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Abstract

Functional Programming was historically considered a ‘toy’ for re-
searchers, but recent developments in the field show that its area of ap-
plication is wider.

The Hierarchical N-Body method is an iterative method used in as-
trophysics to simulate the gravitational evolution of collisionless matter,
in order to understand the formation of galaxies.

In this work, functional programming is used as a tool for the descrip-
tion and prototipation of the Hierarchical N-Body method, in an attempt
to show that it is a suited tool for expressing problems mantaining a good
understanding of them and allowing a great degree of abstraction and
generalization, and with a reasonable efficiency for a prototype.

*This work was partially funded by PEDECIBA, Uruguay.
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1 Introduction

The simulation of the gravitational evolution of collisionless matter, thogether
with the properties of gas in larger scales,; is used in the study of theoretical
cosmology, mainly for understanding the formation and clustering of galaxies.
Analytic treatment of hydrodynamical effects 1s usually restricted to systems
with high degree of symmetry or other simplifying assumptions. A model of the
matter based on the selection of a finite number of points, called particles, is used
to remove some of these restrictions. Classical methods to solve the problem
using the particle model are direct integration — which involves a number of
operations increasing with the square of the number of particles, called N—, and
iterative methods based on grids — which impose geometrical assumptions and
restrictions to the particles. A new approach developed during the late eigthies
is based on a tree-structured subdivision of the space [BH86], and has many
advantages, including accuracy, freedom from assumptions and applicability to
a wide class of systems. This method is called Hierarchical N-Body, and its
prototypical implementation in a functional setting is the subject of this work.

Functional Programming is a discipline of programming based on mathe-
matical background [BW88], and it has many theoretical advantages over its
classical relative, imperative programming. Historically it was considered a toy
for researchers, and it was further confined to computer science applications:
compilers, proof asistants, etc., mainly because of the lack of efficient compilers
and tools, and because of a poor understanding of its capabilities by the sci-
entific community. In the last ten years several new developments in the field
[JMO5, JGF96, R6j95] suggest that functional programming may be used to real
applications. Studies of this fact were done [Wad95], and the main conclusion
is that functional programming is, at least, a very useful tool for prototipation,
with efficiency comparable with classical paradigms.

In this work functional programming is used to solve a real application of
great significance in astrophysics — the Hierarchical N-Body problem — and it
is showed that a functional setting is best suited for the understanding and
generalization of the solution.

The rest of the article is divided as follows. In Sect. 2 the Hierarchical
N-Body method [BH86] is presented. In Sect. 3 an implementation of the
method using the C language [KR78] is discussed. In Sect. 4 the functional
implementation of the method used the functional language Haskell [PHT96]
is covered in detail. In Sect. 5, a comparison of the running time of both
implementations is done. And finally, Sect. 6 presents the conclusions of the
work.



2 Hierarchical N-Body

The hierarchical N-body method is used in the simulation of the gravitational
evolution of a system composed by N particles floating in a vacuum. FEach
particle has its own mass, initial position and initial velocity. As time goes by,
the position and velocity of each particle are modified because of the graviational
effect of all the other particles, according with the gravitational laws.

In order to simulate the evolution in time, a method known as leap-frog
integration is used. This method consider a small slice of time, dt, and calculates
the new position and velocities by interpolation using the known values. This
step 1s repeated until the final desired time is reached.

An exact calculation of the interpolation in any step can be done by direct
integration, considering all the N (N + 1)/2 interactions, but when the number
of particles 1s large, the computational complexity grows rapidly.

In real situations, the contribution made by distant particles over a fixed
one is much less than that of nearby particles. Moreover, the contribution of a
group of distant particles depends more on the total mass and mean velocity of
the group than in the particular interactions inside the group. This observation
leads to the idea of grouping the particles according with their positions, in a
hierarchical structure (i.e. a tree), and use this grouping to save computational
effort: if a group is “distant enough” consider it as one (pseudo)particle, but if
it 1s not, divide it in i1ts subgroups, and try again. The resulting method needs
to calculate only NlogN interactions in the average. Thus in a given amount of
time, the number of particles involved in the simulations can be much larger.

There are two problems to consider. The first one is how to construct the
grouping. The second one is the decision criteria, “distant enough”. In this
work it was taken the approach of [BH86] for the solution of these problems.

The construction of the grouping in [BH86] begins with a volume containing
the N particles, and recursively subdivides it in eight equal subvolumes, until a
subvolume contains at most one particle. The result is a tree with eight subtrees,
each being an empty cell, a one-particle cell or a proper subtree. Each node of
this oct-tree contains a (pseudo)particle with the total mass and center-of-mass
of all the particles contained in the volume. The calculation of gravitational
force for a given particle p proceeds as a top-down walk of the tree, applying the
decision criteria in order to calculate either using the pseudoparticle or adding
the calculation of the eigth subtrees. There are two ways for the construction of
this tree: top-down and bottom-up. The former begins with an empty tree and
adds one particle at a time, growing the tree as needed; it has the advantage
of being iterative over the particles, and the disadvantage that pseudoparticles
has to be calculated after the tree construction. The latter divides the set of
particles in eight subsets and proceeds recursively, constructing at last a node
with its eigth subtrees and the pseudoparticle; it is simpler, but recursion can
produce a great overhead in some languages.

For the definition of “distant enough”, [BH86] considers the size of the vol-



ume containing the group, s, the distance between the group’s center of mass
and the particle position, d, and an accuracy parameter, 8; if s/d < 6, then in-
clude the interaction with the group as a whole, and if not, subdivide the group.
A more involved method includes the displacement of the center of mass from
the center of the volume as a correction parameter. The accuracy parameter
controls the error and the complexity of the method: a value § = 0 means al-
ways subdivide, and implies that an exact calculation is done; larger values of
¢ diminishes the complexity but makes the error larger.

A rigorous error analysis is possible because the tree structure is unique for
a given set of particles and a given volume. Each cell that is not subdivided
introduces a small error due to quadrupole and higher-order moments (the inter-
actions inside the group). A ‘worst-case’ analysis can be performed, and [BH&6]
reports that a value of # = 1 are accurate to ~ 1%, with little dependence on N.
As the error from one step to the next is weakly correlated, there is a reasonable
probability that the total error after several steps keeps small.

3 The C Implementation

The C implementation of the Hierarchical N-Body method can be obtained from
WWW, at the URL ftp://hubble.ifa.hawaii.edu/pub/barnes/treecode.
This code was developed by Josh Barnes and Piet Hut, in ANSI C, and 1t is the
fourth release of it.

The main characteristics of the code are the construction of the oct-tree,
and the calculation of gravitational forces. In order to understand the code, the
data structures are described first, trying to recall the programming decisions
of the authors.

Each particle is represented as a struct, called body, having its position,
mass, velocity, acceleration and potential. A substructure, called node, contain-
ing the position and mass, plus structural information, is defined to improve
sharing of memory cells with the tree described below. The N particles are
stored in an array of bodies. The tree structure is defined as a struct, called
cell, with a node for the pseudoparticle information, the critical radius (used
for the divsion criteria), an array of subtrees, and information for the quadrupo-
lar moment of the cell. Once constructed, the tree is threaded for a non-recursive
walk, and thus the array of subtrees are no longer needed, allowing the sharing
of memory with the quadrupolar moment information. The non-recursive walk
has the shape of a linked list with two succesors: one to the leftmost child,
meaning subdivision of the current cell, and one to the right sibling, meaning
calculation with the current cell. The construction of the tree is top-down, and
reuse of already allocated pointers is done via a linked list of garbage cells.

The volumes are not represented explicitely. They are represented with two
parameters: the position of the center, and the side length of the cube under
consideration. There is a global parameter rsize that keeps the size of the



largest volume used so far, and the position is recorded in the node of the cell —
this node is later updated with the pseudoparticle data. Initially a small volume
centered in the origin of coordinates 1s considered, and every time any particle
fall outside of it, its size is doubled until all the particles lie inside again; the
volumes never decrease.

There are also some global parameters that are used to customize the algo-
rithm. One of them is the accuracy parameter, 8, but there are some others: a
parameter to softening the potential, called €, some parameters to record time,
tnow, tstop, and several others to control input-output and to record statistics.

The set of particles are read from and write to files, and statistics are reported
on the standard output. Some option allows to generate the particles at random,
instead of reading it from the disk.

One interesting aspect of the code is that the number of dimension can be
set to 2 or 3 in compile time by a #define, and the precision of numbers can
be set to £loat or double by the same mechanism, being by this way “general”
in both aspects.

The number of code-lines is about one thousand and nine hundred lines,
being roughly eight hundred for the main application (method and data struc-
tures), six hundred for input-output, and five hundred for base code.

4 The Haskell Implementation

Haskell [PHT96] is a lazy functional language that becomes the standard in the
field. It was designed in the late eighties and early nineties by a comitee of the
most renowned members of the functional community. Haskell more important
features are lazy evaluation, modules; higher order functions, functions as data
types and a static type system with parametric polymorphism, algebraic types
and a class system for overloading.

Lazy evaluation is a mechanism of evaluation that follows the rule “compute
only when something is needed, and then, only once”. Lazy evaluation allows
modularization, because functions can be programmed independently of each
other without thinking in the order of evaluation, but efficiency is still achieved.

Modules provide the definition of abstract data types, with the ability of im-
porting the functions needed from other modules; and of exporting the functions
visible from outside the module. They also provides the posibility of separate
compilation.

Higher order functions are functions that have other functions as arguments
or that return functions as their result. Partial evaluation and abstract version
of control structures defined by the user are some of the advantages provided.

In functional languages, functions can be stored in data types, and even
used as them. This characteristic allows to store functions to perform some
computation later.



Haskell is a strongly typed language. Its type system is static — which means
that the type of every expression is determined in compile-time — and provides
type inference — which means that the types can be determined even when the
programmer doesn’t provide type information. Some characteristics of the type
system are parametric polymorphism, algebraic data types and classes. Para-
metric polymorphism is the ability of a function to work without knoledge about
the type of some parameter. This allows, for example, to have code for lists that
don’t care about what things are stored in the lists. Algebraic types allows the
construction of user defined types, even recursive, without using pointers or
explicit representation at all. The class system provides overloading of func-
tions. A class is a collection of types that share the name of some functions;
an instance is one of these types. This mechanism allows the construction of a
common interface for several types, and by this way, do not rely on a particular
implementation. The instantiation mechanism decides, in compile time, wich
particular instance to use.

The Haskell language comes with a rich predefined system of classes. In
particular, there are several classes for numbers, providing classical operations
and standard convertions with the same name for all number types. An inter-
esting feature of Haskell is the way i1t understands the numerical constants: a
numerical constant is overloaded, and its exact type is determined by context
inference.

The Haskell code for the hierarchical N-body method has several modules,
and i1t can be obtained from the author by e-mail. Each module contains the
definition of a type or class of types for some abstract data structure. There are
modules defining Vectors, Volumes, Particles, Bodies, Trees and Systems. Each
module will be described independently.

The number of code-lines is approximately one thousand. This number is not
meaningful, because many lines were dedicated to type signatures and comments
that enhance code readability.

4.1 Vectors

Module Vector defines the class of vectors, providing functions to create, access
and operate with them. In particular, elementwise and scalar operations were
defined as higher order functions, and further instantiated for addition, sub-
straction and multiplication. Also dot vector product, distance between vectors
and module are declared here.

Two instance types were defined, for two and three dimensional vectors. The
particular implementations are for test purposes, and more efficient instances
can be defined without alter the existing code in any way.

Vectors are a parametrized type, allowing the definition of vectors with differ-
ent types of numbers, and providing by this way independence of the precision.



4.2  Volumes

In contrast to the C code, volumes are defined explicitely in the Haskell ver-
sion. The module Volume contains the definition of the class for volumes,
providing functions to create, access and manipulate them. Important func-
tions are quadrant that returns one subvolume needed for the subdivision and
changeToFit that, given a volume and a list of vectors, returns a new volume
that contains all the given vectors.

The type of volumes is parametric in both, the type of numbers and the type
of vectors used.

4.3 Particles

The module Particle contains the definition of the class of particles. A particle
is any element that has a position in the space and a mass. Functions to create
and access particles are provided. Particles play the role of the struct node of
the C version, but in an abstract way.

Particles are parametric in the both the type of numbers and the type of
vectors used.

This module also provides the code to calculate the center of mass of a given
list of particles.

4.4 Bodies

Bodies are particles that have velocity, accelaration and potential. The class of
bodies is a subclass of the class of particles, thus extending it with functions
to update and access the added data. There are also functions to update the
position and velocity according to the physical laws.

Bodies are parametric in the both the type of numbers and the type of
vectors used.

4.5 Trees

Trees are defined in two modules: BodyTree and Force. The module BodyTree
contains the definition of the type of trees used for the hierarchical calculation
of forces, and the module Force contains the function that actually calculates
them.

Body-trees are defined as:

e an empty tree,
e a single body, or

e a cell containing a particle, a list of body-trees and a function.



Empty trees are used only for intermediate calculation, and are not stored ex-
plicitely in the final tree. In a cell, the particle stores the data of the pseu-
doparticle, the list of body-trees containt the different groups of bodies, and the
function is used in the calculation phase to determine if subdivision is needed.
A function for constructing a tree from a given list of particles i1s given; this
function performs a bottom-up construction, since functional programming is
best suited for recursive functions.

The module Force provides a function hackgrav that given a body and a
body-tree, calculates the gravitational influence of all the particles in the body
tree over a single body using the hierarchical method. Insted of using the non-
recursive walk (that would be impossible because there is no pointers in the
language), a stack of pendant groups is mantained, and subdividing a group
means to push the subgroups.

Functions and types in this module are parametric in the type of numbers,
the type of particles and the type of volumes.

In this version of the functional code the trees were provided as a single
type, but a more abstract and general view can be implemented using the class
system. A class of trees needs to provide two main functions: one that builds up
the tree, and one that performes the force calculation. The previously described
type can be an instance of such a class, and other instances may be provided —
for example with the top-down method of construction.

4.6 Systems

In functional programming there are no global variables. For that reason, a new
abstraction, system, i1s defined. A system contains the list of particles and all
the “global” information required to input, output and evolve the system.

There are three modules for systems: Params, BodySys and Interface.
The module Params contains the definition and default values for the different
parameters used — the accuracy, the softening of potential, the method used for
subdivision calculation, etc. The module BodySys provides functions to create
and manipulate systems, including the evolution in time and the input-output
to disk. The module Interface provides functions to convert data read from
and write to the files in the format used by the C code.

Systems are parametric in the type of volumes, bodies and numbers.

In this version, systems were provided as a single type, but great level of
abstraction and generalization can be achieved by the definition of a class for
systems. The type described below can be an instance of such class, and also
other instances may be defined — for example systems that performs statistics.



5 Comparing the Implementations

The results reported in this section are preliminar, as only a few runs of the
codes were performed, and the Haskell code was not optimized in any way.

In order to compare the implementations, they were compiled and runned
in a Sun workstation, running the SunOS 5.3 operating system. The C version
was compiled using the gcc compiler native to the operating system, and the
Haskell version was compiled using the Glasgow Haskell Compiler, version 2.01,
which performs optimizations in compilation.

Three test cases were used: one with 36 particles, one with 1024 particles
and one with 4096 particles. The first one is a toy example, but the other two
are simulation of galaxies. The Haskell code is aproximately 200 times slower
than the C version. Some analysis performed showed that much of the time
the program is performing I/0O. More tests are needed to determine the exact
source of slowness.

6 Conclusions

This article presents the implementation of the hierarchical N-body method
using the lazy functional language Haskell. The resulting code was compared
with a C implementation of the same algorithm.

The functional code is much more easier to read than the C version. With
respect to the efficiency, without any enhancement, the functional version is
aproximately 200 times worst than its imperative counterpart. Having into
account that further enhancements are possible, the result is not so bad.

A great degree of flexibility i1s achieved by means of abstraction and general-
ization. Several implementation decisions can be studied, and different methods
that follows the same pattern can be implemented, only adding new instances
for the classes that conforms the system.
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