

THE GENERIC CONTEXT SHARING
PROTOCOL GCSP

Application to signaling in a cross-network and
multi-provider environment

Rony Chahine1 and Claude Rigault2
1 Département informatique et réseaux,

ENST, 46 rue Barrault, 75 013 Paris, France,
Corebridge, 3 rue Saint Philippe du Roule, 75 008 Paris

rony.chahine@enst.fr
2 Département informatique et réseaux,

ENST, 46 rue Barrault, 75 013 Paris, France
GET-Télécom Paris ; LTCI-UMR 5141 CNRS

claude.rigault@enst.fr

Abstract. This paper proposes a new signaling paradigm and a new signaling
protocol called the Generic Context Sharing Protocol (GCSP) for the
construction of a global control plane over present and future communication
networks. After identifying the special nature of the control plane software
involved in the setup of a conversational service instance it examines the
various mechanisms for information sharing which leads to our new proposal.
We show that this new data-based protocol is better suited to control plane
requirements than the present day’s command-oriented signaling mechanisms.
We indicate the basic principles of the protocol and we give a brief description
of the generic context. We show the place of this proposal in the present day
research efforts and we mention a practical implementation case.

Keywords- Control plane, Signaling, Association, Generic Context, Data
based communication, Cooperating Computing, Signaling Protocol.

2 Rony Chahine1 and Claude Rigault2

1 Introduction: From the special nature of control plane
software to new signaling mechanisms

In present and future communication networks, a control plane is required when
services use a conversational communication paradigm. By “conversational
communication paradigm” we mean that a communication environment is
established before users start to exchange media and remains established till an
explicit release is issued. This communication environment is persistent, and thus
state-full, during the whole communication session. Services based on the
conversational paradigm require dedicated functions to set-up modify and release the
communication environment. We call these dedicated functions “Control Functions”
[1], and we define the “control plane” as the set of all processes that execute control
functions. The emblematic service using the conversational paradigm is the Plain
Old Telephony Service (POTS) where resources are reserved in all participating
switches and are freed when one of the participants hangs-up.

In the part 2 of this paper, we analyze the special nature of the software that
executes network and service control activities. We characterize this special nature
as “Cooperative Computing”, and we examine the requirements of this type of
computing. The requirement of interest for this paper is “Information Sharing” by
means of signaling.

In the part 3 of this paper, we consider the different approaches to the problem of
signaling between partner entities in the cooperative computing situation of the
control plane and we come to the conclusion that the current "command based"
mechanism is not the most efficient approach to the signaling problem and we show
that in a cooperative situation a "data based" approach is more efficient. We
therefore propose a "data based" mechanism for signaling leading to a paradigm shift
in signaling methods. This proposal is in line with current control plane research
efforts. It complements the NSIS [2] IETF work as a contribution to the NSIS
Signaling Layer in the signaling protocols for conversational services and its relation
to other works will be detailed in the paper. If we come to use a "data based"
mechanism for signaling, it becomes necessary to standardize the Call Instance Data
or the content of the dynamic session memories in each partner that we call “Local
Contexts”.

In the part 4 of this paper, we propose a generic data structure, called the Generic
Context, shared by control entities in the same manner as management entities share
information in Management Information Bases (MIB) [3] and we give an overview
of this generic data structure.

In the part 5 we describe the basic principles of a new signaling protocol called
Generic Context Sharing Protocol GCSP, based on the "data based" mechanism for
signaling.

In the part 6 we show the place that this signaling protocol could occupy in the
scope of present day research in the control plane and signaling area.

Finally in the part 7 we give an implementation example in GCSP in the case of a
Computer Telephony Integration application

THE GENERIC CONTEXT SHARING PROTOCOL GCS P 3

2 The special nature of control plane software

Control plane software is a very complicated and costly task. The origin of this
problem may indeed be traced to the cooperative nature of control plane software. To
understand this point we should underline that computer science may be divided into
3 main branches: centralized computing, distributed computing and cooperative
computing. In Centralized Computing, a mainframe masters all the processes in a
company. All peripherals are intelligence-less slaves executing orders from a single
Master computer. In Distributed Computing many smaller computers, work
together, specializing on given tasks and providing some activity independence. This
new computing organization requires communication between the computers. The
general solution developed by computer science for distributed computing is the
"Client-Server" architecture, based on the "request and answer" communication
paradigm. However, the client server architecture does not depart fundamentally
from the former centralized. The client is mostly concerned by customization and
interface problems and the essential service data and service logic are located in the
central server position.

A radically new solution to the distribution of intelligence on many computers
would be a new kind of computer science called "Cooperative computing". In this
scheme there is no central position, all the computers are equal and no one is in a
permanent position to give orders to the others. While many different efforts are
taking place towards the development of a theoretical solution for cooperative
computing, (grid computing, peer to peer processing, agents…), no generally
accepted theory has been yet proposed. However some examples of working
cooperative applications have been successfully developed. The main one, for our
concern, is the "call control" application of telephone switches. Indeed control
functions work in a cooperative manner. In the telephone network all switches are
equal, there is no centralized platform controlling the setup of a call or its release.
Each switch works on a peer-to-peer basis to achieve a global service. It is this
special cooperative nature of control activities, and of the lack of a theoretical base
for this new type of computing, which leads “Call control applications” to be
developed as very complicated ad hoc solutions.

However we may identify some key subjects for research in cooperative
computing that are fundamental to control plane software:

- Cooperative computing requires information sharing between partners. In the
control plane, this Information sharing is called "signaling". It derives that Signaling
research is not merely a research problem for telephony; it is a fundamental
cooperative computing research problem.

- Cooperative computing requires the setup of Associations between the
partners: each process involved in a service session has pointers to his partner
processes. All pointers, put together, form an association tree that gives a global
view of the service session.

- Cooperative computing requires policies for the distribution of decision
authorities. As there is no central control point, all entities are equal. The difficulty
is to decide which entity should take a decision at a given time.

4 Rony Chahine1 and Claude Rigault2

- Cooperative computing requires behavior models for the partners. A partner
should be aware of the effects of his actions in the other partners. Each partner
should have a behavior model of the partners with whom he cooperates. In telephony
such behavior models are referred to as “call models”.

- Trust and security. Authentication and ciphering are required in order to have a
safe communication between two cooperating partners.

This list of research problems is certainly not exhaustive, but is sufficient to
understand the complexity of control plane activities. The rest of this paper
concentrates on the signaling problem.

3 Global Control plane requirement and candidate signaling
mechanisms

3.1 The requirement for a global control plane

A service may be designed as a composition of various service components
hosted by different service providers. For example in a bank call center, Bob has a
user interface on his PC which allows him to search customers profile and to call
them directly from his PC. The Profile-lookup component and the call component
are provided by two different service providers and are integrated together to build a
richer service with a single user interface. We call this a "multi-provider service".
Let’s assume further that when a customer calls Bob on his fixed office phone, Bob
receives a screen popup on his PC with the customer profile. If Bob is away from his
office, he may want to have the calling customer profile displayed on his PDA and
take the call from his mobile phone. The service that was available in the bank
private network is now extended across several networks. We call it a "cross-
network" service. Today, signaling paths are missing both for multi-provider and
cross-network services. Partial solutions do exist: web services or other types of
middleware achieve some multi-provider services, but they do not apply to
heterogeneous networks. Cross-network services require signaling gateways to do
the translation from a signaling protocol to another. Cross-network services are
considered in [4-7] for a limited set of services and in a more general, but very
centralized manner by [8]. The requirements of multi-provider and cross-network
services are very difficult to satisfy with existing control plane concepts. We
therefore propose enhanced mechanisms that would achieve cross-network
compatibility and extend a same “global” control plane over different networks and
different component providers to achieve an easier service implementation.

3.2 Candidate signaling methods

During a service instance, control processes store their Call Instance Data (CID)
in a temporary memory page that we call a local context. This memory page is
released when the service instance is terminated. All the partners of a same service

THE GENERIC CONTEXT SHARING PROTOCOL GCSP 5

instance share the information in their local contexts by means of signaling. The
various mechanisms for sharing information have been classified [9] into three
different categories: “data based mechanism”, “command based mechanism” and
“object oriented mechanism”.

In the command based mechanism local context data are private and therefore
modified indirectly by an incoming command. A control process does not have the
rights to read or modify directly a remote context; it uses instead a predefined set of
commands. When a process receives a command it performs the necessary actions
and modifies its local context.

On the contrary, in the data based mechanism, also called variable oriented
approach, cooperating processes in a same service session can read each other CIDs
or local context and thus modify them directly. To make this possible, local context
should have a specific data structure that all processes can understand. A solution is
to organize local context attributes following a tree structure, like a SNMP MIB, or
an object oriented structure like the OSI MIB [10]. We will later show that it is
preferable in a cooperative computing environment to use simple commands like Get
and Set to read or modify instance data of a remote process instead of using a wide
set of commands. Of course security is a requirement of such a mechanism: local
contexts can be read only by trusted remote processes. The rights of a process to read
and modify instance data in remote contexts should be set according to trust and
security policies.

Finally in the object-oriented mechanism, processes communicate by invoking
remote objects located on various machines using the client/server architecture.
Examples of this mechanism are web services [11], CORBA [12] and RMI [13]. This
object-oriented mechanism works well for “distributed computing” but may not be
efficient for “cooperative computing” because the intelligence is centralized in the
server.

3.3 Advantages of the data based mechanism

A multi-provider and cross-network service is designed by the association of
heterogeneous components from different service providers. Since new
heterogeneous components will continue to hit the market, future control protocols
and signaling mechanisms should be carefully designed to allow these new
components to cooperate with existing ones, and to allow the initiation of the
operational phase before the design of all control application has been concluded. It
has been shown in [9] chapter 1 that the data based mechanism is well suited for the
design of such protocols and that it will allow building a more generic interface
between heterogeneous components and will provide an easier service
implementation and easier cooperation between network and service providers. Such
a data based mechanism has been used by management protocols like SNMP, ILMI,
CMIP and NetConf [14]. However, because of the unequal management
functionality distribution these protocols are implemented in a centralized
architecture and it is shown in [9] chapter 9 that in a centralized configuration this
Variable Oriented approach (data based mechanism) may be inefficient with respect
to bandwidth, CPU, time and memory. Indeed the management station has to

6 Rony Chahine1 and Claude Rigault2

multiply in an excessive way the Get/Set comments on the various agents of the star
architecture and many authors now favor a command based approach for centralized
management.

Up to now, the command based mechanisms have been the only method used in
signaling. Signaling protocols like SIP [15] or ISUP [16] are all based on the
command based mechanism. However in the cooperative computing situation of the
control plane, a single point only addresses a few entities and does not suffer from
the above inconvenient of data based mechanisms for centralized architectures. This
would favor the simpler and more general data based approach.

Also, in a cooperative computing environment, processes have a behavior model
and a current state. Signaling information will vary with the current state of the
destination process, even if the requested service is the same. Such behavior is also
known by context-sensitivity as described in [17, 18], it enables a software system to
adaptively take different actions in different contexts. For example if the bank call
center administrator sends a fire alarm to the phone of all the employee, depending
on the phone current state, the system will send a text message and a beep sound to
idle phones and a voice message to off hook phones. Data based mechanism is better
suited for “context-sensitivity” in control plane applications because it allows to
read, with a Get request, the current state of the remote partner process and adjust to
this current state by sending adapted information.

We conclude from these arguments that a command based mechanism is the
advisable choice for centralized computing applications while a data based approach
is a better choice for a cooperative computing application: In non centralized control
plane applications data based communication is not a handicap, it offers a generic
and simple interface making multi-provider and cross-network services as well as
context-sensitive services easy to implement.

We therefore propose a new signaling paradigm; more adapted to the cooperative
computing nature of the control plane relying on a data based mechanism. For this
purpose, we define a generic data structure: the “generic context” or “GC”, for the
Call Instance Data of the cooperating processes and a new signaling protocol, the
“Generic Context Sharing Protocol” (GCSP), where signaling is achieved by reading
or modifying data instances in remote contexts with Get/Set/Notify commands under
trust and security restrictions.

4 Generic Context overview

The generic context GC is the data structure given to CIDs in all the contexts of
the participating processes. It is similar to an SNMP MIB. As a detailed description
of the generic context would be too long to develop here and would justify a
complete paper, we only give a small outline, preferring to focus on GCSP
mechanisms in part 5.

We use the SIMPSON [19] model to organize the GC. The SIMPSON model
(Signaling Model for Programmable Services over Networks) gives a structure to
service and control plane sub-functions. It takes in account multi-provider services as
it includes client sub-services, provider (integrator) sub-services and component sub-

THE GENERIC CONTEXT SHARING PROTOCOL GCSP 7

services. All local contexts involved in a same session have the same Generic
Context data structure. A Generic Context is opened at session initiation and erased
at session termination; it persists only during the service session. The data structure
schema of the Generic Context is designed according to an object-oriented approach,
as done in the Common Information Model (CIM) [20]. Two control applications
that use GCSP communicate by a data based mechanism and there is no remote
method invocation as in object oriented communication. Data may be exchanged via
Get/Set/Notify commands as in SNMP [21]. Structure and relationships between data
in a generic context are described using an object-oriented approach. While the
SNMP MIB has a hierarchical tree view of all managed objects; the simplicity of a
MIB prohibits defining more complex data and expressing relations between data
elements. The Generic Context offers a richer syntax for representing control
information and control objects relationships. It has an object-oriented approach to
allow a greater flexibility in its design. The operations and notifications may be
described at a high level of abstraction which makes standardization easier and errors
less likely [22, 23]. In comparison, MIBs do not allow the same degree of reusability
since they do not support inheritance and lead to the addition of duplicated schema
entries as models grow up to support more vendors and more device/application
types.

The Generic Context maintains at the application level a persistent
communication between partner processes. For this, a process holds in its Generic
Context an association, or pointer, which binds it to a partner process with which it
has working relations. This association allows processes to mutually address each
other; a process can send requests and notifications at any time to a partner process
during a service session. Security is taken into account in the Generic Context
design. A dedicated trust and security object in the Generic Context handles the
authentication, access rights and ciphering issues

5 Generic Context Sharing Protocol mechanisms

5.1 Protocol overview

GCSP triggers remote operations using Get/Set commands. Instead of sending a
command to make a remote process execute an action, we modify a CID in the
remote Generic Context with a Set command. When the remote process detects the
change, it executes the action. A prior GET may be done to know the current value
but it is not mandatory. The prior GET may be useful for performing context-
sensitive actions. For example, rather than sending a Make Call (a, b) command to a
remote entity, a GET downloads the concerned part of the Generic Context of that
entity, we set the “Make Call” attribute to “true”, “calling” to “a” and “called” to
“b”, then upload the object to the remote context with a SET. Upon detection of the
change the remote entity makes the call. A direct Set with the necessary attributes
would have also made the call.

8 Rony Chahine1 and Claude Rigault2

With GCSP a process can read the current state of a partner and its behavior
model before taking a further action and thus can predict its future state. To respect
the performance requirement of signaling GCSP should be the least verbose and
should allow the use of signaling transactions. Several modifications may be done on
a context before uploading it. This is equivalent to transactions in MEGACO [24]
and TCAP [25] which are essential to the protocol performances [26]. Renowned
mechanisms may be used to increase performance. As in an SNMP MIB, GCs
objects names can be replaced by numbers to reduce the size of GCSP messages.
Study [9] shows that data based mechanism allows to initiate the operational phase
of services before the design of all control applications has been concluded because
it is easier to enrich the protocol stack. GCSP can also be encrypted with an SSL
layer if it runs on TCP. The encapsulation of objects in a Generic Context guaranties
the integrity of an object and protects from unauthorized access [22, 23].

5.2 GCSP mechanisms

GCSP is a text based protocol like HTTP [27] and
SIP. A GCSP frame consists of a header and a
body as shown in figure 1. GCSP is an
application level protocol which uses UDP as SIP
does [28] or could also use the NSIS transport
layer. TCP can be used to support SSL encryption
and firewall traversal. Reliability is assured by
timers in the GCSP protocol stack that handles
messages retransmission.

5.3 Protocol frame

5.3.1 Header
Header lines provide information about the request or the response, or about the
objects sent in the message body. Header lines are in the usual text format, which is
one line per header, of the form "header-name: value", ending with CRLF. It is the
same format used for email and news postings, defined in RFC 822, section 3. We
give hereafter an outline of the different sections of the header.

5.3.1.1 Association
Two GCs of partner processes are
bound together with an association.
A GCSP association is
bidirectional; both processes can
address mutually each other. The
association section in GCSP header
consists of the source (From) and

Association

Generic
Context
Content

Header

Body

Command

General

Sequence

Figure 1. GCSP Frame

Figure 2. Association section lines in a GCSP frame

From: chahine@enst.fr 400854585532112
To: rigault@enst.fr
Source-Context: 102
Destination-Context: 53

THE GENERIC CONTEXT SHARING PROTOCOL GCSP 9

destination (To) addresses (private and/or public), and the source and destination
contexts IDs. Many addresses can be sent in the “From” and “To” fields. This
association is similar to a TCP socket. However GCSP makes the association at the
application level which allows to implement services independently from the
transport protocol.
In figure 2 we give an example of association between two communicating
processes. The “From” field indicates the source addresses, a public address
(chahine@enst.fr) and a private address (400854585532112), while the “To” field
indicates the destination address. Source-Context and Destination-Context are
references of the source and the targeted GC. A context reference is unique within a
single machine like a TCP port.

5.3.1.2 Commands
The command header describes the invoked command. A response is expected

with a response code as in Http. Some commands have to indicate the full path of the
target object in the remote GC. GCSP commands are as follow:
Get. A control process can query data in a remote Generic Context using a Get
command. It must indicate the full path of the targeted part, for example the Generic
Call Control part of the remote GC: Get Context.GenericCallControl lock GCSP/1.0
A lock keyword is mandatory if the control process wants to modify the remote
context. This prevents other control processes of modifying the context before the
initial control process, which made the Get command, uploads it. The lock keyword
is not mandatory for read-only Get command. Following a Get command, a response
is expected. The response indicates its status response. If it is 200 OK, the body of
the response contains the queried Generic Context data: GCSP/1.0 200 OK
Set. A control process can upload a part of a remote Generic Context with a Set
command. It must indicate the full path of the targeted part of the GC. The message
body contains the Generic Context data that should be modified. The remote Generic
Context is unlocked after a Set command or a time out: Set
Context.GenericCallControl GCSP/1.0
Notify. GCSP is a state-full protocol. Control processes may send notifications with
a Notify command. Subscription to notification is done via a Set command. For
example a Detection Point DP is armed by a Set and when a filter criterion matches,
a notification is sent to the concerned partner. The Notify header line indicates the
object raising the notification and the message body contains the notification data.
For example the notification below is sent to an application server after a filter
criteria match. The GCSP body contains data relative to the Filter Criteria object
which is the script ID to execute and the filter criterion priority:
Notify Context. AccessComponent.UserProfile.FilterCriteria GCSP/1.0
Open-Context. To start a process in a remote entity, an Open-Context command is
sent with the Association section filled except for the Destination-Context line. A
new remote process is started which opens a context and answers back with a 200
OK response and put the Source-Context in the Destination-Context line and fills the
Source-Context with the reference of the new Generic Context that has been created.
Close-Context. A communication is ended with a Close-Context command.
Contexts involved are closed and freed from memory. After a process receives a
Close-Context command, it answers back with a 200 OK (if the Generic Context is

10 Rony Chahine1 and Claude Rigault2

Object_1

attr_1
attr_2
attr_n

Object_2

attr_1
attr_2
attr_n

Figure 3. Generic context objects
 schema example

closed) with an embedded Close-Context command to notify the remote process that
there is no more data to be send.
Describe. The skeleton of the Generic Context with its fundamental objects will be
described in another paper. However to provide extensions the describe command
may be used to discover the structure of a new object in a remote GC.
Lookup. Control processes that implement GCSP may communicate with other
control processes using different signaling protocols via signaling mediators. A
signaling mediator is a gateway that translates GCSP to another signaling protocol.
GCSP may cooperate to locate the adequate mediator for a given signaling protocol.

5.3.1.3 Other headers
A sequence number tracks how many messages have been exchanged in a
communication between two GCSP applications or also indicate a transaction
number if any:
Sequence <sequence_number> <transaction_number>
A General header section is present in all GCSP frames. The header lines include:
Content-Type, Content-Encoding, Content-Length, Date, Expiration

5.3.2 Body
A GCSP message may have a body of data sent after the header lines. If so, there
may be header lines to describe the body such as: Content-Type and Content-Length.
When a Get command is sent to a peer process, it usually responds by 200 OK in a
header line and the queried object in the message body. Because SDP [29] does not
take in account the description of an object that encapsulates another object and
because the number of SDP attributes is limited to the alphabet size we use a new
description language shown in the example below. In this example the objects in the
figure 3 are represented as follow in the GCSP message:
<HEADER LINE_1>
<HEADER LINE_n>

<BLANK LINE>

#s: <Object_1>CRLF
attr_1: <value> CRLF
attr_2: <value> CRLF
attr_n: <value> CRLF
#s: <Object_2> CRLF
attr_1: <value> CRLF
attr_2: <value> CRLF
attr_n: <value> CRLF
#e: <Object_2> CRLF
#e: <Object_1> CRLF

6 Related work

Data based mechanisms have been used by management protocols like SNMP,
IMLI and NetConf. They are specifically designed for the centralized architecture of
management and have features that do not make them usable in control applications.
For example, the request ID of the SNMP header which makes an association

THE GENERIC CONTEXT SHARING PROTOCOL GCSP 11

between two entities: the NMS and the agent. This is not what is required in control
softwares where associations are made between 2 or more control processes involved
in a same service session. Other protocols like NetConf are hard to consider in
control software for efficiency reasons since they use an XML syntax for the content
body, encapsulated in RPC messages and transferred by BEEP [30], SSH or SSL
over TCP. While TCP is a reliable transport protocol for management, it is a
handicap for control software because of its three way handshaking at the beginning
that increases the call setup delay. Also some implementation of TCP can have
delays of 6 and 24 seconds in the retransmission of the initial SYN packet. These
reasons made SIP go on UDP and not TCP [28] and keep TCP for firewall traversal
transport-layer security protocol such as TLS [31].

The NSIS working group at the IETF has defined a set of requirements, a
scenario for future signaling protocols [32], and a framework divided into a transport
layer and a signaling layer [2]. The transport layer is a robust layer that will assure
the transport of application signaling in a similar manner as the SS7 network does
with ISUP, MAP and INAP. While most of the work on NSIS Transport Layer is
accomplished, there is still a lot to be done on the signaling applications layer. GCSP
could be a candidate for the NSIS Signaling Layer Protocol for Cooperative
Processes.

As we will see in part 7, GCSP provides a simpler approach to the design of
signaling mediators. Today’s mechanisms to accomplish multi-provider services,
like web services CORBA and RMI, require that the different service components
should all be on the Internet network. With the help of GCSP signaling mediators,
service components may be located on different networks.

7 Validation

We have integrated the GCSP protocol to the Corebridge CTI (Computer
Telephony Integration) applications suite. They consist of a server connected to a
company PBX through the PBX CTI link (SIP, TAPI, CSTA or proprietary) and a
set of CTI applications. A CTI application (phone bar), among many features, allows
searching customers’ profiles in a database, and initiating and handling phone calls.
To initiate a call, the phone bar sends a command to the Corebridge server which
forwards it to the PBX. To take in account the case where PBXs are implemented as
SIP proxies, we have developed a GCSP/SIP signaling mediator. This mediator
receives GCSP commands from the phone bar and sends SIP commands to the SIP
proxy. Reversely, it receives SIP commands from the SIP proxy and sends GCSP
commands to the phone bar. This generic architecture allowed us to support a wide
range of PBXs with less cost of development efforts.

12 Rony Chahine1 and Claude Rigault2

8 Conclusion

In this paper, we have underlined the cooperative computing nature of the control
plane software and we have reached the conclusion that “data based signaling
mechanisms” are better suited than “command based signaling mechanisms” to this
cooperative nature of the control plane. Thus we have provided a brief description of
the Generic Context that structures the common shared contexts and we have given a
detailed description of the new GCSP signaling protocol used to share and modify
GCs data in the control plane. Currently we are working on a SIP/GCSP signaling
mediator, future publications will give more details on this work and the design of
signaling mediators to interface with the various current signaling protocols and
detailed descriptions of the Generic Context.

List of acronyms

BEEP: Block Extensible Exchange Protocol
CID: Call Instance Data
CIM: Common Information Model
CMIP: Common Management Information Protocol
CORBA: Common Object Request Broker Architecture
CSTA: Computer Supported Telephony Applications
GC: Generic Context
GCSP: Generic Context Sharing Protocol
ILMI: Interim Local Management Interface
ISUP: ISDN User Part (SS7)
MIB: Management Information Base
MEGACO: MEdia GAteway COntrol protocol
NETCONF: Network Configuration
NMS: Network Management Station
NSIS: Next Step In Signaling
POTS: Plain Old Telephone Service
RMI: Remote Method Invocation
SDP: Session Description Protocol
SIMPSON: Signaling Model for Programmable Services Over Networks
SIP: Session Initiation Protocol
SNMP: Simple Network Management Protocol
SSD: Service Support Data
TAPI: Telephony Application Programming Interface
TCAP: Transaction Capability Application Part (SS7)

THE GENERIC CONTEXT SHARING PROTOCOL GCSP 13

 References

1. C. Rigault, R. Chahine, Cooperative computing in the control plane; application to NGN
services and control, IFIP MAN 2005

2. IETF RFC 4080, Next Steps in Signaling (NSIS): Framework, June 2005

3. RFC 1213, Management Information Base for Network Management of TCP/IP-based
internets:MIB-II, March 1991

4. Vijay K. Gurbani and Xian-He Sun, Senior Member, IEEE, Terminating Telephony
Services on the Internet

5. IETF RFC 3910: The SPIRITS (Services in PSTN requesting Internet Services) Protocol,
October 2004

6. IETF RFC 2458: Toward the PSTN/Internet Inter-Networking - Pre-PINT
Implementations, November 1998

7. IETF RFC 2848: The PINT Service Protocol: Extensions to SIP and SDP for IP Access to
Telephone Call Services, June 2000

8. Parlay : http://www.parlay.org

9. Aiko Pars, PHD Thesis: Network Management Architectures

10. ISO documents 9595, 9596 and ITU.700, X.711

11. W3C, Web Services Description Language (WSDL) 1.1, 15 march 2001,
http://www.w3.org/TR/wsdl

12. CORBA, www.corba.org

13. William Grosso, Java RMI, O’Reilly, first Edition October 2001

14. IETF draft: http://www.ietf.org/internet-drafts/draft-ietf-netconf-prot-12.txt

15. IETF RFC 3261, Session Initiation Protocol (SIP), June 2002

16. ITU-T Recommendation Q.764, Signalling system No. 7 – ISDN user part signalling
procedures, 12/1999

17. B. Schilit, N. Adams, and R. Want, Context-Aware Computing Applications, Proc. IEEE
Workshop Mobile Computing Systems and Applications, pp. 85-90, 1994.

18. A.K. Dey, Understanding and Using Context, J. Personal and Ubiquitous Computing, vol.
5, no. 1, pp. 4-7, Feb. 2001

19. Astronefs, Network and Telecommunication Global Service Convergence: White paper,
http://www.infres.enst.fr/~rigault/white-paper.pdf

20. Common Information Model (CIM) Standards: http://www.dmtf.org/standards/cim/

21. IETF RFC 1157, Simple Network Management Protocol (SNMP), May 1990

22. S.M. Keller: System Management Information Modelling, IEEE Communications
Magazine, page 38-44, May 1993

23. W. Stallings: SNMP, SNMPv2 and CMIP – The Practical Guide to Network Management
Standards, Addison Wesley

14 Rony Chahine1 and Claude Rigault2

24. IETF RFC 3015, Megaco Protocol Version 1.0, Novembre 2000

25. TCAP ITU-T Q.771_Q775, TCAP: Transaction Capabilities Application Part

26. Philippe Martins, Architecture de contrôle et middleware pour les réseaux de prochaines
générations et évaluation de performances, PHD thesis, ENST Paris, April 2000

27. IETF RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1, June 1999

28. H. Schulzrinne, J. Rosenberg, Signaling for Internet Telephony, February 2, 1998

29. IETF RFC 2327, SDP: Session Description Protocol, April 1998

30. IETF RFC 3080, Block Extensible Exchange Protocol, March 2001

31. IETF RFC 2246, The TLS Protocol Version 1.0, January 1999

32. IETF RFC 3726, Requirements for Signaling Protocols, April 2004

