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Abstract

In spite of the NP-completeness of the satisfiability decision problem (SAT prob-
lem), many researchers have been attracted by it because SAT has many applications
in Artificial Intelligence. This paper presents a randomized Davis-Putnam based al-
gorithm (RSAT) which solves this problem. Instead of selecting the next literal to be
set true or false through a heuristic selection rule, RSAT does it through a random
algorithm. RSAT not only improves the well-known Davis-Putnam Procedure that
has been implemented with a heuristic selection rule, but avoids the incompleteness
problem of the local search algorithms as well.

RSAT is described in detail and it is compared with the heuristic based Davis-
Putnam algorithm HDPP. We discuss the main features of the RSAT implementa-
tion and we especially analyze the random number generator features.

Although the scope of the experiment is bound by the number of variables, our
results indicate that the heuristic can be guessed by a random number generator
and even improved. Empirical analysis that support the final conclusions are shown.

*Supported by a fellowship of the Universidad Nacional del Comahue, Neuquén, Argentina.



A Randomized Algorithm for Solving
The Satisfiability Problem

1 Introduction

The first computational task shown to be NP-complete by Cook [Coo71| was propositional
satisfiability (SAT problem). Although the strong argument of NP-completeness of the
SAT problem suggests that it does not exist any algorithm to solve this problem in
polynomial time, many researchers have been attracted by SAT. The reason is that unlike
many other NP-complete problems, SAT has special concern with several computational
areas. An important application arises from the Artificial Intelligence area because of its
direct connection with reasoning: Let I' be a deductive database and a be a sentence,
then I' - « if and only if I' U {—a} is not satisfiable. Furthermore, there are two closely
related search problems:

o Model generation: find an interpretation of the variables under which the formula
becomes true or report that none exists. Obviously, the existence of a model implies
the satisfiability of the formula. Model generation has many applications in Artificial
Intelligence; for instance, it can prove the consistency of a theory.

e Theorem-proving: find a formal proof (in a sound and complete proof system) of
the negation of a formula in question or report that there is no such proof.

Another example is the fault testing for switching circuits. We can examine the circuit
corresponding to the conjunction of disjunction expressions and we can ask whether the
combination of input values will cause the circuit as a whole to output the right value or
not.

Therefore it is important to have algorithms which are able to solve a wide range of
instances of the SAT-problem in tolerable time. In order to get a quick answer we may
exploit the special structure of the formula under consideration. For example, the class
of Horn formulas [DG84] and the 2-SAT formulas [BC94| can be solved in linear time.
But sometimes we have no idea whether we can advantageously exploit the structure of
an instance to be solved or not. In this case we have to resort to a general algorithm
like the well-known Davis-Putnam Procedure (DPP)[DP60] which was the first effective
automated theorem proving method for producing resolution refutations [Vel89]. Most
implementations of good algorithms for testing Boolean formulas are based on DPP. These
implementations differ in the data structures for representing formulas as well as in the
selection method for choosing a propositional literal.

The purpose of this paper is to introduce a Davis-Putnam based algorithm which
analyzes an alternative strategy for selecting a literal: to let a randomized algorithm
make the decision. Impetus for this work has been given by the variety of random based
SAT algorithms which have been proved to be more efficient than DPP. For instance,
hill-climbing (local search) algorithms like GSAT [SLM92| and Random Walk. The main
problem of local search is its incompleteness. Since we are essentially interested in a com-
plete algorithm for solving all propositional formula instances, we have been investigating



the behaviour of a randomized SAT Davis- Putnam based algorithm (RSAT) by comparing
it with heuristic based DPP.

The organization of this paper is as follows. First, we introduce some basic concepts
together with the notation that will be used in what follows. Section 3 presents random-
ized algorithms analizing not only its most attractive features but its disadvantages as
well. Section 4 gives a detailed RSAT description, discussing the difference between RSAT
and the heuristic based DDP. The following section presents some features of RSAT imple-
mentation that are closely related to the running time needed to compute a satisfiability
test. In section 6 RSAT is compared empirically with DPP, showing some experimental
results. Finally we summarize the main results and we propose future works.

2 Basic Concepts

All Boolean formulas F' considered in this paper are in conjunctive normal form (CNF).
Let’s introduce some notation.

o Let V be the set of m boolean variables.
o L= {z,z|x € V} is called the set of literals corresponding to V.

o ;= (L VIyV...Vl.)is a clause such that [; € L : 1 < j < ;. A clause of length r;
es called a r;-clause. In particular, a 1-clause is called a unit clause. If every clause

in a SAT testing input formula is a K-clause, then the SAT problem will be called
K-SAT problem.

o F'=CiNCyN...NCp,is called a formula in CNF, where each C; : 1 <7 <nisa
clause. Henceforth, when referring to formula we mean a CNF formula.

A truth assignment is a mapping ¢ which assigns each variable in V' a true value or a
false value. For each x € V, t(x) is true if and only if ¢(z) is false. Let F, (Fz) denote
the resulting subformula of F' before assigning the true (false) value to the variable z. A
clause C is satisfiable if and only if £(1) is true for at least one literal [ in C'. An assignment
satisfies a formula F'if and only if it satisfies each clause in F'. Finally, a formula F' is
satisfiable if there is at least one satisfying truth assignment for £'. The SAT problem is
the decision problem that tests whether a formula in CNF is satisfiable or not.

3 Randomized Algorithms

By definition, a randomized algorithm leaves some of its decisions to chance, i.e., at least
once during the algorithm, a random number is used to make a decision. The fundamental
characteristic of these algorithms is that they implement non deterministic computation,
in other words, they react differently if they are applied twice to the same instance.
When an algorithm is confronted with a choice, it is sometimes preferable to choose a
course of action at random rather than to spend time finding out which alternative is the
best. The algorithm that will be introduced, profits from this advantage of the randomized



algoritms. However the worst-case running time of the randomized algorithm is always the
same as the worst-case running time of the nonrandomized algorithm. Clearly, it is always
possible that bad luck will force the algorithm to explore many unfruitful possibilities.

Since randomized algoritms outperform not only systematic exploration of the nodes
of the implicit tree but a variety of intelligent exploration techniques as well, different
problems have been implemented through a randomized algorithm. Some examples are
primality testing which determines whether or not a large number is prime and the eight
queens problem [BB88| which places eight queens on a 8-by-8 rectangular board so that
no two queens are attacking each other.

As we need random numbers, we must have a method to generate them. Actually, true
randomness is virtually impossible to do on a computer, since the numbers will depend
on an algorithm. Generally, it is enough to produce pseudorandom numbers which are
numbers that seem to be random. Pseudorandom number generators are deterministic
procedures that are able to generate long sequences of values that seem to have all the
statistical properties of a random sequence. To start the sequence, the pseudorandom
number generator requires an initial value called a seed. On giving the same seed, the
peudorandom number generator will always produce the same sequence. In order to
obtain different sequences, the seed must be chosen, for example, so that it depends on
the time or the date.

Fortunately, most modern programming languages include such a generator although
some implementations should be used with caution. As no genuinely random generator
is available, some care must be taken when analizing randomized algorithms.

There exists a variety of SAT algorithms which use random decision, for instance, local
search GSAT. Basically local search begins with a random truth assignment and tries to
reach a solution by gradually moving to search tree nodes with the largest increase in the
total number of clauses that are satisfied. Unfortunately, local search could fail to find
a satisfying assignment of propositional formulas even if one exists, t.e., local search is
incomplete as we have remarked above. But this is not the only problem local search has.
In case the formula is insatisfiable, it will always answer that no satisfying assignment
was found, leaving us in doubt. RSAT was defined to avoid all these problems but it has
his owns that will be discussed below.

4 The RSAT algorithm

The obvious way of solving algorithmically the SAT problem with m logical variables is
to generate all possible assignments systematically and to test each one with the given
formula. If it satisfies the formula quit; otherwise, continue generating and testing. If
none of the 2™ possible assignments satisfies the formula, it is unsatisfiable. Unfortunately,
the time taken by this algorithm tends to exponentially with m. When the instances of
the problem are satisfiables, the algorithm may generate anywhere between 1 and 2™
assignments before arriving at a solution.

A slightly better algorithm was discovered by M. Davis and H. Putnam in the early
1960s. Figure 1 shows the well-known DPP which is the base of the RSAT algorithm.

It performs a backtracking search in the space of all truth assignments, incrementally



Procedure DP
Input: A propositional formula F' in cnf.
Output: “Satisfiable” or “Unsatisfiable”.

Step 1: Unit Clause Rule
While F' contains an unit clause but no two complementary unit clauses

Select an unit clause and bind a variable in it to satisfy the clause.
Step 2: Satisfiability Checking
If all clauses are satisfied, return “Satisfiable”.
Step 3: Unsatisfiability Checking
If an empty clause exists, return “Unsatisfiable”.
Step 4: Splitting Rule
Select a variable whose value is not assigned. Assign true to it and call DP.

If the result is “Satisfiable” then return “Satisfiable”. Otherwise, assign
false to the variable and call DP again. Return the result of it.

Figure 1: DPP improved with the unit clause rule.

assigning values to variables. If current partial assignment has failed to satisfy one of
the clauses, the algorithm performs a backtracking since there is no point in continuing.
If, however, all clauses are satisfied by the current partial assignment, then DPP exits
and any remaining variables may be assigned arbitrary values. So the satisfiability and
unsatisfiability checking avoid to explore all the implicity search space in almost all the
cases.

The DPP efficiency can still be improved if the formula is simplified as much as possible
before reaching the splitting rule (Step 4). A powerful simplification is the unit clause rule
that is applied in Step 1. This rule sets true the literals of the unit clauses except when
two complementary unit clauses are contained in the formula. In other words, all clauses
containing a unit clause literal will be deleted, and every clause C; V -~z V C; containing
a negated unit clause literal -z will be replaced by C; vV C;.

In the original DPP, the pure literal rule is also used to improve it. The pure literal
rule forces a literal I; to be set true (false) if I; occurs only positively (negatively) in the
formula. Some authors [BS|[Yug95] have pointed out that including the pure literal rule
in the DPP slows down the algorithm, so it is not considered here.

Despite the improvement, the performance of the DPP heavily depends on the ability
of predicting which one of the propositional literals should be selected to be given a truth
value so that the search space remains as small as possible. Guessing a propositional
literal I may depend upon whether we expect the formula F' to be satisfiable or not. In
case F' is unsatisfiable, we should choose = such that F} as well as F}; are quite smaller



than F', because we have to visit the search tree corresponding to F' almost completely
(remember that the satisfiability and unsatisfiability checking and the unit clause rule will
prune some search tree branches). When F' is satisfiable we should choose z such that
the given truth value corresponds to a satisfying truth assignment, in order to visit the
minimum number of branches in the search tree. Unfortunately, determining such literal
is not so easy.

The most usual way to do it is to apply a good heuristic selection rule. An heuristic se-
lection rule may be to assign a value to the literal with the greatest number of occurrences
in the formula. The underlying idea is to reduce the clause size of the greatest number of
clauses so that we are left with unit clauses as soon as possible. Instead of deciding the
next literal through a quite intelligent heuristic we can do it randomly. RSAT implements
this strategy by randomly choosing the variable to be bind next.

RSAT as a based DPP algorithm, applies the unit clause rule and the satisfiability
and unsatisfiability checking in the same way DPP does it. On Step 4, RSAT specifies
how to select the next variable, remaining as follows:

Step 4: Splitting Rule
Select randomly a variable of the current formula whose value has not
been assigned yet. Assign true to it and call RSAT.
If the result is “Satisfiable” then return “Satisfiable”.
Otherwise, assign false to the variable and call RSAT again. Return the
result of it.

It is perhaps important to remark that once a random generator has produced a
random number, it must be uniquely mapped to a variable of the current formula. We
can obtain a variety of RSAT algorithms by implementing different mapping. On section
5 we will describe the way, we have done it.

At first sight, it seems that a quite intelligent rule is better than a random rule,
however this is not the case. On flipping a coin, we can select the right literal without
wasting time computing an heuristic. Even though some decisions seem to be systematic
we can avoid checking all the paths jumping almost directly to the solution by a random
choice.

5 RSAT Implementation

RSAT has been implemented in PASCAL on a 32 Mbytes memory Pentium machine under
MS-DOS. In spite of the memory size, PASCAL allows the heap to have up to 640 Kbytes
of memory available, so this places a constraint upon the implementation. In order to
avoid memory space problems for storing formulas, the suitable data structure chosen is
a linked list:

e The formula is stored as a list of clauses.

e A clause is represented by a list of its literals. The heading clause includes the
clause length.



Furthermore, RSAT implementation tries to free space by releasing memory cells as much
as possible. RSAT shares all the implementation features with the implemented DPP
which uses the heuristic selection rule explained above (HDPP in what follows).

Since randomized algorithms implement a non deterministic computation, RSAT run-
ning time depends not only on the input Boolean formula but on the random number
generator as well. So to discuss RSAT efficiency, we must also analyze the random number
generator background. The RSAT implementation uses the PASCAL predefined function
Random which produces pseudorandom numbers from a seed initiated by the procedure
Randomize. In spite of the fact that the function Random follows a mathematic rule to
produce a pseudorandom number sequence, the pseudorandom numbers are still difficult
to predict.

In the original DPP nothing is said explicitly about which unit clause will be bind
next (Step 1). Both RSAT and HDPP implement a deterministic selection by choosing
the first unit clause occurrence to appear.

The name of each variable contains a pseudorandom number that will uniquely identify
this variable, in order to compute the mapping straight.

Even thought RSAT, DPP and HDPP implement on Step 4 a deterministic bind order
(first set the literal true and then false) actually we can change it. Furthermore we can
still choose randomly whether we follow the true branch or the false one when splitting
up the formula. However this alternative RSAT algorithm is not analyzed in this paper.

6 Experimental Results

RSAT has been compared to the improved DPP with the heuristic selection rule explained
above (section 4) by testing both algorithms on the same collection of random formulas.
Selecting good test instances is very important when evaluating the performance of algo-
rithms empirically. The formula sample to be tested on must include not only random
formulas but natural ones. The first ones will reflect general cases while the latter will
reflect the real world. Even though we can think that random formulas lack of any un-
derlying hidden structure, we may obtain wrong experimental results [CI195] unless some
care is taken in sampling formulas. At the moment of writing this paper, RSAT has only
been tested on a subset of random formulas that we describe below.

The complexity of RSAT and HDPP strongly depends on the distribution of CNF
formulas to be tested on. In our sample, each instance is obtained by generating M
random clauses. All clauses contained in the CNF formulas are fixed length and have
been generated by randomly selecting K variables from the set V' of N variables. Each
variable is negated with a 50% probability. It is neither guaranteed that all N variables
occur in the formula, nor assured that no double clauses are generated.

When generating the sample, if all formulas considered are either satisfiable (in par-
ticular tautologies) or insatisfiable then it seems that Davis-Putnam based algorithms
will test them easily and we may not draw right conclusions. The hardest formulas for
Davis-Putnam based SAT solvers appear to lie around the region where there is 50%
chance for the randomly generated formula to be satisfiable. The main difficulty of sam-
pling hardest formulas is the relation between the number of clauses M and the number



Tk
3-SAT | 4.3
4-SAT | 9.9
5-SAT | 21.1

Table 1: Clause-Variable Ratio.

| [ K-RSAT [ K-HDPP |

K=3] 1,48 2,02
K =4 1,59 2,05
K—=5] 1,38 2,435

Table 2: Attempt average over 200 hard K-formulas with up to 50,25, 15 variables respec-
tively.

of variables N. For instance, in case of 3-SAT the hardest formula ratio turned out to
be near 4,3 (M = 4.3N), even thought the exact ratio is not known. Experiments over
3-SAT formulas have shown that random 3-SAT formulas are satisfiable (unsatisfiable)
with high probability if the ratio is less than 2,9 (greater than 5,2). Table 1 shows the
clause-variable ratio estimation 7, corresponding to the hardest K-formulas for Davis-
Putnam based SAT solvers [BS]. Because of the space problem, RSAT and HDPP have
been tested over a set of hardest random formulas with a limited number of variables
respecting the ratio estimations of Table 1.

Rather than compare running time we will compare attempt numbers,i.e., the number
of branches the algorithm goes through reflecting indirectly the running time. Table 2
summarizes some of our results. It shows the relationship between attempt average of
K-RSAT and K-HDPP over 200 random K-CNF formula instances. For example, when
K = 3, it was necessary to try nearly 1,48 times before success running on the 3-RSAT
algorithm while in case of 3-HDPP it is necessary to try nearly 2, 02 times before success.
In case K =5 HDPP has tried one more time than RSAT.

Although the scope of the experiment is bound by the number of variables , it is clear
that this heuristic can be guessed by a random generator and even improved. We can
also expect that as the heuristic computation time is generally slower than a random
computation time, RSAT will also excel HDDP in this feature.

7 Conclusions

In this paper we have presented a randomized Davis Putnam based algorithm that out-
performs the heuristic based DPP, and does not suffer from the incompleteness problem
of the local search algorithms.

Our experimentals results on a subset of fixed clause length random formulas, have
shown that a random decision can “guess” the heuristic one and even improve it. Even



though we are not able to guarantee that RSAT will manage all CNF formulas better
than HDPP, the partial results obtained encourage us to go on comparing RSAT over
other subsets of formulas. Furthermore good test instances might be helpful because they
can give us some hint to improve RSAT.

New algorithms have been developed in order to produce special subsets of formulas,
like satisfiable formulas that have only one solution [CI95]. Future work would be finding
out whether RSAT behaviour will agree with present results when tested over a sample
of satisfiable formulae with only one solution.

Although RSAT finds a solution for insatisfiable formulas and is not incomplete, im-
portant questions are whether RSAT is better than local search and for what kind of
instances it is so. Answering these questions would be also future work.
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