
Exploiting Web Technologies to Build Autonomic
Wireless Sensor Networks

Flávia C. Delicato2, Luci Pirmez1, Paulo F. Pires2, José Ferreira de Rezende3
1NCE – Federal University of Rio de Janeiro, Brazil

2DIMAp - Federal University of Rio Grande do Norte, Brazil
3GTA - Federal University of Rio de Janeiro, Brazil

{fdelicato, luci, paulopires }@nce.ufrj.br; rezende@gta.ufrj.br

Abstract. Most of the current wireless sensor networks are built for specific
applications, with a tight coupling between them and the underlying
communication protocols. We present a more flexible architectural approach
for building WSNs, in which application-specific features are decoupled from
the underlying communication infrastructure, although affecting the network
behavior. We propose a framework based on Web technologies that provides a
standard interface for accessing the network and configurable service
components tailored to meet different application requirements, while
optimizing the network scarce resources. Also, a set of ontologies is defined as
part of the framework for representing shared knowledge of the WSN domain.

1 Introduction

Wireless sensor networks (WSNs) are distributed systems composed of hundred to
thousands of low cost, battery-powered and reduced size devices, endowed of
processing, sensing and wireless communication capabilities.

One major reason for the increasing interest in Wireless sensor networks (WSNs)
in the last few years is their potential usage in a wide range of application areas such
as health, military, habitat monitoring and security [1]. However, before WSNs can
be widely employed, they must be cheaper, easier to use and more flexible than they
are at present.

Currently existent software for WSNs is not flexible enough to meet the different
demands of their potential applications. Most of existing WSNs require loading
application code in sensor nodes before they can be deployed. Once the WSN
becomes operational, applications can be only slightly modified to adapt their
behavior to changes in the execution context. By context, we mean everything that
can influence the behavior of an application [1]. We can distinguish three specific
levels of awareness, in the context of WSNs: device awareness, environment
awareness and application awareness. Device awareness refers to everything that
lies on the physical device the application relies on, such as memory, battery,
processing power and so on. Environment awareness refers to everything that is
external to the physical device, such as bandwidth, network connectivity, location,
neighboring nodes, and so on. Finally, application awareness refers to all

 Flávia C. Delicato and al. 2

application-specific information, such as QoS parameters, values of sensor-collected
data, query and sensing task descriptions.

It is important to point out that the WSN execution context is extremely
dynamic, since it mirrors the network and application states. WSN nodes can have
their battery depleted, new nodes can be added in the network after the initial
deployment, and both bandwidth and the quality of wireless links are likely to
change a lot along a sensing task lifetime. Furthermore, the application interests
may be truly dynamic, with query parameters and QoS requirements changing along
the time.

Several works, such as [3], highlights the close relationship among application
requirements and the WSN performance. Energy saving is a key issue in WSN
environments, which dictates the network operational lifetime. Application-specific
optimizations may increase the WSN overall performance, mainly regarding the
energy consumption. At the same time, such optimizations assure that a minimum
level of QoS is provided to applications. Each class of application has specific
features and different QoS requirements and it is best served by a different network
configuration. WSN configuration comprises the network logical topology and the
data dissemination protocol, among other factors. To sum up, the careful choice of
the WSN configuration may increase the efficiency from both the network and the
application point of views. However, configuration decisions should not be left in
charge of application developers, which should deal with a higher abstraction level.
Therefore, applications should be able to interact with the WSN through a standard
high-level programming interface (API). Through this API the clients can issue their
queries and QoS parameters, dynamically monitor or modify the network behavior
according to their variable requirements and receive the sensor-collected data.

Furthermore, most applications need to directly access the data generated and
pre-processed by the WSN in order to use it as inputs for their internal analysis and
processing tasks. Such kind of interaction characterizes an application-to-application
interface. Web Services technologies [4] have being successfully adopted as a
feasible solution for enabling such kind of application interoperability.

The pervasiveness and the wireless nature of sensor devices require network
architectures to support ad hoc configuration. A key technology of true ad hoc
networks is service discovery, functionality by which "services" (functions offered
by nodes) can be described, advertised, and discovered by other devices or
applications. All the current service discovery and capability description
mechanisms are based on ad hoc representation schemes and rely on standardization.
A crucial requirement for the future, widely accessed WSNs is interoperability under
unpredictable conditions, i.e., networks which were not designed for specific,
predefined purposes, should be able to be accessed by different applications, which
dynamically discover their functionality and take advantage of it. The tasks involved
in the dynamic utilization of WSN services involve service discovery and
description. Service description may involve representing information about the
sensing task and QoS parameters. Thus, an ontology language is useful to describe
the characteristics of WSN devices, their sensing capabilities, and specific
information of applications accessing the WSN.

We propose a framework based on Web technologies for designing WSNs. The
framework has three main goals: (i) to establish a programming model for WSNs,

Exploiting Web Technologies to Build Autonomic Wireless Sensor
Networks

3

aiming to standardize the design and the interoperability of applications and to
increase the flexibility of network usage; (ii) to provide a standard interface for
accessing the WSN, allowing both the retrieval of information about the execution
context, and the submission of tasks and requirements to adjust the network behavior
according to each application; and (iii) to supply components that offer
functionalities needed by WSN applications from different domains.

The proposed programming model follows a service-based approach in which
WSNs are service providers to client applications. The interface provided by the
framework for accessing the network is implemented by a communication service
based on Web services technologies. The set of network-supplied services is
published and accessed through an XML-based language [5]. XML messages
exchanged between the WSN and applications are formatted and packed through the
SOAP protocol [6].

The functionalities provided by the framework are implemented as a set of
configurable service components. These components are responsible for managing
the network behavior such that requirements of different applications can be met,
while the network resources are optimized. The communication service can be
customized through extension mechanisms, allowing different communication
protocols, devices and services to be seamlessly incorporated in the WSN
architecture.

The proposed framework provides mechanisms to acquire, to reason about and to
adapt the WSN behavior according to context information. Such capability allows
sensor nodes to maintain consistent contextual knowledge and change their behavior
according to it. Such knowledge is achieved through sharing context information
among different entities of a WSN system, namely, sensor nodes, applications and
infrastructure components. Sensors monitor and periodically send context
information. Applications inspect the current context and eventually change
previously stated execution policies. Framework service components must guarantee
that defined QoS parameters are met, and that the current execution context is valid.
To meet this goal the framework adopts a set of common ontologies to support the
communication among the several entities that comprise the WSN domain.

The main benefits of the proposed framework can be assessed under two points
of view: the application and the WSN. From the application point of view, the
framework provides an abstraction of a generic WSN, which offers services for
several application domains, with different requirements. Such services are accessed
in a flexible way and through different high level programming languages (Java,
C++, etc), according to the application developer choice. The utilization of the
proposed framework allows building autonomic WSNs, customized according to
specific application needs. At the same time, it leverages the development of custom
and context-aware applications for WSN environment. Another important aspect is
that, through the use of XML language and the SOAP protocol, both de facto Web
standards, the proposed framework naturally provides interoperability between the
WSN and the Internet.

From the network point of view, the framework services supply mechanisms to
obtain the best match between network configuration and application requirements,
as well as to inspect and dynamically adapt the network behavior according to

 Flávia C. Delicato and al. 4

changes in the execution environment. By using these services it is possible to reach
high network efficiency in terms of energy consumption.

Although the framework provides several service components, the focus of this
work is mainly in the communication service, which adopts Web technologies.
Therefore, such component is described in details and evaluated. The remainder of
this paper is divided as follows. Section 2 presents related works. Section 3 details
the proposed framework. Section 4 describes the developed system prototype and
Section 5 concludes the paper.

2 Related Work

Our work has features that distinguish it from other existent proposals for designing
WSNs. First of all, it proposes a service-based approach for the WSN design, in
which all interactions among applications and the underlying wireless network rely
on a consumer-provider relationship. Such approach was inspired in the area of
Web Services [4] and its major advantage is offering a flexible and generic
programming model for WSNs. In contrast with the service-based approach, there
are works that propose database approaches [7, 8] or event-based programming
models [9] for designing WSNs.
The second particular feature of our work is the proposal of a high-level interface for
accessing the network. This interface, instead of relying on proprietary formats or
languages, such as [9], which adopts a proprietary procedural script language,
provides a standard mechanism for representing data and formatting messages
exchanged between applications and the network. The adoption of the ubiquitous
standards XML and SOAP provides high portability and flexibility to WSN
applications. The XML high degree of extensibility allows it to be adopted both as a
query and as a tasking language. On the other hand, the adoption of proprietary
languages hinders interoperability among applications and WSNs.

The third feature of our framework is that it provides configurable service
components that allow dynamically configuring and customize the underlying
network infrastructure and protocols. In spite of there being other works [2] that
share such a goal, these works do not address the issue of representing and
interpreting application requirements. Another relevant feature of our framework is
the use of mechanisms for providing applications with context awareness. Such
feature is also supplied by CARISMA [2], which, however, was designed for generic
wireless networks, and does not address WSN specific requirements.

In Garnet [10], an architectural framework for WSNs is presented. Garnet
focuses on problems regarding the management of data-streams in the context of
WSNs. The mechanisms proposed in Garnet are complementary to our work, in the
sense that they can be incorporated as service components in our framework.

Regarding the use of ontologies, a pioneer work defines an ontology for sensor
nodes [11], which seeks to capture the most important sensor features to describe
their functionalities and current state. Such work has similarities with ours in the
sense that the contextual information is described by ontologies, with the goal of
adapting the WSN behavior to different execution states. However, differently of our

Exploiting Web Technologies to Build Autonomic Wireless Sensor
Networks

5

proposal, they do not employ ontologies neither for WSN service discovery nor for
definition of execution policies by the application

3 Framework Description

This work proposes a framework based on Web technologies for designing WSNs.
The framework supplies the basic underpinning for building flexible and
configurable WSNs. Such framework comprises: (i) a service-based programming
model for WSNs; (ii) a standard interface for accessing the network services; and
(iii) a set of configurable service components to aid the application development and
to control the network behavior during the execution of submitted sensing tasks.

The proposed framework can be described according to its logical and physical
models. The logical model includes: (i) the description of the services provided by
the framework to support the execution of WSN applications; (ii) the specification of
logical components which supply such services; and (iii) the description of the
interfaces of such components among each other, with applications and with the
underlying network infrastructure. The framework physical model includes the
detailed description of its components, according to the chosen implementation
technologies. Although the framework provides several service components needed
to the efficient operation of WSNs, this paper focuses on the communication service.

3.2 Logical Model

The basic service provided by WSNs is collecting environmental data and delivering
it to applications. Such delivery depends on: (i) the discovery of the WSN
capabilities; (ii) the request of data by applications and (ii) the way through which
the communication among data producers (sensor nodes) and data consumers
(applications) takes place. Our framework provides applications with an abstraction
of such delivery service so that it can be configured according to different needs.
This abstraction is supplied by the communication service that, among other
functions, provides applications with a high level interface for accessing the WSN
services. The discovery of the WSN sensing capabilities is accomplished through the
discovery service. This service allows WSNs to advertise their capabilities and
applications to advertise a high level description of their sensing requirements.
Furthermore, the discovery service accomplishes a matching function between
sensing capabilities and application requests in order to allow applications to find
suitable WSNs.

One of the goals of our framework is to facilitate the task of application
developers, by dealing with low-level issues regarding network infrastructure and
protocols. With this intention in mind, the framework supplies a configuration
service, detailed in [12], responsible for the choice and setting of network protocols,
as well as a service for active node selection [13], responsible for the choice of
sensor nodes that should be activated to accomplish a given sensing task. Once the
framework takes these low level decisions, it should control the execution of the
received sensing tasks, and manage the utilization of the network resources. In order

 Flávia C. Delicato and al. 6

to perform these tasks, resource management and admission control services are
supplied. To deal with the highly dynamic execution context of WSNs, the
framework also provides inspection and adaptation services. Furthermore,
components of generic services are provided, which are useful for all WSNs.

Figure 1: Logical Components and Interfaces

The functionalities of the framework services are provided by a set of
components. Figure 1 depicts the main logical components and the interfaces among
each other and with the external world (applications, sensor nodes and network
protocols). The depicted interfaces represent units of service provision offered by
their respective component. The main component is the communication service. All
the other services are directly connected to the communication service, except the
discovery service. Additional services can be seamlessly integrated into the system,
provided that they are connected to the communication service through its interfaces.
In the following paragraph, the functions of the main interfaces are summed up.

ServiceDiscovery Interface is used by applications to find out a WSN able
to perform their sensing task. Subscribe Interface contains service primitives: (i)
to allow the application to submit a query or task (SubscribeInterest); (ii) to
notify the application about sensor published data, in the case of asynchronous
queries (ReceiveResults); (iii) to allow the application to submit an execution
policy, which consists of information on the WSN behavior while executing the
requested task (SubmitExecPolicy); and (iv) to allow the application to submit
QoS parameters to be met during the execution of the requested task

Exploiting Web Technologies to Build Autonomic Wireless Sensor
Networks

7

(SubmitQoSParameters). QueryContext Interface allows applications to
inspect the WSN state. AdaptationRequest Interface is used by applications to
request the activation of an adaptation policy in order to recover the network from a
state of QoS violation. Publish Interface allows sensor nodes to advertise their
capabilities (PublishConfiguration primitive) and to publish their collected
data (PublishData), and to allow service components to publish results of their
processing tasks (PublishResults primitive). Notifier Interface contains
primitives to notify framework services about data or application subscription
arrivals. ConfigureRequest Interface is used by a service component to indicate
how a sensor node may request its execution. DataRouting Interface contains
service primitives used for exchanging data between the framework and the
underlying network routing protocols. ServiceRequest Interface is used by
sensor nodes to request a framework service that requires an explicit request to be
activated. SystemKnobs Interface allows the framework services to interact with
hardware devices, such as processor, sensor, radio transmitters and receivers. It
contains service primitives that allow modifying the current state of such devices,
enabling a fine-grained control over the network operation.

3.2 Physical Model

The proposed framework makes use of Web Services technologies in the
specification and implementation of its components. The adoption of a Web service-
based approach was motivated by the fact that such an approach relies on protocols
and languages largely used on the Web, thus facilitating the interoperability among
the system and client applications. Most of the WSN client applications need gather
the data generated and pre-processed by the network as input for their own analysis
and processing software. Such interaction characterizes an application-to-application
interface. Web Services architecture supplies a feasible solution to enable that kind
of application interoperability.

The use of Web Services technologies in both the physical model and the
framework implementation implies that framework services are exposed as Web
Services. The logical interfaces presented in Section 3.1 are physically described
through WSDL documents [14] and XML schemas [5]. Messages exchanged among
the external and internal components (in other words, the service primitives) are
implemented as SOAP or XML messages.

Regarding the physical constraints to be hold in the framework design, sinks are
devices more robust than sensors and represent the network access point. Therefore,
they are fully designed following the Web Services architecture. Thus, the
implementation of the communication service in sink nodes is based on the SOAP
protocol. To avoid the overhead imposed by SOAP, the implementation of the
communication service inside sensors is based on lightweight XML messages, and
formatted accordingly to specific schemas, which aim to generate XML messages as
compact as possible. Optionally, in order to further reduce the communication
overhead, the XML binary format, WBXML [15], can be used inside the network.
The framework service components are implemented as software modules. These
components are described in the next sections.

 Flávia C. Delicato and al. 8

3.2.1 Communication Module

This module is responsible for the communication service implementation. It
includes a SOAP proxy responsible for the interaction with client applications and
XML drivers for communicating with the underlying network protocols and devices.
SOAP proxies are programs that translate function calls in the application
programming language to SOAP messages so as to invoke respective operations of
the network services. Conversely, SOAP reply messages are converted to data and
function calls in the application programming language. SOAP proxies use
primitives of the Subscribe, QueryContext and AdaptationRequest logical
interfaces, which are implemented as operations of the communication module and
are described in the WSN WSDL document.

Similarly to SOAP proxies, drivers for different protocols consist of software
modules that convert functions calls, according to the programming language of a
given communication protocol, in operation calls defined according to the
framework API, and vice-versa. In the same way, drivers convert XML messages
generated by the framework components in proprietary data formats of the
communication protocol, and vice-versa.

To provide the application requested QoS and to enable the adaptation of the
network behavior according to execution contexts, the framework components
should be able to directly interact with hardware devices, such as sensors and radio
transmitters. This requirement is met by specifying an API that abstracts the
behavior of the WSN configurable parameters (communication protocols and
devices). This API consists in the implementation of the SystemKnobs logical
interface. The device manufacturers enable low-level interactions with devices by
supplying a service API. Drivers for the conversion between framework and devices
APIs can be built from the supplied specifications.

The processing of a data message arriving in a WSN node, and its subsequent
forwarding to the framework services, are performed by SOAP-based components in
sink nodes and by XML-based components in sensor nodes. The communication
module also contains an ontology database and a reasoning engine, which comprise
the semantics components of the framework.

SOAP-based Components. The communication module in sink nodes is
composed of a SOAP engine and a set of handlers. The SOAP engine is responsible
for coordinating the SOAP messages flow through the several handlers and for
guaranteeing that the semantics of SOAP protocol is respected. Handlers represent
the logic of message processing and act as dispatchers for the several services
supplied by the framework. Handlers intercept SOAP messages, parse the message-
header fields indicating the services that are to be executed over the data packet, and
dispatch the packet for the components that implement such services.

XML-based Components. To avoid the overhead of the SOAP protocol, XML
messages exchanged inside the network are formatted according to a specifically
designed schema. Such schema is a lighter SOAP-like specification that generates
more compact messages than the original SOAP protocol. The XML-based
communication module is the counterpart, in sensor nodes, of the SOAP-based
communication module in sinks. It is composed of a message dispatcher, which is a

Exploiting Web Technologies to Build Autonomic Wireless Sensor
Networks

9

lighter version of the SOAP engine, and a set of handlers, responsible for forwarding
messages to the service components provided by sensor nodes.

Knowledge base. Corresponds to the ontology database. It contains the adopted
ontology model, that is, the definitions of the classes and properties created for
describing sensor features, execution contexts and policies, application queries and
tasks. The full database is implemented only in sink nodes. Sensor nodes keep a sub-
part of the ontology definitions needed for representing their own capabilities and
information about execution contexts.

Reasoning engine. A software module responsible for reasoning with ontology
knowledge, that is, static knowledge derived from the underlying ontology model.
Its function is to decide whether WSN nodes can meet the requirements of a
submitted application task.

3.2.2 Service Modules

The service interfaces offered by the framework to the external world (applications
and other services) are described through WSDL documents. Therefore, a WSDL
document defines the format of messages used to submit application interests and
QoS requirements and to request inspection or adaptation of the network behavior
(Figure 2). The framework also provides a WSDL document that describes the
interfaces to be used by service developers to incorporate new services in the WSN
architecture. Furthermore, XML schemas are provided which describe the interfaces
to be used by network protocol developers. Primitives described in the logical
interfaces correspond to definitions of service operations, which are invoked through
SOAP or XML messages.

The external discovery module of the framework discovery service allows
applications to find both the location of a potentially interesting WSN and the format
of messages to interact with it. The use of SOAP and XML, both part of the Web
Services architecture, makes UDDI [4] a natural choice as the discovery protocol to
be used by applications.

Sink nodes implement a Web Service comprising all the functionalities offered
by the WSN and they keep a repository containing the WSDL documents that
describe the Web Service interfaces. To access a WSN, an application initially
locates the WSN sink node through UDDI and then obtains the WSDL document to
learn the message format to communicate with the network. Therefore, the external
discovery module is composed of WSDL documents and of the necessary
specifications for publishing the WSN Web Service in the UDDI registry.
The configuration service is implemented only in sink nodes, by the decision
module. The inspection and adaptation service is implemented as two independent
modules: (i) the inspection module, that allows the application to inspect the
network behavior at runtime, supplying a representation of the current execution
state; and (ii) the monitoring and adaptation module, responsible for monitoring
the states of the network and application and for activating adaptation policies
whenever it is necessary or requested by the application. The monitoring and
adaptation module accesses the local ontology database and, similarly to the
communication module, it contains a reasoning engine. This engine is responsible
for reasoning with both ontology knowledge and contextual knowledge. Contextual

 Flávia C. Delicato and al. 10

knowledge is a dynamic knowledge that is inferred from situational information
reported by sensor nodes. Once that information is available, the module verifies if
the WSN execution context at every given moment represents a valid state.
Otherwise, a predefined adaptation policy is triggered to repair the network state.

Figure 2: Communication among the framework components

The inspection module is implemented only in sink nodes and the monitoring

and adaptation module is implemented both in sink and sensor nodes. The resource
and task management service is also implemented as two independent modules: an
admission control module and an active node selection module, both implemented
only in sink nodes. Each generic service supplied by the framework is implemented
as a separate module in the proposed system. Modules of generic services can be
implemented and supplied by third parts. The use of XML-based APIs in the
framework design allows services to be easily incorporated to the WSN system,
provided that they implement the defined interfaces.

3.2.3 WSN Ontology

We detected three situations in which it would be worthwhile to add semantics in the
context of accessing and using WSNs:

Client Application

Services and
Ontology DB

Inspection and
Adaptaion

Submission of Sensing
Tasks and QoS
Requirements

WSDL
Documents

OWL
Documents

SOAP
MSGs

Framework Services and
Ontologies Databases

XML Drivers

Network Protocols

XML Msgs

Control Msgs

Sink Node

XML Drivers

Network Protocols
And Hardware Devices

Sensor Node

Exploiting Web Technologies to Build Autonomic Wireless Sensor
Networks

11

• To locate networks that potentially meet the interests of an application, given a
high level description of the requested services. The goal here is to discover the
address (URL) of the access point (sink) of such WSNs, through which
applications are able to access and use the WSN services. In this case, the UDDI
protocol, used for discovering WSNs, should be added with semantic capacities.
Addressing such situation is out of the scope of our work.

• Once a specific WSN has been chosen, to determine if the sensing task requested
by the application can be fully accomplished by such network, given the task
detailed description, including QoS requirements.

• Once the task has been initiated, to share knowledge on the execution context,
allowing (i) sensor nodes to send information about the network and the
application current states; (ii) applications to monitor such state; and (ii) service
components to verify if a given execution state is valid and the eventual need of
triggering adaptation mechanisms in case of violation of QoS parameters.

We designed a WSN ontology to capture the most relevant features of sensors,
execution context and application requirements for the purposes of service discovery
and context monitoring (items 2 and 3 above). Therefore, we created classes and
properties to describe concepts related to the descriptions of sensor node capabilities,
application tasks and policies, and execution contexts. For purposes of service
discovery, we defined: (i) three main classes for describing WSN features (WSN,
SensorNode and SensorField); and (ii) four main classes for describing application
requirements (Task, Query, QoSParameters and SensorType). For purposes of
describing execution policies and contexts, and verifying if the current state fits in a
valid policy, the main classes we created are: ExecutionContext, ApplicationState,
NetworkState, ExecutionPolicy and CurrentState. The defined ontologies are
concisely depicted in Figures 3 and 4. The framework reasoning engines have a set
of rules that allows reasoning based on such ontologies.

 Flávia C. Delicato and al. 12

Figure 3: Main ontologies for execution policies and contexts

Figure 4: Main ontologies for tasks and WSN descriptions

The ontologies designed for the WSN domain were defined by using the

OWL/RDF language [16]. The Web Ontology Language (OWL) is intended to
provide a language to describe the classes and relations between them that are
inherent in Web documents and applications. The OWL language can be used (i) to
formalize a domain by defining classes and properties of those classes; (ii) to define
individuals and assert properties about them, and (iii) to reason about these classes
and individuals to the degree permitted by the formal semantics of the OWL
language. We will not present the OWL files containing the complete description of

Exploiting Web Technologies to Build Autonomic Wireless Sensor
Networks

13

ontologies, for lacking of space. The OWL-DL [16] version of the language was
used for representing the ontologies stored on the sink node knowledge base and the
OWL-Lite [16] version for ontologies on the sensor node database.

 4 Framework Prototype

As a proof of concept for the proposed framework, a prototype was constructed
which implements its main building blocks. The goals of building the prototype were
to validate the high-level interaction among applications and the WSN, according to
the proposed programming model, and to establish a basis for evaluating the system
requirements in terms of memory and processing power. From the implemented
prototype it is possible to infer the feasibility of developing WSN applications based
on the proposed framework with the currently existent hardware for sensor nodes.

The prototype was implemented in Java programming language. Since the
hardware device features and, hence, the software components to be deployed in
each device largely differ between sink and sensor nodes, two development
platforms were used to implement each type of node.

The implementation of the prototype was divided into two phases. The goal of
the first phase consisted of modeling and implementing the communication module
in the sink nodes. The implementation of such module allowed to validate the high
level interaction among applications and the WSN and to check the calls of
operations supplied by the network Web Service. The goal of the second phase was
to analyze the computational load of the communication module in sensor nodes. In
that phase, the adoption of messages in both XML and WBXML formats was
evaluated, in order to compare their performance, in terms of network traffic and
memory consumption. A simple generic service component was also implemented to
evaluate the amount of memory spent by sensor devices to receive XML messages,
process and forward such messages through the different handlers and deliver them
to the module that implements the requested service. The implemented service was
data aggregation. Since data aggregation is a basic operation, required by all classes
of current WSN applications, our work leverages the aggregation function as a first
class operation supplied as one of the framework service components.

The prototype of sink nodes was executed in a Pentium 4 1.8 GHZ with 1.5 GB
of RAM and 40 GB HD. The WSN Web Service and the classes representing the
functionalities needed for the sink node were implemented using Apache Axis
platform for Web Services [17] and J2SE 1.4.2_01. The document describing the
WSN services was written in WSDL language. The previously described operations
SubscribeInterest, PublishConfiguration and PublishData were provided by the
implemented Web Service. Operations are invoked through SOAP messages.

As it was previously described, applications access the WSN by using SOAP
proxies. In the developed prototype, the client application was implemented in Java
language. Therefore, the WSDL2Java tool [17] was used for generating the Java
proxy for accessing the network. WSDL2Java tool is supplied along with the Axis
package and it consists of a Java class which receives as input a WSDL document

 Flávia C. Delicato and al. 14

representing a Web Service and it generates method calls in Java corresponding to
the invocation of the respective service operations.

In order to validate the communication between client applications and the
WSN, an event-driven application was implemented as a Java application that emits
queries for the network and receives the results. The application, after obtaining the
URL of the sink node through UDDI, gets a reference for the WSN Web Service and
invokes the operation of interest submission, representing an asynchronous query.
Sensing data meeting the application interests are reported by sensors through the
PublishData operation and delivered to the application through the ReceiveResults
operation.

In order to evaluate the feasibility of implementing the proposed framework in
sensor nodes, we emulated the hardware of WINS NG 2.0 [18] nodes, which are
endowed of SH-4 167 MHz processors and have 32 MBytes of RAM. The
framework components in sensor nodes were implemented by using the J2ME (Java
Micro-edition) platform, with CLDC configuration (Connected Limited Device
Configuration) and MIDP profile (Mobile Information Device Profile). CLDC
configuration defines the base set of application programming interfaces and a
virtual machine for resource-constrained devices often connected through a wireless
network. MIDP profile was designed to mobile and cellular phones and it offers a set
of basic functionalities needed for mobile applications.

The Wireless Toolkit [19] was used for building the sensor node prototype. The
Wireless Toolkit is a toolbox for developing wireless applications that are based on
J2ME Connected Limited Device Configuration and Mobile Information Device
Profile, and it was designed to run on cell phones, personal digital assistants, and
other small mobile devices. The toolkit includes the emulation environments,
performance optimization and tuning features. The kxml package [20] was used for
implementing the communication module in sensor nodes. Kxml provides an XML
parser and an XML writer light enough to run in the J2ME platform. Besides the
communication module, an aggregation service module was implemented, which
offers methods for accomplishing MAX, MIN and AVERAGE functions. The size
of the “.jar” file (Java deployment format) composed of all classes needed for a
sensor node running the proposed framework is 90kBytes, including all libraries.
Such size is perfectly compatible with the memory resources of our target sensor
nodes.
Table 1: Measurements performed using XML and WBXML formats (in bytes)

Method/Operation XML Format WBXML Format
 Memory Network traffic Memory Network traffic

PubContent (send) 10748 139 8152 47
PubContent (reception/forward) 10344 139 5964 47

AdvInterest (recep/forw) 33216 178 21140 57
PubData (send) 13136 42 9396 24

PubData (recep/forw) 6136 42 4016 24

To deal with the XML verbosity, there are binary versions suitable for resource-

constrained environments. One widely used binary format is WBXML [15]. The
kxml package includes support to handle WBXML messages. We implemented

Exploiting Web Technologies to Build Autonomic Wireless Sensor
Networks

15

XML and WBXML formats, in order to compare their performances in terms of
number of bytes transmitted in the network and memory consumption on devices.

Wireless Toolkit includes tools for monitoring: (i) the frequency of use and
execution time for every application method; (ii) the usage of memory while the
application runs; and (iii) network data transmitted and received by the application.
Such tools were used to perform measurements with the prototype. The methods of
the prototype code were grouped according to the corresponding working stage of
the network. Table 1 shows the results obtained by the memory and network
monitors. In the table, PubContent refers to the stage of internal service discovery, in
which sensors exchange messages describing their capabilities. AdvInterest refers to
the stage of task submission for the application. PubData refers to the stage of data
sending for the sensors. Results represent the measurements of one single node, that
is, its individual memory consumption and the network traffic generated by it, when
accomplishing each one of the mentioned operations. The performed measurements
shown that the adoption of WBXML format resulted in a decrease of around 30% in
the memory consumption and around 70% in the network traffic, in comparison to
the XML format. Therefore, WBXML represents a better choice for representing
message exchanging inside the WSN. It is worthwhile mentioning that message sizes
in the WBXML format is lower even then message sizes of well known WSN
protocols that adopt proprietary binary formats [21].

5 Conclusions

The proposed framework has the goal of acting as the underpinning for developing a
new, more flexible and easier to use architectural approach for WSNs. Such
approach is suitable for building the envisioned autonomic WSNs of the near future.
WSNs have historically been built with a strong coupling among applications and
the underlying network infrastructure. Such architectural approach is justified by the
need to achieve energy efficiency. However, not only are these solutions proprietary,
but they generate rigid systems, with WSNs specifically designed to particular
applications. This scenario is not desirable, considering the costs of the
infrastructure deployment, the potentially long operational lifetime of the network
and its capability of serving several classes of applications. Therefore, rather than
being coupled to specific applications and often built by the same application
development team, future WSNs should be designed with a flexible architecture,
satisfying the demands of a broad range of applications from different groups of
users.

Acknowledgements

This work was supported by the Brazilian Research Council, CNPq.

 Flávia C. Delicato and al. 16

References

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor
networks: a survey. Computer Networks, 38 (4):393–422 (2002).

2. L. Capra, W. Emmerich, C. Mascolo, Reflective Middleware Solutions for Context-
Aware Applications in: Proceedings of the Reflection2001, Japan, pp. 126-133, 2001.

3. J. Heideman, F. Silva, and D. Estrin, Matching Data Dissemination Algorithms to
Application Requirements. in: Proceedings of the the ACM SenSys, pp. 218-229, USA,
Nov. 2003.

4. S. Graham, et al., Building Web Services with Java: Making Sense of XML, SOAP,
WSDL, and UDDI. (Sams Publisher, 2002).

5. W3C Recommendation (February 4, 2004) "Extensible Markup Language (XML) 1.0
(Third Edition)”; http://www.w3.org/TR/REC-xml.

6. W3C Recommendation (June 4, 2003) “SOAP version 1.2.”;
http://www.w3.org/TR/soap12-part0/.

7. P. Bonnet, J. E. Gehrke, and P. Seshadri, Towards Sensor Database Systems. in:
Proceedings of the 2nd International Conference on Mobile Data Management, Hong
Kong, Jan. 2001.

8. Cougar Project (April 5, 2006); http://www.cs.cornell.edu/database/cougar/.
9. C. Shen, C. Srisathapornphat, C. Jaikaeo, Sensor Information Networking Architecture

and Applications, IEEE Personal Communications v. 8, pp.52–59, Aug. 2001.
10. L. St. Ville, P. Dickman, Garnet: A Middleware Architecture for Distributing Data

Streams Originating in Wireless Sensor Networks. in: Proceedings of the First
International Workshop on Data Distribution for Real-Time Systems (DDRTS'03),
Providence, Rhode Island, USA, May 2003, pp.235-240.

11. S. Avancha, C. Patel, and A. Joshi, Ontology-driven Adaptive Sensor Networks, in:
Proceedings of the First Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous’04), Boston, Massachusetts, August
2004, pp. 194-202.

12. F. Delicato, et al. Service Oriented Middleware for Wireless Sensor Networks (in
Portuguese). Nucleo de Computação Eletrônica – Federal University of Rio de Janeiro
Technical Report No.NCE04/04.

13. F. Delicato, et al. Application-Driven Node Management in Multihop Wireless Sensor
Networks. in: Proceedings of the 4th IEEE International Conference on Networks (ICN
2005), Reunion Island, April 2005.

14. W3C Working Draft. Web services description language (WSDL) Version 2.0 Part 1:
Core Language (March 27, 2006); http://www.w3.org/TR/wsdl12/.

15. W3C Note (June 24, 1999) “WAP Binary XML Content Format”;
http://www.w3.org/TR/wbxml/.

16. W3C Recommendation. OWL Web Ontology Language (February 10, 2004);
http://www.w3.org/TR/owl-guide/.

17. Apache Axis (April 5, 2006); http://ws.apache.org/axis/.
18. Sensoria WINS 3.0 Spec. (April 5, 2006); http://www.sensoria.com/products-

wins30.htm.
19. J2ME Wireless Toolkit (April 5, 2006); http://java.sun.com/products/j2mewtoolkit/.
20. KXML Project (April 5, 2006); http://kxml.objectweb.org/.
21. C. Intanagonwiwat, R. Govindan, D. Estrin, Directed diffusion: a scalable and robust

communication paradigm for sensor networks. in: Proceedings of the ACM/IEEE
MobiCom 2000, USA, Aug. 2000.

