An Application of a Theorem Prover

Abstract
This work uses the specification of the type interval in OBJ3 to prove some
properties of the interval probability. OBJ3 is a functional language and also
includes mechanisms for theorem proving.

1 Introduction

One of the most important claims of the functional programming paradigm is program
provability. Due to the simple syntax ans well defined semantics programs written in
functional languages are easier to prove correct than its imperative counterparts. On
the other hand, ordinary computer arithmetic, or floating-point arithmetic brings within
unreliability on arithmetic representation and operations.

Functional languages have for long worried about this aspect and has a tradition
of proposing interesting solutions such as LISP rationals and Lazy reals [CCCL 95,
CCL 95]. We advocate the natural merge between functional languages and interval
arithmetic [LIN 95]. One of the most important features of interval arithmetic in rela-
tion to its predecessors is efficiency.

The introduction of the type interval into a programming language, has always had
the main goal of solving algorithms with verified validation. This work uses OBJ3
[GOG 93] to formalize the type interval through some of its algebraic and topological
properties. OBJ3 is a functional language and also includes mechanisms for theorem
proving. The contribution of this article consists in using an algebraic language to for-
mally specify the type interval and to perform mechanical reasoning, and in applying that
specification to evaluate interval probabilities and to prove automatically propositions
related to the interval probability.

Interval mathematics [MOO 66, MOO 79] is an alternative for solving numerical
problems related to lack of accuracy in data, roundoff errors, truncation errors and prop-
agation of errors in a sequence of arithmetic operations. Probability theory [BUR 72,
CHU 74] and interval mathematics are classic approaches for representing imperfection
in the information. The first is related to random problems, the second to numerical
problems.

As an example, considerer the representation of 1/3 with four significant digits. The
rouding for the nearest is 0.3333, but this value can be substituded by the interval
[0.3333,0.3334], using the directed roundings [KM 81]. This interval seems more inacu-
rate than the real value but it is more reliable because it shows the present degree of
incertainty. It also shows that 0.3333 is an underestimation of the actual value. The
interval representation provides information about the computed value what a single
number can not do.



2 An Overview of OBJ3

OBJ3 is the latest in a series of OBJ systems, all based upon first order equational logic.
A detailed description of OBJ3 can be found in [GOG 93]. In this section it is given a
brief overview of the system (based on Release 2).

OBJ3 is a general-purpose declarative language, especially useful for specification and
prototyping. A specification in OBJ3 is a collection of modules of two kinds: theories and
objects. A theory has loose semantics, in the sense that it defines a variety of models.
An object has tight or standard semantics; it defines, up to isomorphism, a specific
model—its initial algebra. For example, the usual specification of the natural numbers
as an object would describe precisely what it is understood by the natural numbers. As
a theory, it would describe any model that satisfies the required properties; for instance,
integers would be a model. One of the consequences of the distinction between a theory
and an object is that it is valid to use induction for an object, but not for a theory.

A module (an object or a theory) is the unit of a specification. It comprises a signature
and a set of (possibly conditional) equations—the axioms. The equations are regarded
as rewrite rules and computation is accomplished by term rewriting, in the usual way.

An elaborate notation for defining signatures is provided. As OBJ3 is based upon
order sorted algebra it provides a notion of subsorts which is extremely convenient in
practice. For example, by declaring Integer as a subsort of Float no conversion function
is needed to turn an integer into a float. Sorts and subsorts are declared respectively
by sorts (SortldlList) . or sort (SortldList) ., subsort (Sort) < (Sort) or subsorts
(SortList) < (SortList).. ..

A general mixfix syntax can be used to define operators; users can define any syntax
including prefix, posfix and infix. The argument and value sorts of an operator are
declared when its syntactic form is declared. The general syntax for an operator is op
(OpForm) : (SortList) => (Sort) .; in this paper, it is used names for operators which
coincide with the IATpXrepresentation of the desired mathematical symbols. This makes
the encoding in OBJ3 easier to understand.

Moreover, operators may have attributes describing useful properties such as associa-
tivity, commutativity and identity. This makes possible to document the main properties
of a given operator at the declaration level. As a consequence, the number of equations
that need to be input by the user is reduced considerably in some cases. Most impor-
tantly, OBJ3 provides rewriting modulo these attributes.

Modules may be parameterised by theories which define the structure and properties
required of an actual parameter for meaningful instantiation. The instantiation of a
generic module requires a view—a mapping from the entities in the requirement theory to
the entities in the actual parameter (module). As a simple example, an object to describe
sets of arbitrary elements, say SET, should be parameterised by a theory which requires
the argument module to have (at least) one sort. Then this module can instantiated to
obtain sets of elements of the desired sort.

Apart from the mechanisms for defining generic modules and instantiating them, OB-
J3 provides means for modules to import other modules and for combining modules. For
example, A + B creates a new module which combines the signature and the equations
of A and B.

OBJ3 can also be used as a theorem prover. In particular, computation is accom-



plished by term rewriting which is a widely accepted method of deduction. If the rewrite
rules of the application theory are confluent (or Church-Rosser) and terminating, the
exhaustive application of the rules works as a decision procedure for the theory: the e-
quivalence of two expressions can always be determined by reducing both to normal form
(an expression that can be reduced no longer); the equivalence holds if the two normal
forms are (syntactically) the same. This proof mode is normally called automatic, and
is supported by OBJ3. The strategy for theorem proving consists in showing that all
reductions in the proof score (code for a proof) evaluate to true.

Unfortunately, applications in general do not enjoy the properties above. As a con-
sequence, automatic term rewriting may fail to reduce two equivalent expressions to the
same normal form, or the process may even fail to terminate. Therefore there is the need
for a mechanism for applying rules in a controlled way. OBJ3 supports the step-by-step
application of rewrite rules either forward (from left to right) or backward (from right
to left).

According to [GOG 93] OBJ3 an E-strategy is a sequence of integers in parentheses
given as an operator attribute following the keyword strat; the following example from

[GOG 93]

op _+_: Int Int -> Int [strat ( 1 2 0 )]

indicates that +_on Int has strategy (1 20 ), i.e., this means that the system evaluates
both arguments before to add them. OBJ3 does lazy evaluation in two ways. First,
omitting a given argument number from the strategy; secondly, giving a negative number
in a strategy to indicate that the j'* argument is to be evaluated only on demand.

3 The type interval

An interval of reals, now on called an interval for short, is a new kind of number
[MOO 66, MOO 79]. The set of the intervals is called IIR. As can be seen below,
for this set are defined arithmetic operations, width, distance and absolute value; ad-
ditionally, an interval is also a set and then operations defined over sets are also valid
between intervals. Beyond these features, intervals carry out roundoff errors when used
in numerical computations. In computers it is possible to compute intervals containing
exact real arithmetic results by rounding the endpoints of the intervals computed by
the machine [KM 81]. Applications of intervals can be used in several branches of the
science. The set IIR may be furnished with the arithmetic operations +, —, - and /
defined as follows (see [MOO 66, MOO 79, AH 83] for more details).

An interval is the set
[a,b) ={zr € R|a <z <b}.

Intervals are represented by capital letter. So X = [2.3,4.2] € 1IR.
Let X =[xy, 23], Y = [y1,y2] € Z = [21, 22] be elements of the set IIR.

X=Y if and only if 1 = y; and x; = y3. This relation is reflexive, antisymmetric and
transitive.



The negative of the interval X is:
—X = —[ay,za] =[—ag, ] ={z e R | —2; < 2 < —a1}.
and the reciprocal:
1/ X ={l/z |2 €R,0¢& X}.
The arithmetic operations over IR are defined by:
X+Y =[a14+y1, 22+ y2]
XY =X+ (=-Y)=[r1—y2, 22 — 1]
XY = [min{aiyr, v1y2, vayr, v2y2 b, maz {1y, T1y2, 1291, 1292 ]
XY =X «(1/Y).

iFrom the arithmetic operation definitions [MOO 66, MOO 79, AH 83] have proved the
following algebraic properties of the interval arithmetic (Theorem 3.1). The distributive
law does not always hold contrariwise to the subdistributivity law.

Theorem 3.1

(1) X+Y =Y+ X. (commutativity of addition)

(2) X+ (Y +2)=(X+Y)+ Z. (associativity of addition)

(3) X4+0 = X, where © =[0,0]. (neutral ellement of addition)
(4) 0 € (X —X).

(5) X *Y =Y % X. (commutativity of multiplication)

(6) X *x(V*7Z)=(X=*Y)=*Z. (associativity of multiplication)
(7) X+1I = X, whereI =[1,1]. (neutral ellement of multiplication)
(8) 1€ X/X, 0¢ X.

(9) X*x(YV+2)C(X*Y)+ (X 7). (subdistributivity) n
The intersection between intervals X and Y is defined by:

] it o1 > yp or 19 < 1y
[max(x1,y1), min(xq, y2)] ,otherwise.

XOY:{

As an interval is also a set, specifically a set of real numbers, Theorems 3.2 and 3.3
show some properties of intervals when they are considered sets. Intervals as sets are
important for defining nested sequences, more efficient refinements, etc.

Theorem 3.2

(10) X NY =Y N X. (commutativity of interval intersection)



(11) Xn(YNnZ)=(XNY)N Z. (associativity of interval intersection)
and the union:
X UY = [mun(x1,y1), maz(xz, y2)]
Theorem 3.3
(12) X UY =Y U X. (commutativity of interval union)

(13) XU(YUZ)=(XUY)UZ. (associativity of interval union)
Moore [MOO 66, MOO 79] proposes the following order:
X <Y if and only if x5 < y;.

Theorem 3.4 The order above is transitive.
Kulisch e Miranker [KM 81] propose the relation <:

X <Y if and only if 21 <y and x5 < ys.

Moore [MOO 66, MOO 79] defines the inclusion order:

X CYifand only if 1 < 21 and x5 < ys,.

The width of the interval X is defined by w(X) = a9 — 2.

Theorem 3.5 shows some properties of the width of intervals.

Theorem 3.5

(14) X CY = w(X) < w(Y).
(15) w(X +Y) = w(X) + w(Y).
(16) w(X —¥) = w(X) + w(Y).

Let d be such that
d(X,Y) =mazx{| z1—y1 |,| v2 —y2 |}.

Theorem 3.6 d is a distance in IIR:
(17) d(X,Y) = 0if and only if X = V.
(18) d(X,Y) = d(Y, X). (simmetry)
(19) d(X,Z) < d(X,Y)+d(Y, Z). (triangle inequality)
Let | |:IIR—IRbe defined by:

X = maa(] @1 || 22 |).

The last theorem is concerned with properties of the absolute values of an interval.

Theorem 3.7 The absolute value of the interval X has the following properties:



(20) | X |0,
(21) | X | =0 if and only if X=][0,0].

(22) | X+Y || X |+ ]|Y | (triangle inequality)
(23) | X*Y |=|X|*]|Y ]

(24) XCY = |X|<|YV| -

4 Specifying the Type Interval using OBJ3

Intervals can be seen like a number, for example [2,9]. But intervals are also sets, because
[2,9] = {x € R |2 < 2 <9}. Thus the theory INTERVAL must include the boolean (BOOL)
and floating-point (FLOAT) values with its respective operators. OBJ3 has modules which
implement this two algebras. Furthermore, given the features of the interval operations,
it is necessary to use floating-point sets. This may be done by specifying the theory of
sets as a generic module (parameterized by the type of the elements). Then this generic
module may be instantiated with the module FLOAT. Beyond the type of the elements,
it 1s necessary a total order defined between the elements, because the interval theory
uses properties of sets, such as the maximum (max) and the minimum (min) of a set.

0T is a theory which describes a total order with an infix operator <=_. This operator
is reflexive, antisymmetric and transitive. Beyond these properties, all the elements in
this theory are comparable. 0T parameterizes the module SET and then it is possible a
polymorphic definition of the minimum (min) and the maximum (max) of a set. The the-
ories of the interfaces of the parameterized modules must be defined before this module.
In this case, 0T must be defined before SET.

The object SET has, amongt others, an infix operator U (union) which has attributes
that specifies commutativity (comm), associativity (assoc), idempotence (idem) and has
an identity element (id) which is the empty set ({}). As previously described, in OBJ3
this may be defined at the level of the operator declaration, then explicit equations are
not necessary to state those propertyes. The min and the max operators are partially
described: the empty set is not considered. This does not present problems in this
particular application. Several other operators on sets, such as intersection and difference
were left out in this application.

The object SET-FLOAT is composed of properties of the arithmetic operations involv-
ing real numbers, here Float. This object is not a primitive abstract data type of the
language. It was defined in order to allow as to prove properties of interval numbers in
the theory INTERVAL.

The theory INTERVAL contains a description of the type (sort) Interval as well as
its unary and binary operators. The module BOOL is an instantiation of the module SET
where the floating-point numbers are imported using the clause protecting. This kind
of importation is used to make it explicit that INTERVAL neither adds elements to the
imported algebras nor identifies elements in this algebra. The relation subsort declares
that intervals may be represented as sets. This facility of OBJ3 is particulary useful in
the definition of intersection and union of intervals when the result of some operation
may be the empty set. The constructor of the type interval ([_,_]1) is a partial operator:



the lower bound of the interval must be less than or equal to the upper bound. The
symbols [prec 2], [prec 4] [prec 5] [prec 6] and [prec 9] are the precedences
of the operators reciprocal, negation, multiplication, subtraction and equality. This
means, for example, that the precedence of the negation is lower than the precedence
of the multiplication in terms that involve both (that is, negation binds tighter than
multiplication). The additional properties of the operators are described by equations
(eq) and conditional equations (cq). It is possible to associate a name (label) with
the equations. The name may then be used to refer to the respective equation during
theorem proving.

th INTERVAL is
protecting BOOL
protecting FLOAT .
protecting SET-FLOAT .

sort Interval .

subsort Interval < Set

op-as [_,_] : Float Float -> Interval for [x1,x2] if x1 <= x2 .

op _+_ : Interval Interval -> Interval [prec 6] [comm assoc id: [0,0]]
op -_ : Interval -> Interval [prec 4] .

op _-_ : Interval Interval -> Interval [prec 6].

op _*_ : Interval Interval -> Interval [prec 5] [comm assoc id: [1,1]]
op _ -1 : Interval -> Interval [prec 2] .

op _/_ : Interval Interval -> Intervalo [prec 5].

op W_ : Interval -> Float .

op absi_ : Interval -> Float .

op d : Interval Interval -> Float .

op _om_ : Interval Interval -> Bool .

op _ok_ : Interval Interval -> Bool .

op _inc_ : Interval Interval -> Bool .

op _/\_ : Interval Interval -> Interval [comm assoc]

op _\/_ : Interval Interval -> Interval [comm assoc]

op _pertains_ : Float Interval -> Bool .

var A B : Interval .

var x1 x2 x3 x4 : Float

ladd] eq [x1,x2] + [x3,x4] = [x1 + x3, x2 + x4]

[sym] eq - [x1,x2] = [- x2, - x1 ]

[dif] eq A-B =4+ -B.

leq] eq [x1, x2] == [x3, x4] = (x1 == x3) and (x2 == x4)

[mult] eq [x1,x2] * [x3,x4] = [min({x1 * x3} U {x1 * x4} U {x2 * x3}
U {x2 * x4}),

max({x1 * x3} U {x1 * x4} U {x2 * x3%}
U {x2 * x43})]

[rec] eq [x1,x2] -1 =[1/ x2, 1/ x1]



[divl] eq A/ B=A *xB -1.
[wid] eq w [x1,x2] = x2 - x1 .
[abs] eq absi [x1,x2] = max({abs(x1)} U {abs(x2)}) .
[dist] eq d([x1,x2] , [x3,x4]) = max({abs(xl - x3)} U {abs(x2 - x4)}) .
[om] cq [x1,x2] om [x3,x4] = true if x2 < x3 .
[okm] cq [x1,x2] ok [x3,x4] = true if x1 <= x3 and x2 <= x4 .
[inc]l eq [x1,x2] inc [x3,x4] = if x3 <= x1 and x2 <= x4
then true
else false
fi .
if x1 > x4 or x2 < x3
then {}
else [max ({x1} U {x3}),
min ({x2} U{x4})]

[int] eq [x1,x2] /\ [x3,x4]

fi .
if ([x1,x2] /\ [x3,x4]) == {}
then {}
else [min ({x1} U {x3}),
max ({x2} U{x4})]

[unil eq [x1,x2] \/ [x3,x4]

fi .
[pert] cq x1 pertains [x2,x3] = true if x2 <= x1 and x1 <= x3 .

endth

Example 4.1 This example evaluate the negative of the interval [-4,-2] in the theory
INTERVAL:

reduce - [-4,-2]

The system returns the following:

reduce in INTERVAL : - [- 4.0,- 2.0]
rewrites: 3
result Interval: [2.0,4.0]

The command reduce or (red) is executed by the application of rewrite rules. In this
example the system performs 5 rewriting steps. The result is the interval [2.0,4.0].

Example 4.2 Given the intervals X=[1,2], Y=[3,4], Z=[-3.5,0] and W=[-3,0], evaluate
the expression

(X7 (=Y))N7)

and compare the resulting interval with W, using the order proposed in [KM 81]. The
command is

red (( [1,2] -1 * -[3,4]) /\ [-3.5,0]) ok [-3,0]

The system returns:



reduce in INTERVAL : ([1.0,2.0] -1 * - [3.0,4.0]) /\ [-3.5,0.0] ok
[-3.0,0.0]

rewrites: 63

result Bool: true

4.1 Proving Properties of the Interval Probability Using OB-
J3

Probability theory [BUR 72][CHU 74], as we know today, was axiomatized by Kol-
mogorov [KOL 50] after the works of Lebesgue [RUD 76]. The formal background of
probability rests on set theory and makes use of relations and functions of the real
variable.

Computing probabilities in practice envolves floating-point numbers [GOL 91] and,
in consequence, numerical problems. The discrete representation of the real numbers (a
continous set) in a finite number of machine words gives birth most of the problems in
scientific computation. The floating-point numbers as an algebraic system is extremely
poor, if compared to the real numbers. Thus, calculating probabilities suffers from the
same problems one faces in scientific computing.

The interval probability was defined by Campos [MAC 97]. This one is a useful
innovation for validating probabilities since it contributes both to enhance its theoretical
foundations as well as to facitate its applications in controlling numerical errors. Now
the specification is applied to prove one of its properties. Let P, (-) be the interval

o IR
probability
:Proposﬁﬁon_4.11f}}H{( ZZFAk)::E:QZIJEH{(A%),then
w(PHR(UZ:lAk)) = kZ::l w(PHR(Ak))
Proof. The proposition is proved by induction. For n = 2 one must proves that

w(X +Y)=w(X)+ w(Y), where w is the width of the interval. Then

open .

ops ’x1 ’x2 ’x3 ’x4 : -> Float .

eq ’x1 <= ’x2 = true .

eq ’x2 <= ’x1 = false .

eq ’x3 <= ’x4 = true .

eq ’x4 <= ’x3 = false .

red w([’x1, ’x2] + [’x3, ’x4]) ==w [’x1, ’x2] + w [’x3, ’x4]
close



reduce in INTERVALO : w [’x1,’x2] + [’x3,’x4] ==w [’x1,’x2] + w [’x3,
’x4]

rewrites: 15

result Bool: true

close
0BJ> ev (dribble)

Now let w(P(UZ})) = 721 w(P(Ag)) be. Then

WP (Uisy)) = w(Pp (Ui2)) + w( P (An))

IR IIR IR
= kz_: w(PHR(Ak)) + w(PHR(An))
= kZi: w(PHR(Ak))-

5 Conclusions

OBJ3 was used with success as a theorem prover to verify properties of the interval
arithmetic. Furthermore, given the natural dificulties of the interval methods and the
high accuracy arithmetic this is an exciting and fruitful research area.

The dual nature of the type interval, was easily solved with the subsort declara-
tion, i.e., subsort Interval < Set means that the set of elements having the first sort
(Interval) is a subset, not necessarily proper, of the set of elements having the second
sort (Set).

The module system stimulates an incremental presentation of the theory. It was also
illustrated that modules may be parameterized by theories and instantiated to attend
particular necessities. Such facility is more powerful than the ones offered by most
of the specification/programming languages, where only the type of the arguments is
considered; OBJ3 also specifies the properties that the real parameters must satisfy.
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