two parallel arrows between them.

s

t

e n

Figure 3: G

op

Note that we have considered the previous categories as opposite categories. This may

appear unnecessary but we do this in order to prepare the reader for the de�nition of

presheaf and �nite presheaf.

As a �nal example we introduce 0, the smallest category. It has no objects and hence

no arrows.

In some way, the de�nition of a category says that every mathematical structure should

always be presented together with a de�nition of morphism between two such structures.

Because of this (and because we are going to use them) we de�ne what is a morphism of

categories.

De�nition 2.3 Let C and D be two categories, a functor F:C ! D is a pair of functions

F:Obj(C) ! Obj(D) and F:Arr(C)! Arr(D) (note that we use the same letter for both

functions) such that:

Ff:Fa ! Fb for every arrow f:a ! b in C.

Fid

a

= id

Fa

for every object a in C.

F(f � g) = (Ff) � (Fg) if f and g can compose.

Let us review some examples.

Of course, for every category C, there is an identity functor id

C

which sends every

object and arrow to itself.

Among categories of algebraic structures there are several 'inclusions'. For example,

there exists a functor U from the category of groups to the category of monoids such

that sends every group to its underlying monoid and every group morphism to the same

morphism (which is obviously a morphism between the underlying monoids of its domain

and codomain).

There is just one functor from the category 0 to any other category, the empty functor.

Dually, there is just one functor from any category to 1: it assigns every object to the one

object in 1 and every arrow to the unique arrow in 1.

For every category J and object c in a category C we can de�ne the constant functor

as follows:

�

c

:J ! C

�

c

a = c for every object a in J

�

c

(f:a ! b) = id

c

for every f in J

Also, functors can be seen as structures or data types.

2.1 C-structures

To see how functors can be seen as structures, let us have �rst an intuitive discussion. Let

[]

N be the set of natural numbers and for any n 2

[]

N, we let [n] be the set f1,. . . ,ng. A

function f:[n] ! A can be seen as a list of n elements from A; let us say, an [n]-collection.

Also f:

[]

N ! A can be seen as an in�nite list of elements in A, that is, a

[]

N-collection.

Actually, we could see any function f:S ! A from a set S as a S-collection.

Now replace the set S for some �nite category C, the set A for the category FinSet

and imagine a functor F:C

op

! FinSet. Such a functor can be seen as selecting a �nite

set for each object of C, but it also can be seen as selecting a function for each arrow in

C

op

. Besides, the selection of functions must be done in such a way that the selection of

sets respect the domain and codomain of the functions. Moreover, compostion must be

preserved. So it would not be a good idea to name such a functor a C-collection. Let us

call it a C-structure.

Let us look at some examples.

First note that a �nite set A is just a functor A:1 ! FinSet. So we can see 1-structures

as the type of �nite sets.

We can try to aim a little higher and de�ne the type of pairs of �nite sets. Its elements

are the 2-structures.

We can get ambicious and try to de�ne the type of �nite graphs. A �nite graph is just

a �nite set of nodes and a �nite set of edges such that each edge has associated two nodes,

its source and target. That is, a �nite graph F consists a �nite set Fn of nodes, a �nite

set Fe of edges and two functions Fs,Ft:Fe! Fn. But this is just a G-structure F!

Let us build new types over this last example. What if we wanted labeled graphs?

Then we should 'add' a set of labels and 'say' for each edge how it is labeled. Then a �nite

labeled graph is a LG-structure (see �gure 4).

s

t

e n

l

b

Figure 4: LG

op

Consider now �nite automata. We could implement them as �nite labeled graphs with

a distinguished 'initial' state and some distinguished '�nal' states. Given a labeled graph

F we could select a subset of �nal (or 'accept') states with a function Ff:Fa ! Fn from

some set Fa to the set of nodes of the graph. We could also select an initial (or 'start')

state with another function Fi:Fc ! Fn. Such a structure is a FA-structure (see �gure 5).

s

t

e n

l

a

f

b

c

i

Figure 5: FA

op

Note that there are some FA-structures that are not really automata. For example, an

FA-structure F with Fs empty would be interpreted as a �nite automata without initial

state. On the other hand, there could be more than one node in the image of Fi, so F

would have more than one initial states.

We dismiss this facts as unimportant for us, as it is a usual situation in the activity of

programming that programmers should be careful in de�ning instances of some datatype.

It is worth noting that these examples generalize easily if we put Set instead of FinSet

and drop the assumption that C is �nite. A functor F:C

op

! Set is called a Presheaf

[14, 15]. That is why a functor F:C

op

! FinSet for a �nite C is called a �nite presheaf.

Because of the above examples and because we want to see them as data structures we

rather call them C-structures.

In this paper we are going to concentrate on C-structures instead of presheaves. The

main reason for doing this is that C-structures can be implemented.

Although it is not clear what an elegant implementation of C-structures would be, it

is clear that there is no computational problem in storing all the information that any

C-structure describes. Actually, it is only a selection of a �nite number of �nite sets and

a �nite number of total functions among them.

2.2 The category of C-structures

As we said before, every notion of structure should come together with a de�nition of

what is a morphism between any two of them.

De�nition 2.4 Let F,G:C ! D be two functors. A natural transformation �:F ! G is a

family of arrows �

a

:Fa ! Ga one for each object a of C, such that for every arrow f:a ! b

in C, �

b

� Ff = Gf � �

a

.

It is easy to check that there exists an identity natural transfomation for each functor.

It is also easy to de�ne the composition of two natural transformations and to check that

it is associative.

In this way, any two categories C and D give rise to a functor category D

C

. Its objects

are functors from C to D and its arrows are natural transfomations. In particular, for any

�nite C we have the category FinSet

C

op

which we rather call C-Structures.

Let us consider the case of a natural transformation between two G-structures (�nite

graphs).

Let F and G be two G-structures. A natural transformation �:F ! G is a pair of

functions �

n

:Fn ! Gn and �

e

:Fe ! Ge (one from nodes to nodes and one from edges to

edges) such that:

�

n

� Fs = Gs � �

e

and �

n

� Ft = Gt � �

e

If we replace Fs and Gs by source and Ft and Gt by target we obtain:

�

n

� source = source � �

e

and �

n

� target = target � �

e

which is just the de�nition of a morphism � of graphs!

It is very easy to check that natural transformations of 1,2,LG and FA-structures are

respectively functions, pairs of functions, morphisms of labeled graphs, and 'morphisms

of �nite automata' (be careful with the peculiar cases discussed above).

Note also that in this setting of �nite sets and total functions, we can write a program

to test if a set of functions is a natural transformation.

It is important to stress how the language of category theory has helped to de�ne a

notion of morphism of structures that is independent of any particular structure. The

de�nition of natural transformation relies only on an arbitrary category C.

We shall see that something similar happens with constructions in functor categories.

Because of this, we will be able to obtain generic algorithms in the sence that they are

parameterized by a �nite category.

3 Limits and colimits

In this section we introduce limits and colimits. These are very general ways of combining

or merging objects in a category in order to obtain a new object that satis�es certain

special property.

First we introduce some particular examples of limits among sets. You should bear in

mind though, that we plan to discuss the implementation of these ideas. Because of this,

it may be useful to think that we are working only with �nite sets.

3.1 Terminal objects, products and equalizers in Set

Consider the singleton set 1 = f*g. It has a very interesting property.

Proposition 3.1 For every set b, there exists a unique function from b to 1. It assigns *

to every object of b.

Because of this property, any singleton set is called terminal. The property is called

the universal property of the terminal object.

Now, given two sets a and b, we can build their cartesian product:

a�b = f(x,y) j x 2 a and y 2 bg

We usually de�ne the product of two sets together with two functions �

1

:a�b ! a and

�

2

:a�b ! b (the projections). The product and these two functions satisfy the following

property, usually called universal property of the product.

Proposition 3.2 For every set c and two functions f:c ! a and g:c ! b there exists a

unique function (f,g):c ! a�b such that �

1

� (f,g) = f and �

2

� (f,g) = g. Explicitely,

(f,g)(x) = (f(x),g(x)).

Think of this universal property as saying that we have built the product in the right

way.

Consider again two sets a and b. Consider also two functions f,g:a ! b. We can build

the set E = fx 2 a j f(x) = g(x)g and a function e:Eq ! a that takes every x 2 Eq to its

copy in a. This set Eq together with the function e are called the equalizer of f and g.

They satisfy the following universal property of the equalizer.

Proposition 3.3 For every set c together with a function h:c ! a such that f � h = g � h

there exists a unique function j:c ! Eq such that e � j = h.

Again, think of this property as saying that this is the right way to �nd the part of a

for which f and g are equal.

Let us try to generalize this constructions in order to �nd out what is it that they have

in common. At �rst, it may appear that we are trying to make something very strange

out of something very simple. But in future sections we are going to see the bene�ts.

First we said that we were considering two sets a and b. We already know that this

is the same as considering a functor P:2 ! Set with P1 = a and P2 = b. Then we built

their product a�b. We also know that we can consider this set as the constant functor

�

a�b

:2 ! Set.

We now have all the objects in the de�nition of product presented as functors. The two

prejections can be presented as a natural transformation �:�

a�b

! P. As we are consider-

ing functors from 2 then such a natural transfomation is a pair of functions �

1

:�

a�b

1 ! P1

and �

2

:�

a�b

1 ! P2. This is just a pair of functions �

1

:a�b ! a and �

2

:a�b ! b.

Note that in the universal property of the product we considered other set c together

with its two 'projections'. This is just another natural transformation �':�

c

! P.

We can call P a 2-diagram and for any c we are going to call any natural transformation

�:�

c

! P a cone for P.

Also for any to cones �:�

c

! P and �:�

d

! P, an arrow f:� ! � is an arrow f:c ! d

such that �

1

� f = �

1

and �

2

� f = �

2

.

We can now formulate the universal property of the product in this language.

Let P be a 2-diagram such that P1 = a and P2 = b. Then, for any cone � for P there

exists a unique f:� ! � to the cone �:�

a�b

! P.

We could do something similar for the terminal object and equalizers, we should only

consider 0 and G-diagrams respectively instead of 2-diagrams. Actually, we could do

something similar for J-diagrams where J is any category!

De�nition 3.4 Let J be a category. A J-diagram in a category C is a functor D:J ! C.

De�nition 3.5 Let D be a J-diagram in C. A cone for D is an object a in C together

with a natural transformation �:�

a

! D.

De�nition 3.6 Given D a J-diagram in C and two cones �:�

a

! D and �:�

b

! D, an

arrow f:� ! � is an arrow f:a ! b such that for all i in J, beta

i

� f = �

i

.

De�nition 3.7 A limit for a J-diagram D in C is a cone �:�

l

! D such that for any

other cone � there exists a unique arrow f:� ! �. The cone � is called limiting cone.

A fundamental property of limits is that they are almost unique.

Two objects l and l' are isomorphic if there exist arrows i:l ! l' and i':l' ! l such that

i � i' = id

l

0

and i' � i = id

l

. With this de�nition we can formulate:

Proposition 3.8 (Uniqueness up to isomorphism) Let D be J-diagram in C. If there exist

two limits �:�

l

! D and �':�

l

0

! D, then l and l' are isomorphic.

Intuitively this property means that for any purpose any one of the two objects would

do as well as the other. Just as in Set.

Think of a limit in the category Set or FinSet. Intuitively, the limit for a J-diagram

is a subset l of the product of the sets in the diagram together with its projections. This

subset l is the biggest one that �ts the diagram. It �ts the diagram in the following sense.

Imagine there is function f:a ! b in the diagram. There are pojections p

a

:l ! a and

p

b

:l ! b which are part of the limiting cone. Then if t 2 l it holds that f � p

a

(t) = p

b

(t).

Limits are used to de�ne terminal objects, products and equalizers in any category.

These are limits for 0, 2 and G-diagrams respectively. Note that this can be done because

the de�nition of limit relies not in its representation but in the universal property of

the limiting cone. Uniqueness up to isomorphism says that it does not matter that the

de�nition does not give a particular representation.

3.2 Initial object, coproducts and coequalizers in Set

A colimit in C is just a limit in C

op

. This de�nition will probably not give an intuitive

idea of what colimits are. So let us look at some examples in Set.

Proposition 3.9 For any set a there exists a unique function from ; to a; the empty

function.

Because of this ; is called the initial object. The property is called the universal

property of the initial object.

Let us consider again two sets a and b and build their sum:

a+b = f(0,x) j x 2 ag [f(1,y) j y 2 bg

Again we have two functions in

1

:a ! a+b and in

2

:b ! a+b. Moreover, this construc-

tion also satis�es a universal property: the universal property of the coproduct.

Proposition 3.10 For every set c and two functions f:a ! c and g:b ! c there exists a

unique function [f, g]:a+b ! c such that [f, g] � in

1

= f and [f, g] � in

2

= g. Explicitely,

[f; g](0; x) = f(x) and [f; g](1; y) = g(y)

If you look carefully at the de�nition of sum and its universal property you will �nd out

that it is just the de�nition of product and its property but with the arrows (functions)

turned around. That is why we call this construction coproduct.

Now, given two sets a and b and two functions f,g:a ! b. We can build the set

coEq = b/� where � is the least equivalence relation on b which contains all pairs (fx,gx)

for x 2 a. We also have a function ce:b ! coEq which sends every element on b to its

equivalence class. Together they satisfy the following universal property of the coequalizer.

Proposition 3.11 For every set c together with a function h:b ! c such that h � f = h � g

there exists a unique function j:coEq ! c such that j � ce = h.

Note again that this is a just the 'turned around' version of the universal property of

the equalizer.

We could actually turn around the de�nition of a limit.

De�nition 3.12 Let D be a J-diagram in C. A cocone for D is an object a in C together

with a natural transformation �:D ! �

a

.

De�nition 3.13 Given D a J-diagram in C and two cocones �:D ! �

a

and �:D ! �

b

,

an arrow f:� ! � is an arrow f:a ! b such that for all i in J, beta

i

= f � �

i

.

De�nition 3.14 A colimit for a J-diagram D in C is a cocone �:D ! �

l

such that for

any other cocone � there exists a unique arrow f:� ! �.

Colimits are also unique up to isomorphism and they are used to de�ne initial objects,

coproducts and coequalizers in arbitrary categories. The intuition behind colimts is similar

to that of limits. Just replace products with coproducts and projections by inyections.

4 The implementation of limits and colimits

When we need to study the properties of limits in general sometimes it is very good not

to be attached to a particular representation. In this way we can abstract from unecesary

details. On the other hand, when we need to store something in a computer memory, we

can not do without a representation. Moreover, we need a �nite representation.

In this section we are going to describe how to build arbitrary �nite limits and colimits

in categories. We shall pay special atention to the case of limits in FinSet.

We have de�ned limits and colimits for arbitrary diagrams and arbitrary categories.

Yet we only know how to build 0,2 and G-diagrams in Set. Surprisingly, it is enough to

know how to calculate these ones in order to calculte the limit or colimit of any diagram

in Set.

Before starting the construction of limits note that if a category has binary products

then it has products of any �nite arity: just iterate the binary product. We denote these

products with

Y

i

for some i varying over the elements of some �nite set I (note that they satisfy a universal

property that is very similar to that of the binary product, it just has more projections).

By convention the iterated product over the empty set is the terminal object.

Theorem 4.1 If a category C has a �nal object, equalizers and binary products then C

has all �nite limits.

Proof. Let J be a �nite category and F a J-diagram in C. We can build

R :=

Y

i in J

Fi and S :=

Y

u:j �! k

Fk

R is the product of the F-images of objects in J and S is the product of the F-images

of the codomains of arrows in J.

For each component Fcod(u) of the product S we have a projection from the product

R. Because of the universal property of product S, there exists a unique arrow f:R ! S

which relates these two cones.

Also, for each arrow u in J we have a projection p

dom(u)

:R ! Fdom(u) which we can

compose with Fu obtaining thus for each arrow u in J a projection

(Fu � p

dom(u)

):R ! Fcod(u)

Again, by the universal property of the product there exists a unique g:R ! S which

is an arrow between the cones. So we have two arrows f,g:R ! S.

Because of the assumption, there exists an equalizer e:Eq ! R of this two arrows. It

can be proved that the family of arrows �

i

= p

i

� e:Eq ! Fi form a cone which is a limit

of the J-diagram F.

Note that if we just consider �nite sets and total functions, then we can write programs

to build products, equalizers, coproducts and coequalizers. The concrete representations

we have given in the previous section give rise to very simple algorithms (the building of

coequalizers is not trivial but it can be done). We also know that FinSet has a terminal

object. So the above construction is just a program that builds the limit for any given

J-diagram F in FinSet for any �nite J.

It is very important to note that if we replace products by coproducts and equalizers

by coequalizers we obtain the construction for an arbitrary colimit. Also this construction

specializes to an algorithm when we consider the category FinSet.

5 Limits and colimits among C-structures.

Now that we understand the concept of limit and colimit we may ask if they exist among

C-structures. Note that this is not a trivial question. The de�nition of limits makes sence

in any category, particularly in any functor category such as a category of C-structures.

Yet we only know how to build limits and colimits in FinSet. Besides, there is another

related question which is of particular interest to us. Assuming limits and/or colimits

exist, can we write a program to build them?

For any functor category X

J

and object j in J there exists a functor 'evaluation' de�ned

as follows:

E

j

:X

J

! X

E

j

H = Hj for any functor H:C ! X

E

j

(�:H ! H') = �

j

:Hj ! H'j for any natural transformation �

This functor evaluates its argument at a given point. Using this functor we can formu-

late the following theorem. The proof can be found in [10]. We are not going to present

it here as an algorithm can be extracted just from the satement of the theorem.

Theorem 5.1 For all c in C, and S in X

C

,

E

c

(Limit(S)) = Limit(E

c

S) and

E

c

(CoLimit(S)) = CoLimit(E

c

S).

That is, in any functor category, limits and colimits can be calculated pointwise (pro-

vided pointwise limits exist).

When we replace X by any category C-Structures, and assume that J is �nite the

theorem is just the description of an algorithm that calculates the limit or colimit of any

given J-diagram of C-structures.

Let us look at some examples.

First, consider the product of two G-structures (i.e. �nite graphs). The product

de�ned as a limit is just the usual de�nition of product of graphs. This is one of the most

simple ways of combining graphs. Suppose now that the two graphs F and G represent

roads and cities or machines and connections (or something else). Suppose you have

obtained these grpahs from di�erent sources (e.g. di�erent tourism o�ces or departments

in an enterprise) and that you have to make one graph out of the ones you have. Obtaining

their disjoint union will not work as their may be nodes or edges in the two graphs

representing the same thing in the real world. What we should obtain is a merge of the

two graphs where the nodes that represent the same things are collapsed. Clearly we can

represent the nodes and edges that represent the same things by another graph H. This

graph H can be embbeded in the other graphs by two 'inclusions' i:H ! F and i':H ! G

(note that they are not strict inclusions as F and G may use di�erent representations for

the same entity in the real world). These inclusions give rise to a diagram. To obtain the

desired 'mixed' graph you just ask the computer to calculate the colimit.

Consider two �nite automata F and G (i.e. two FA-structures). We can ask the

computer to calculate their product using the algorithm given by the theorem in the

previous section. The result is almost the construction given in [7] to prove that the class

of type 3 languages is closed under intersection. Explicitely, a new automaton which set

of states is the product of the sets of states of F and G, transitions are pairs of transitions,

the �nal states are pairs of �nal states and the initial state is the pair with components the

initial states of F and G. The main di�erence with the construction in [7] is that their new

automaton is labeled with the original alphabet. On the other hand our new automaton

is labeled with pairs of elements of the original alphabet. Yet if for each symbol x that our

automaton is supposed to read we replace it by (x,x) then the language that it recognizes

is the same.

It is also known that type 3 languages are closed under union. A �rst attempt to prove

this is to build the disjoint union of any two automata F and G. Yet this attempt fails

as it is not clear what should be the initial state of the new 'automaton'. To solve this,

Hopcroft and Ullman add a new state. We are going to solve this by building the right

colimit. This is the colimit of the following diagram. First put the two automata F and

G. Add the automaton A with only one state which is initial and no transitions or �nal

states. Also add two arrows f:A ! F and g:A ! G. These arrows assign the unique state

of A to the initial states of F and G respectively. In this way the program that builds the

colimit will make the disjoint union of the three automata and then obtain the quotient

in which the initial states have collapsed to one state.

More C-structures and more complicated 'merging conditions' give rise to more com-

plicated diagrams. Yet all (co)limits would be calculated by the same algorithm. In some

sence (similar to that of natural transformations) these algorithms are 'generic' as they

work for any category of C-structures!

One area of possible application of this '(co)limit programming' is the implementation

of GIS. These systems work with di�erent layers of information and they have to 'merge'

this layers in order to respond to queries. Limits and colimits seem to be a very natural

way solving these problems.

6 The internal logic of C-structures and its use.

For every �nite C, C-Structures is a topos. Because of this, the usual logical operators

and quanti�ers can be interpreted in these categories. It turns out that in the case of

C-structures, this logic can be implemented. In this way we have a kind of '�rst order

logic' which we can use as a query language for C-structures. This logic behaves di�erently

from the usual �rst order logic as it takes into account the structure of the category C.

Because of this, we have a di�erent logic for every C, yet a theorem about the validity of

the formulae of these logics will provide a sort of 'theorem prover' that is independent of

the category C we are considering.

In this section we introduce the language of these logics and the theorem from which

we extract the theorem prover. We also present some toy examples in order to show how

it could be used and how it behaves according to the structure of C.

In this section we are going to work with a �xed �nite category C and the category

C-Structures. We are assuming that we have variables X, Y, Z... representing sorts and

variables x, y, z... of that sort. Also, for each pair X, Y of sorts we assume there is another

sort (X �! Y) and variables f, g ... of that sort.

With this elements we are going to de�ne a typed language and we are going to present

a computational interpretation.

We de�ne terms and formulae as follows.

1. any variable of sort X is a term of sort X

2. if t is of sort X and f is a variable of sort (X ! Y) then (ft) is a term of sort Y

3. if t and t' are terms of sort X then (t = t') is a formula

4. if x is a variable and t and t' are formulae then so are (t^t'), (t_t'), (t)t'), (:t),

(8x)t and (9x)t

We can associate a C-structure X to each sort X, and a natural transfomation f:X ! Y

to each variable f of sort (X �! Y). In what follows when we speak of a formula � we are

going to assume that we have already associated C-structures and natural transfomations

to sorts and variables f in �.

There exists a notion of validity for the formulae of this language. So it makes sence

to ask if a formula � is c-valid (written cj=�) for some assignment to the free variables

in �. We are not going to present the de�nition here because we would need a lot more

topos theory than what �ts in this paper. Yet, thanks to the theorem below, we do not

need it in order to calculate it.

We use x to denote a list of variables x

1

,...,x

n

such that x

i

has sort X

i

. A c-assignment

� to x is a list of elements �

1

,...,�

n

such that �

i

2 X

i

c. Finally if f:c ! c' we use f� to

denote a the list of elements X

1

f(�

1

),...,X

n

f(�

n

).

It must be noted that when we assign values to the free vars of a formula then all

terms in it can be evaluated to an element of a set.

Theorem 6.1 Let �(x) and �(x) br formulae with free variables in x and � a formula

which may also have y of sort Y as a free variable. Then for any c-assingment � to x we

have:

cj=(�

i

= �

j

) i� �

i

equals �

j

cj=(�(�)^�(�)) i� cj=�(�) and cj=�(�)

cj=(�(�)_�(�)) i� cj=�(�) or cj=�(�)

cj=(�(�))�(�)) i� cj=�(�) implies cj=�(�)

cj=(:�(�)) i� for no f:c ! d in C

op

cj=�(f(�))

cj=(8y)�(�,y) i� for all f:c ! d in C

op

and all �2Y(d), one has dj=�(f(�); �)

cj=(9y)�(�,y) i� for there exists a �2Y(d) such that cj=�(�; �)

It is important to say that the formulation of this theorem gives rise to an algorithm

because we are considering C-structures. Note that if we were considering presheaves then

the clauses for 8 and 9 would involve a potentially in�nite set Y(d). Also, if C was not

�nite then clauses for : and 8 would be dealing with an in�nite number of arrows.

Let us analyze some examples. First, consider the formula (x = x') with x and x'

variables of sort X.

For any pair of elements �,�' 2 Xc we can ask the computer to calculate if cj=(� = �').

It is important to think the formula (x = x') as a generic program that works for any

category of C-structures.

Now consider the formula (9x)(ix = z) _ (9y)(jy = z) where x,y,z are of sorts X,Y

and Z respectively and i:X ! Z and j:Y ! Z.

For any c in C we could select an object � from Zc and ask the computer to calculate

if there exists an element in Xc or Yc such that it is mapped via i or j into �. In some

sence we have written a program that we can use to test if any two given C-structures

'cover' a third.

Let us look at a little more complicated example:

(8x)((9y)((9z)((ix= z)) (jy = z))))

Assume that we are working with the category G-Structures. Consider X and Y to

be subgraphs of Z and i,j to be the respective inclusions. It turns out that the formula is

n-valid if and only if all the nodes of X are also nodes of Y. It is e-valid if and only if X is

also a subgraph of Y. The reader is encouraged to calculate these facts using the theorem

above.

Intuitively, when we ask if a formula is c-valid, we are asking something about the

sets that the C-structures associated with variables assign to c. If the formula is built

without : and 8 then the logic behaves classicaly. You can solve the base cases which are

just equalities and then use the classical truth tables to resolve the inductive cases. On

the other hand if : or 8 are used in the term then the structure of C starts to show its

in
uence.

Assume we are working with G-structures and consider the formula

�(y) = (9x)(ix = y)

Suppose we have assigned to sort Y the graph with three nodes 1,2 and 3 and an edge

a from 1 to 2. Suppose also that X was assigned the subgraph with nodes 1 and 2 and

edge a and i was assigned the inclusion.

Let us calculate if ej=(8y)((9x)(ix = y)) holds. We must consider three cases.

1. id:e ! e

2. s:e ! n

3. t:e ! n

Case 1. For all � 2 Ye we should calculate if ej=(9x)(ix = �). This is easy as a is the

only arrow in graph Y and a is also in X.

Case 2. For all � 2 Yn we should calculate nj=(9x)(ix = �). But this fails when we

consider � = 3.

So e6 j=(8y)(�(y)). At �rst this may appear contraintuitive as all arrows in Y are also

in X. One way to look at this is to think that the arrows in C

op

describe what 'parts' of

the C-structures are related and that the quanti�er 8 takes this into account.

So cj=(8x)(:::) is not asking wether 'for all things in Xc' but 'for all the things in the

parts of X that are realted to part c'.

Now consider the formula :�(y) with the same graph assigned to Y and the graph with

nodes 1 and 2 but no edges to X. Again, i was assigned the inclusion. Let us calculate if

ej=:(9x)(ix = a) holds. It must be the case that

1. e6 j=(9x)(ix = id(a))

2. e6 j=(9x)(ix = s(a))

3. e6 j=(9x)(ix = t(a))

The �rst one holds (meaning, the formula is not e-valid) as there are no arrows in X.

But nj=(9x)(ix = 1) and nj=(9x)(ix = 2) hold. So in spite of the fact that there are no

edges in X, ej=:(9x)(ix = a) does not hold!

This is a little harder to explain. It is true that edge a is not in X yet it is 'almost'

there as both its source and target are. We could agree that if its source was not in X

then edge a would be 'less' there.

In fact, ej=:�(a) would hold if none the source or target were in X.

We have presented a couple of toy examples in order to show how the internal logic of

C-structures could be e�ectively used as a query language. The full power and utility of

this notion of validity is still to be explored.

Again, we �nd that this theorem can be easily programmed. In this way we can look at

j= as if it were a very generic program for it would work for any category of C-structures.

Finally we should stress that the language presented here is a very limited one. There

are more powerful versions. Also, the internal language of a topos is usually presented

slightly di�erently, we have chosen this way because it leads easier to an implementation.

7 Future work.

One obvious line of future work is the developement of a concrete implementation of these

ideas. As we said, it is clear that there is no computational problem for doing this, but it

would be interesting to obtain an implementation that would let the programmer work as if

he was doing category theory. Such implementation would be excellent for experimenting

with these ideas an �nd more important examples and new areas of application.

It would be very interesting to go on exploring what and how theorems specialize to

algorithms when applied to C-structures (such as adding modal operators [13]). Also we

should study other classes of categories such that theorems specialize to algorithms when

applied to them.

8 Acknowledgements

I would like to thank Drs. Gonzalo Reyes, Marta Sagastume and Adriana Galli for lec-

turing and organizing the course on Presheaf Categories at the Mathematics Department

of the Universidad Nacional de La Plata. That course has been the main motivation for

writting this paper. I would also like to thank Lic. Baum and Dr. Rossi for their par-

ticular way of stimulating the writting of this paper and Lic. Martinez Lopez for helping

with some technical problems.

References

[1] Categories, Types and Structures: An introduction to Category Theory for the Work-

ing Computer Scientist Asperti y Longo. The MIT Press. 1991.

[2] Axiomatic Domain Theory in Categories of Partial Maps M. Fiore. Cambridge Uni-

versity Press,1996.

[3] Law and order in Algorithmics M. M. Fokkinga. Ph.D. Thesis, Tech-

nical University of Twente, The Netherlands. 1992. Available from URL

http://hydra.cs.utwente.nl/ fokkinga/mmfphd.html.

[4] A typed lambda calculus with categorical type constructors Ph.D. thesis, University

of Edinburgh, Dept. of Computer Science, 1987.

[5] Category Theory H. Herrrlich y G. E. Strecker. Allyn and Bacon. 1973.

[6] First steps in Synthetic Domain Theory J. M. E. Hyland. Category Theory, volume

1488 of Lecture Notes in Mathematics. Springer Verlag, 1991.

[7] Introduction to automata theory, languages and computation J. E. Hopcroft and J.

D. Ullman. Addison Wesley.

[8] Topos Theory P. T. Johnstone. Academic Press. 1977.

[9] Introduction to Higher Order Categorical Logic J. Lambek y P. Scott. Number 7 in

Cambridge Studies in Advanced Mathematics. Cambridge University Press. 1988.

[10] Categories for the working mathematician S. Mac Lane. Springer Verlag. 1971.

[11] Data structures and program transformation G. R. Malcolm. Sience of Computer

Programming. 1990.

[12] Basic Category Theory for computer scientists Foundations of Computing Series. MIT

Press.

[13] A topos theoretic approach to reference and modality G. Reyes. Notre Dame Journal

for Formal Logic, 32. 1991

[14] Notes from the course Presheaves lectured by Dr. Gonzalo Reyes and Dr. Marta

Sagastume at the Mathematics dept. (UNLP) during 1996.

[15] Sheaves in geometry and logic: a �rst introduction to topos theory S. Mac Lane and

I. Moerdijk. Springer-Verlag, Berlin. 1992.

[16] The essence of functional programming P. Wadler. Proceedings of the Nineteenth

ACM symposium on Principles of Programming Languages. 1992

[17] Categories and Computer Science R. F. C. Walters. Volume 28 of Cambridge Com-

puter Science Texts. Cambridge University Press.

