THE GENERIC CONTEXT SHARING
PROTOCOL GCSP

Application to signaling in a cross-network and
multi-provider environment

Rony Chahintand Claude Rigadit
1 Département informatique et réseaux,
ENST, 46 rue Barrault, 75 013 Paris, France,
Corebridge, 3 rue Saint Philippe du Roule, 75 008 Paris
rony.chahine@enst.fr
2 Département informatique et réseaux,
ENST, 46 rue Barrault, 75 013 Paris, France
GET-Télécom Paris ; LTCI-UMR 5141 CNRS
claude.rigault@enst.fr

Abstract. This paper proposes a new signaling paradigm aed signaling
protocol called the Generic Context Sharing Protocol (QC&P the

construction of a global control plane over present anddiutommunication
networks. After identifying the special nature of the agnplane software
involved in the setup of a conversational service insténexamines the
various mechanisms for information sharing which leads tmewr proposal.
We show that this new data-based protocol is better suitedntool plane
requirements than the present day’'s command-oriented signadiciganisms.
We indicate the basic principles of the protocol and we gibrief description
of the generic context. We show the place of this propogakipresent day
research efforts and we mention a practical implementatse.

Keywords- Control plane, Signaling, Association, Generant€xt, Data
based communication, Cooperating Computing, Signaling Protocol.

2 Rony Chahinel and Claude Rigault2

1 Introduction: From the special nature of control plane
software to new signaling mechanisms

In present and future communication networks, a coptesie is required when
services use a conversational communication paradigm. “@nversational
communication paradigm” we mean that a communicationir@mment is
established before users start to exchange media andihsessablished till an
explicit release is issued. This communication environmeemtersistent, and thus
state-full, during the whole communication sessionrvies based on the
conversational paradigm require dedicated functions {opsetodify and release the
communication environment. We call these dedicated furstiGontrol Functions”
[1], and we define the “control plane” as the set opaficesses that execute control
functions. The emblematic service using the conversatiparadigm is the Plain
Old Telephony Service (POTS) where resources arevessen all participating
switches and are freed when one of the participants hgngs

In the part 2 of this paper, we analyze the specialr@aitithe software that
executes network and service control activities. Weatherize this special nature
as “Cooperative Computing”, and we examine the requiremdntii type of
computing. The requirement of interest for this papéitnfrmation Sharing” by
means of signaling.

In the part 3 of this paper, we consider the differppt@aches to the problem of
signaling between partner entities in the cooperativmputing situation of the
control plane and we come to the conclusion that tireest "command based"
mechanism is not the most efficient approach to igreasing problem and we show
that in a cooperative situation a "data based" approaamoi®e efficient. We
therefore propose a "data based" mechanism for signakulinlg to a paradigm shift
in signaling methods. This proposal is in line withrent control plane research
efforts. It complements the NSIS [2] IETF work as atdbaotion to the NSIS
Signaling Layer in the signaling protocols for cone¢imal services and its relation
to other works will be detailed in the paper. If we cotoeuse a "data based"
mechanism for signaling, it becomes necessary to sidireldhe Call Instance Data
or the content of the dynamic session memories ¢h eartner that we call “Local
Contexts”.

In the part 4 of this paper, we propose a generic datetste, called the Generic
Context, shared by control entities in the same mammenanagement entities share
information in Management Information Bases (MIB) §jd we give an overview
of this generic data structure.

In the part 5 we describe the basic principles of a sigmwaling protocol called
Generic Context Sharing Protocol GCSP, based on tia Ttthsed" mechanism for
signaling.

In the part 6 we show the place that this signaling pobtoould occupy in the
scope of present day research in the control plane gnalisig area.

Finally in the part 7 we give an implementation exanmplBCSP in the case of a
Computer Telephony Integration application

THE GENERIC CONTEXT SHARING PROTOCOL G5 3

2 The special nature of control plane software

Control plane software is a very complicated and cdasi. The origin of this
problem may indeed be traced to the cooperative natwentfol plane software. To
understand this point we should underline that computer sciesg®endivided into
3 main branches: centralized computing, distributed compuird cooperative
computing. InCentralized Computing, a mainframe masters all the processes in a
company. All peripherals are intelligence-less slavexgting orders from a single
Master computer. InDistributed Computing many smaller computers, work
together, specializing on given tasks and providing sotidtgéndependence. This
new computing organization requires communication betweercomputers. The
general solution developed by computer science for distdbabmputing is the
"Client-Server" architecture, based on the "request amglver" communication
paradigm. However, the client server architecture dagsdepart fundamentally
from the former centralized. The client is mosthncerned by customization and
interface problems and the essential service data avidestygic are located in the
central server position.

A radically new solution to the distribution of intelligge on many computers
would be a new kind of computer science call@boperative computing”. In this
scheme there is no central position, all the compuersequal and no one is in a
permanent position to give orders to the others. While manyedéit efforts are
taking place towards the development of a theoretiohltisn for cooperative
computing, (grid computing, peer to peer processing, agentso. generally
accepted theory has been yet proposed. However some exaofiplesrking
cooperative applications have been successfully develdjedmain one, for our
concern, is the "call control" application of telephoswitches. Indeed control
functions work in a cooperative manner. In the telephwetevork all switches are
equal, there is no centralized platform controlling thtesef a call or its release.
Each switch works on a peer-to-peer basis to achievelamlgservice. It is this
special cooperative nature of control activities, antheflack of a theoretical base
for this new type of computing, which leads “Call cohtapplications” to be
developed as very complicated ad hoc solutions.

However we may identify some key subjects for researchcaoperative
computing that are fundamental to control plane software

- Cooperative computing requires information sharing between partners. In the
control plane, this Information sharing is called "sigmg". It derives that Signaling
research is not merely a research problem for telephit is a fundamental
cooperative computing research problem.

- Cooperative computing requires the setup of Associations between the
partners. each process involved in a service session has peitdehis partner
processes. All pointers, put together, form an assogidtee that gives a global
view of the service session.

- Cooperative computing requires policies for the distribution of decision
authorities. As there is no central control point, all entiteee equal. The difficulty
is to decide which entity should take a decision at a givea. ti

4 Rony Chahinel and Claude Rigault2

- Cooperative computing requires behavior models for the partners. A partner
should be aware of the effects of his actions in ttheropartners. Each partner
should have a behavior model of the partners with whewrobperates. In telephony
such behavior models are referred to as “call models”.

- Trust and security. Authentication and ciphering are required in order to have a
safe communication between two cooperating partners.

This list of research problems is certainly not exdtzve, but is sufficient to
understand the complexity of control plane activities. Thst of this paper
concentrates on the signaling problem.

3 Global Control plane requirement and candidate signaling
mechanisms

3.1 Therequirement for aglobal control plane

A service may be designed as a composition of variousceecomponents
hosted by different service providers. For example imr&zall center, Bob has a
user interface on his PC which allows him to seargstarners profile and to call
them directly from his PC. Therofile-lookup component and theall component
are provided by two different service providers and aegnated together to build a
richer service with a single user interface. We dal & "multi-provider service".
Let's assume further that when a customer calls Bobi®fixed office phone, Bob
receives a screen popup on his PC with the customéleptbBob is away from his
office, he may want to have the calling customer prafiplayed on his PDA and
take the call from his mobile phone. The service thas available in the bank
private network is now extended across several netwdahkes.call it a "cross-
network" service. Today, signaling paths are missing bathmfalti-provider and
cross-network services. Partial solutions do exist: sedvices or other types of
middleware achieve some multi-provider services, buty tde not apply to
heterogeneous networks. Cross-network services reqginalisig gateways to do
the translation from a signaling protocol to anoth@ross-network services are
considered in [4-7] for a limited set of services and imae general, but very
centralized manner by [8]. The requirements of multi-provialed cross-network
services are very difficult to satisfy with existing twh plane concepts. We
therefore propose enhanced mechanisms that would achiess-natwork
compatibility and extend a same “global” control planeradifferent networks and
different component providers to achieve an easier senviplementation.

3.2 Candidate sgnaling methods

During a service instance, control processes staie @all Instance Data (CID)
in a temporary memory page that we calloeal context. This memory page is
released when the service instance is terminatedh@lpartners of a same service

THE GENERIC CONTEXT SHARING PROTOCOL GCSP 5

instance share the information in their local cortexy means of signaling. The
various mechanisms for sharing information have beersifitas [9] into three
different categories: “data based mechanism”, “commanddbagechanism” and
“object oriented mechanism”.

In the command based mechanism local context data are private and therefore
modified indirectly by an incoming command. A controlq@ss does not have the
rights to read or modify directly a remote contexyjges instead a predefined set of
commands. When a process receives a command it perfioermecessary actions
and modifies its local context.

On the contrary, in thelata based mechanism, also called variable oriented
approach, cooperating processes in a same service sessiogad each other CIDs
or local context and thus modify them directly. To make plossible, local context
should have a specific data structure that all processesraderstand. A solution is
to organize local context attributes following a treecttire, like a SNMP MIB, or
an object oriented structure like the OSI MIB [10]. Wil later show that it is
preferable in a cooperative computing environment to usglsicommands like Get
and Set to read or modify instance data of a remotegsdastead of using a wide
set of commands. Of course security is a requirement bf sunechanism: local
contexts can be read only by trusted remote processesights of a process to read
and modify instance data in remote contexts should bacsetrding to trust and
security policies.

Finally in theobject-oriented mechanism, processes communicate by invoking
remote objects located on various machines using thet/skever architecture.
Examples of this mechanism are web services [11], CORBRand RMI [13]. This
object-oriented mechanism works well for “distributed conmglitbut may not be
efficient for “cooperative computing” because the ingelhce is centralized in the
server.

3.3 Advantages of the data based mechanism

A multi-provider and cross-network service is designed hwy dssociation of
heterogeneous components from different service providSmce new
heterogeneous components will continue to hit the mafilkieire control protocols
and signaling mechanisms should be carefully designed tov dhese new
components to cooperate with existing ones, and to alt@vinitiation of the
operational phase before the design of all controlicgijpn has been concluded. It
has been shown in [9] chapter 1 that the data based machianivell suited for the
design of such protocols and that it will allow buildingnare generic interface
between heterogeneous components and will provide anereasrvice
implementation and easier cooperation between netwatlsenvice providers. Such
a data based mechanism has been used by management ptid@&iVIP, ILMI,
CMIP and NetConf [14]. However, because of the unequal gemment
functionality distribution these protocols are implemdnten a centralized
architecture and it is shown in [9] chapter 9 that inr@traéized configuration this
Variable Oriented approach (data based mechanism) may be inefficightrespect
to bandwidth, CPU, time and memory. Indeed the managentaidnshas to

6 Rony Chahinel and Claude Rigault2

multiply in an excessive way the Get/Set commentshervarious agents of the star
architecture and many authors now favor a command bagedazh for centralized
management.

Up to now, the command based mechanisms have beenlyhraethod used in
signaling. Signaling protocols like SIP [15] or ISUP J[1&e all based on the
command based mechanism. However in the cooperative cogngittiation of the
control plane, a single point only addresses a few enttiel does not suffer from
the above inconvenient of data based mechanisms foalieed architectures. This
would favor the simpler and more general data based agpro

Also, in a cooperative computing environment, processes adehavior model
and a current state. Signaling information will varythwthe current state of the
destination process, even if the requested service sathe. Such behavior is also
known by context-sensitivity as described in [17, 1i8niables a software system to
adaptively take different actions in different contexts: &le if the bank call
center administrator sends a fire alarm to the plofradl the employee, depending
on the phone current state, the system will serextamtessage and a beep sound to
idle phones and a voice message to off hook phonesbBs¢al mechanism is better
suited for “context-sensitivity” in control plane applicas because it allows to
read, with a Get request, the current state of thetepartner process and adjust to
this current state by sending adapted information.

We conclude from these arguments that a command basdthmen is the
advisable choice for centralized computing applicatiohgeva data based approach
is a better choice for a cooperative computing apjdicaln non centralized control
plane applications data based communication is not aidegmdt offers a generic
and simple interface making multi-provider and cross-netvgerkices as well as
context-sensitive services easy to implement.

We therefore propose a new signaling paradigm; more abiapthe cooperative
computing nature of the control plane relying on a dasgdanechanism. For this
purpose, we define a generic data structure: the “geceniext” or “GC”, for the
Call Instance Data of the cooperating processes andavasigaaling protocol, the
“Generic Context Sharing Protocol” (GCSP), where signaling is achieved by reading
or modifying data instances in remote contexts with&tNotify commands under
trust and security restrictions.

4 Generic Context overview

The generic context GC is the data structure given Bs @1 all the contexts of
the participating processes. It is similar to an SNMIB.M\s a detailed description
of the generic context would be too long to develop herevemdd justify a
complete paper, we only give a small outline, preferringfdcus on GCSP
mechanisms in part 5.

We use the SIMPSON [19] model to organize the GC. SWPSON model
(Signaling Model for Programmable Services over Nekgpgives a structure to
service and control plane sub-functions. It takesgoant multi-provider services as
it includes client sub-services, provider (integrator)}settvices and component sub-

THE GENERIC CONTEXT SHARING PROTOCOL GCSP 7

services. All local contexts involved in a same sesdiave the same Generic
Context data structure. A Generic Context is openedsatoseinitiation and erased
at session termination; it persists only during theisersession. The data structure
schema of the Generic Context is designed according dbjaot-oriented approach,
as done in the Common Information Model (CIM) [20]. dhaontrol applications
that use GCSP communicate by a data based mechanisrhesadst no remote
method invocation as in object oriented communicati@ta®nay be exchanged via
Get/Set/Notify commands as in SNMP [21]. Structureratationships between data
in a generic context are described using an object-edeapproach. While the
SNMP MIB has a hierarchical tree view of all manageeabj the simplicity of a
MIB prohibits defining more complex data and expressingioela between data
elements. The Generic Context offers a richer syritaxrepresenting control
information and control objects relationships. It hasobject-oriented approach to
allow a greater flexibility in its design. The opeoat and natifications may be
described at a high level of abstraction which makes stdizelion easier and errors
less likely [22, 23]. In comparison, MIBs do not allove ttame degree of reusability
since they do not support inheritance and lead to thei@ddit duplicated schema
entries as models grow up to support more vendors and muiee/deplication
types.

The Generic Context maintains at the application legel persistent
communication between partner processes. For thisp@gs holds in its Generic
Context an association, or pointer, which binds it fraeiner process with which it
has working relations. This association allows processesutually address each
other; a process can send requests and notificaticarsydtme to a partner process
during a service session. Security is taken into accourthé Generic Context
design. A dedicated trust and security object in the Genendegtohandles the
authentication, access rights and ciphering issues

5 Generic Context Sharing Protocol mechanisms

5.1 Protocol overview

GCSP triggers remote operations using Get/Set commiastisad of sending a
command to make a remote process execute an action, dié/ moCID in the
remote Generic Context with a Set command. When theteeprocess detects the
change, it executes the action. A prior GET may be dohkadw the current value
but it is not mandatory. The prior GET may be useful for performing context-
sensitive actions. For example, rather than sendingleMall (a, b) command to a
remote entity, a GET downloads the concerned parteofaeneric Context of that
entity, we set the “Make Call” attribute to “true”,diting” to “a” and “called” to
“b”, then upload the object to the remote context &tSBET. Upon detection of the
change the remote entity makes the call. A direct $iét tve necessary attributes
would have also made the call.

8 Rony Chahinel and Claude Rigault2

With GCSP a process can read the current state of mepamd its behavior
model before taking a further action and thus can predi¢tfure state. To respect
the performance requirement of signaling GCSP should ddetist verbose and
should allow the use of signaling transactions. Seweadlifications may be done on
a context before uploading it. This is equivalent to &atisns in MEGACO [24]
and TCAP [25] which are essential to the protocol peréorces [26]. Renowned
mechanisms may be used to increase performance. As 8NBMP MIB, GCs
objects names can be replaced by numbers to reduce thefSECSP messages.
Study [9] shows that data based mechanism allows toténiti@ operational phase
of services before the design of all control appla@eatihas been concluded because
it is easier to enrich the protocol stack. GCSP can bé encrypted with an SSL
layer if it runs on TCP. The encapsulation of objétta Generic Context guaranties
the integrity of an object and protects from unauthdraecess [22, 23].

5.2 GCSP mechanisms

GCSP is a text based protocol like HTTP [27] a
SIP. A GCSP frame consists of a header anfl a| Association
body as shown in figure 1. GCSP is an Command
application level protocol which uses UDP as SIH Header
does [28] or could also use the NSIS transpprt Sequence

—

layer. TCP can be used to support SSL encryption
. S General
and firewall traversal. Reliability is assured hy
timers in the GCSP protocol stack that handles :
messages retransmission. Senere Body
Content

Figure 1. GCSP Frame

5.3 Protocol frame

531 Header

Header lines provide information about the request errédsponse, or about the
objects sent in the message body. Header lines ane astial text format, which is
one line per header, of the form "header-name: vakrafing with CRLF. It is the
same format used for email and news postings, defined inG2BCsection 3. We
give hereafter an outline of the different sectionthefheader.

53.1.1 Association

Two GCs of partner processes a
bound together with an associatiof.| From: chahine@enst.fr 400854585532112
A GCSP association ig | Torigault@enstir

bidirectional; both processes cap| Sorce-context: 102

1al ! ’ p Destination-Context: 53
address mutually each other. The
association section in GCSP headefFigure 2. Association section lines in a GC e

consists of the source (From) and

THE GENERIC CONTEXT SHARING PROTOCOL GCSP 9

destination (To) addresses (private and/or public), aadstiurce and destination
contexts IDs. Many addresses can be sent in the “Fraamd” “To” fields. This
association is similar to a TCP socket. However G@@Res the association at the
application level which allows to implement serviceslependently from the
transport protocol.

In figure 2 we give an example of association between ¢emmunicating
processes. The “From” field indicates the source adesess public address
(chahine@enst.fr) and a private address (400854585532112), wait@dh field
indicates the destination address. Source-Context antin&ém-Context are
references of the source and the targeted GC. A corffiexence is unique within a
single machine like a TCP port.

5.3.1.2 Commands

The command header describes the invoked command. Anses expected
with a response code as in Http. Some commands hawdi¢ate the full path of the
target object in the remote GC. GCSP commands ard@s:fo
Get. A control process can query data in a remote Geneaite®t using a Get
command. It must indicate the full path of the targetet] fix example the Generic
Call Control part of the remote GC: Get Context.Ge@allControl lock GCSP/1.0
A lock keyword is mandatory if the control process wantsntmlify the remote
context. This prevents other control processes of fyindi the context before the
initial control process, which made the Get commapthads it. The lock keyword
is not mandatory for read-only Get command. FollgnénGet command, a response
is expected. The response indicates its status respbitse. 200 OK, the body of
the response contains the queried Generic Context@atapP/1.0 200 OK
Set. A control process can upload a part of a remote Gei@ontext with a Set
command. It must indicate the full path of the targetetigfghe GC. The message
body contains the Generic Context data that should befisthdThe remote Generic
Context is wunlocked after a Set command or a time oGet
Context.GenericCallControl GCSP/1.0
Notify. GCSP is a state-full protocol. Control processeg seamd naotifications with
a Notify command. Subscription to notification is dovia a Set command. For
example a Detection Point DP is armed by a Set and wfiker riterion matches,
a notification is sent to the concerned partner. Nbgfy header line indicates the
object raising the natification and the message bodyagw the notification data.
For example the notification below is sent to an appbo server after a filter
criteria match. The GCSP body contains data relatvehé Filter Criteria object
which is the script ID to execute and the filter eid@e priority:
Notify Context. AccessComponent.UserProfile.Filter&@ia GCSP/1.0
Open-Context. To start a process in a remote entity, an Open-&bntenmand is
sent with the Association section filled except foe Destination-Context line. A
new remote process is started which opens a contdxaraswers back with a 200
OK response and put the Source-Context in the Destinatiategt line and fills the
Source-Context with the reference of the new Genasid€xt that has been created.
Close-Context. A communication is ended with a Close-Context command.
Contexts involved are closed and freed from memory.rAdt@rocess receives a
Close-Context command, it answers back with a 200 ©Ot€i Generic Context is

10 Rony Chahinel and Claude Rigault2

closed) with an embedded Close-Context command to ribgfyemote process that
there is no more data to be send.

Describe. The skeleton of the Generic Context with its fundaadeoijects will be
described in another paper. However to provide extensi@ndeabcribe command
may be used to discover the structure of a new objectemate GC.

Lookup. Control processes that implement GCSP may commeniwéh other
control processes using different signaling protocass signaling mediators. A
signaling mediator is a gateway that translates GCSdther signaling protocol.
GCSP may cooperate to locate the adequate mediatogif@rasignaling protocol.

5.3.1.3 Other headers

A sequence number tracks how many messages have beeangedhin a
communication between two GCSP applications or alsocateli a transaction
number if any:

Sequence <sequence_number> <transaction_number>

A General header section is present in all GCSPdsarhe header lines include:
Content-Type, Content-Encoding, Content-Length, Datpirktion

532 Body

A GCSP message may have a body of data sent aftbetiter lines. If so, there

may be header lines to describe the body such ase@ehype and Content-Length.

When a Get command is sent to a peer process, it ysestionds by 200 OK in a

header line and the queried object in the message bedguBe SDP [29] does not
take in account the description of an object that encafesubnother object and
because the number of SDP attributes is limited tcatpleabet size we use a new
description language shown in the example below. In thimpbeathe objects in the

figure 3 are represented as follow in the GCSP message:

<HEADER LINE_1>
<HEADER LINE_n> Object_1
<BLANK LINE>

attr_1 -
#s: <Object_1>CRLF attr 2 Object_2
attr_1: <value> CRLF attr n
attr_2: <value> CRLF — attr_1
attr_n: <value> CRLF attr_2
#s: <Object_2> CRLF attr_n
attr_1: <value> CRLF
attr_2: <value> CRLF Figure 3. Generic context objects
attr_n: <value> CRLF schema example
#e: <Object_2> CRLF

#e: <Object_1> CRLF

6 Reated work

Data based mechanisms have been used by management prikec8NMP,
IMLI and NetConf. They are specifically designed for tdeatralized architecture of
management and have features that do not make them usablariol applications.
For example, the request ID of the SNMP header which makeassociation

THE GENERIC CONTEXT SHARING PROTOCOL GCSP 11

between two entities: the NMS and the agent. This isvhat is required in control
softwares where associations are made between 2 eraowirol processes involved
in a same service session. Other protocols like N#gt@oe hard to consider in
control software for efficiency reasons since theg an XML syntax for the content
body, encapsulated in RPC messages and transferred by BEERS$H or SSL
over TCP. While TCP is a reliable transport protofml management, it is a
handicap for control software because of its three wagldteaking at the beginning
that increases the call setup delay. Also some impleatien of TCP can have
delays of 6 and 24 seconds in the retransmission of ttigl iBYN packet. These
reasons made SIP go on UDP and not TCP [28] and keep T@Reveall traversal
transport-layer security protocol such as TLS [31].

The NSIS working group at the IETF has defined a set of rements, a
scenario for future signaling protocols [32], and aneavork divided into a transport
layer and a signaling layer [2]. The transport layes i®bust layer that will assure
the transport of application signaling in a similar mareeethe SS7 network does
with ISUP, MAP and INAP. While most of the work on I$STransport Layer is
accomplished, there is still a lot to be done onsthjpaling applications layer. GCSP
could be a candidate for the NSIS Signaling Layer Protéaol Cooperative
Processes.

As we will see in part 7, GCSP provides a simplerreggh to the design of
signaling mediators. Today's mechanisms to accomplisti-pralvider services,
like web services CORBA and RMI, require that the déifé service components
should all be on the Internet network. With the helgs@SP signaling mediators,
service components may be located on different networks.

7 Validation

We have integrated the GCSP protocol to the Corebrid@é (Computer
Telephony Integration) applications suite. They consish server connected to a
company PBX through the PBX CTI link (SIP, TAPI, CSTA oogrietary) and a
set of CTl applications. A CTI application (phone barjiong many features, allows
searching customers’ profiles in a database, and ingiaind handling phone calls.
To initiate a call, the phone bar sends a commarttiedCorebridge server which
forwards it to the PBX. To take in account the caser&8Xs are implemented as
SIP proxies, we have developed a GCSP/SIP signalingatoediThis mediator
receives GCSP commands from the phone bar and séAdi®mands to the SIP
proxy. Reversely, it receives SIP commands from the@BtRy and sends GCSP
commands to the phone bar. This generic architectloweal us to support a wide
range of PBXs with less cost of development efforts.

12 Rony Chahinel and Claude Rigault2

8 Conclusion

In this paper, we have underlined the cooperative comguitature of the control

plane software and we have reached the conclusion th&éd tgesed signaling

mechanisms” are better suited than “command based sigmaéchanisms” to this

cooperative nature of the control plane. Thus we haveda®a brief description of

the Generic Context that structures the common shargéxts and we have given a
detailed description of the new GCSP signaling protocetl us share and modify
GCs data in the control plane. Currently we are wgrkin a SIP/GCSP signaling
mediator, future publications will give more details bistwork and the design of
signaling mediators to interface with the various currgignaling protocols and

detailed descriptions of the Generic Context.

List of acronyms

BEEP: Block Extensible Exchange Protocol

CID: Call Instance Data

CIM: Common Information Model

CMIP: Common Management Information Protocol
CORBA: Common Object Request Broker Architecture
CSTA: Computer Supported Telephony Applications
GC: Generic Context

GCSP: Generic Context Sharing Protocol

ILMI: Interim Local Management Interface

ISUP: ISDN User Part (SS7)

MIB: Management Information Base

MEGACO: MEdia GAteway COntrol protocol
NETCONF: Network Configuration

NMS: Network Management Station

NSIS: Next Step In Signaling

POTS: Plain Old Telephone Service

RMI: Remote Method Invocation

SDP: Session Description Protocol

SIMPSON: Signaling Model for Programmable Services Miegtworks
SIP: Session Initiation Protocol

SNMP: Simple Network Management Protocol

SSD: Service Support Data

TAPI: Telephony Application Programming Interface
TCAP: Transaction Capability Application Part (SS7)

THE GENERIC CONTEXT SHARING PROTOCOL GCSP 13

References

1. C. Rigault, R. Chahine, Cooperative computing in the coptesie; application to NGN
services and control, IFIP MAN 2005

2. IETF RFC 4080, Next Steps in Signaling (NSIS): Framewduke 2005

3. RFC 1213, Management Information Base for Network Manageaidl CP/IP-based
internets:MIB-II, March 1991

4. Vijay K. Gurbani and Xian-He Sun, Senior Member, IEEE;minating Telephony
Services on the Internet

5. IETF RFC 3910: The SPIRITS (Services in PSTN requestingnett&ervices) Protocol,
October 2004

6. IETF RFC 2458: Toward the PSTN/Internet Inter-Networkinge-PINT
Implementations, November 1998

7. IETF RFC 2848: The PINT Service Protocol: Extensions Roa®ld SDP for IP Access to
Telephone Call Services, June 2000

8. Parlay : http://www.parlay.org
9. Aiko Pars, PHD Thesis: Network Management Architecture
10.ISO documents 9595, 9596 and ITU.700, X.711

11.W3C, Web Services Description Language (WSDL) 1.1, 15m2001,
http://www.w3.org/TR/wsdl

12.CORBA, www.corba.org

13. William Grosso, Java RMI, O'Reilly, first Editiond@ber 2001

14. I[ETF draft: http://www.ietf.org/internet-drafts/draétf-netconf-prot-12.txt
15. [ETF RFC 3261, Session Initiation Protocol (SIP), June 2002

16. ITU-T Recommendation Q.764, Signalling system No. 7 — I$B& part signalling
procedures, 12/1999

17. B. Schilit, N. Adams, and R. Want, Context-Aware Compu#ipglications, Proc. IEEE
Workshop Mobile Computing Systems and Applications, pp. 85-90, 1994.

18. A.K. Dey, Understanding and Using Context, J. PersonaUbiglitous Computing, vol.
5, no. 1, pp. 4-7, Feb. 2001

19. Astronefs, Network and Telecommunication Global Ser@igevergence: White paper,
http://www.infres.enst.fr/~rigault/white-paper.pdf

20. Common Information Model (CIM) Standards: http://www.dotj/standards/cim/
21.IETF RFC 1157, Simple Network Management ProtocolM8IN May 1990

22. S.M. Keller: System Management Information Modellifig.E Communications
Magazine, page 38-44, May 1993

23. W. Stallings: SNMP, SNMPv2 and CMIP — The Practicaid® to Network Management
Standards, Addison Wesley

14 Rony Chahinel and Claude Rigault2

24. |[ETF RFC 3015, Megaco Protocol Version 1.0, Novembre 2000
25. TCAP ITU-T Q.771_Q775, TCAP: Transaction Capabilities Aggilon Part

26. Philippe Martins, Architecture de contréle et middlewaoar les réseaux de prochaines
générations et évaluation de performances, PHD thes&T Fdris, April 2000

27.IETF RFC 2616, Hypertext Transfer Protocol -- HTTP/1uhe]1999

28. H. Schulzrinne, J. Rosenberg, Signaling for Internet Telepteebruary 2, 1998
29. IETF RFC 2327, SDP: Session Description Protocol,| A998

30. IETF RFC 3080, Block Extensible Exchange Protocol, March 2001

31. IETF RFC 2246, The TLS Protocol Version 1.0, January 1999

32. IETF RFC 3726, Requirements for Signaling Protocols,| 2004

