
Hierarchical N�Body Simulations in

Haskell

Pablo E� Mart��nez L�opez �

LIFIA� Facultad de Ciencias Exactas� UNLP
CC��� Correo Central� ������ La Plata� Argentina

Tel	Fax
 � �
 �� ������
E�mail
 fidel�info�unlp�edu�ar

URL
 http���www�lifia�unlp�info�edu�ar�

Abstract

Functional Programming was historically considered a �toy� for re�
searchers� but recent developments in the �eld show that its area of ap�
plication is wider�

The Hierarchical N �Body method is an iterative method used in as�
trophysics to simulate the gravitational evolution of collisionless matter�
in order to understand the formation of galaxies�

In this work� functional programming is used as a tool for the descrip�
tion and prototipation of the Hierarchical N �Body method� in an attempt
to show that it is a suited tool for expressing problems mantaining a good
understanding of them and allowing a great degree of abstraction and
generalization� and with a reasonable e�ciency for a prototype�

�This work was partially funded by PEDECIBA� Uruguay�

Hierarchical N�Body Simulations in

Haskell

� Introduction

The simulation of the gravitational evolution of collisionless matter� thogether
with the properties of gas in larger scales� is used in the study of theoretical
cosmology� mainly for understanding the formation and clustering of galaxies�
Analytic treatment of hydrodynamical e�ects is usually restricted to systems
with high degree of symmetry or other simplifying assumptions� A model of the
matter based on the selection of a �nite number of points� called particles� is used
to remove some of these restrictions� Classical methods to solve the problem
using the particle model are direct integration � which involves a number of
operations increasing with the square of the number of particles� called N�� and
iterative methods based on grids � which impose geometrical assumptions and
restrictions to the particles� A new approach developed during the late eigthies
is based on a tree�structured subdivision of the space �BH	
�� and has many
advantages� including accuracy� freedom from assumptions and applicability to
a wide class of systems� This method is called Hierarchical N �Body� and its
prototypical implementation in a functional setting is the subject of this work�

Functional Programming is a discipline of programming based on mathe�
matical background �BW		�� and it has many theoretical advantages over its
classical relative� imperative programming� Historically it was considered a toy
for researchers� and it was further con�ned to computer science applications�
compilers� proof asistants� etc�� mainly because of the lack of e
cient compilers
and tools� and because of a poor understanding of its capabilities by the sci�
enti�c community� In the last ten years several new developments in the �eld
�JM��� JGF�
� R�oj��� suggest that functional programming may be used to real
applications� Studies of this fact were done �Wad���� and the main conclusion
is that functional programming is� at least� a very useful tool for prototipation�
with e
ciency comparable with classical paradigms�

In this work functional programming is used to solve a real application of
great signi�cance in astrophysics � the Hierarchical N�Body problem � and it
is showed that a functional setting is best suited for the understanding and
generalization of the solution�

The rest of the article is divided as follows� In Sect� � the Hierarchical
N�Body method �BH	
� is presented� In Sect� � an implementation of the
method using the C language �KR�	� is discussed� In Sect� � the functional
implementation of the method used the functional language Haskell �PH��
�
is covered in detail� In Sect� �� a comparison of the running time of both
implementations is done� And �nally� Sect�
 presents the conclusions of the
work�

� Hierarchical N �Body

The hierarchical N �body method is used in the simulation of the gravitational
evolution of a system composed by N particles �oating in a vacuum� Each
particle has its own mass� initial position and initial velocity� As time goes by�
the position and velocity of each particle are modi�ed because of the graviational
e�ect of all the other particles� according with the gravitational laws�

In order to simulate the evolution in time� a method known as leap�frog

integration is used� This method consider a small slice of time� dt� and calculates
the new position and velocities by interpolation using the known values� This
step is repeated until the �nal desired time is reached�

An exact calculation of the interpolation in any step can be done by direct
integration� considering all the N �N � ���� interactions� but when the number
of particles is large� the computational complexity grows rapidly�

In real situations� the contribution made by distant particles over a �xed
one is much less than that of nearby particles� Moreover� the contribution of a
group of distant particles depends more on the total mass and mean velocity of
the group than in the particular interactions inside the group� This observation
leads to the idea of grouping the particles according with their positions� in a
hierarchical structure �i�e� a tree�� and use this grouping to save computational
e�ort� if a group is �distant enough� consider it as one �pseudo�particle� but if
it is not� divide it in its subgroups� and try again� The resulting method needs
to calculate only NlogN interactions in the average� Thus in a given amount of
time� the number of particles involved in the simulations can be much larger�

There are two problems to consider� The �rst one is how to construct the
grouping� The second one is the decision criteria� �distant enough�� In this
work it was taken the approach of �BH	
� for the solution of these problems�

The construction of the grouping in �BH	
� begins with a volume containing
the N particles� and recursively subdivides it in eight equal subvolumes� until a
subvolume contains at most one particle� The result is a tree with eight subtrees�
each being an empty cell� a one�particle cell or a proper subtree� Each node of
this oct�tree contains a �pseudo�particle with the total mass and center�of�mass
of all the particles contained in the volume� The calculation of gravitational
force for a given particle p proceeds as a top�down walk of the tree� applying the
decision criteria in order to calculate either using the pseudoparticle or adding
the calculation of the eigth subtrees� There are two ways for the construction of
this tree� top�down and bottom�up� The former begins with an empty tree and
adds one particle at a time� growing the tree as needed� it has the advantage
of being iterative over the particles� and the disadvantage that pseudoparticles
has to be calculated after the tree construction� The latter divides the set of
particles in eight subsets and proceeds recursively� constructing at last a node
with its eigth subtrees and the pseudoparticle� it is simpler� but recursion can
produce a great overhead in some languages�

For the de�nition of �distant enough�� �BH	
� considers the size of the vol�

ume containing the group� s� the distance between the group�s center of mass
and the particle position� d� and an accuracy parameter� �� if s�d � �� then in�
clude the interaction with the group as a whole� and if not� subdivide the group�
A more involved method includes the displacement of the center of mass from
the center of the volume as a correction parameter� The accuracy parameter
controls the error and the complexity of the method� a value � � � means al�
ways subdivide� and implies that an exact calculation is done� larger values of
� diminishes the complexity but makes the error larger�

A rigorous error analysis is possible because the tree structure is unique for
a given set of particles and a given volume� Each cell that is not subdivided
introduces a small error due to quadrupole and higher�order moments �the inter�
actions inside the group�� A worst�case� analysis can be performed� and �BH	
�
reports that a value of � � � are accurate to � �!� with little dependence on N �
As the error from one step to the next is weakly correlated� there is a reasonable
probability that the total error after several steps keeps small�

� The C Implementation

The C implementation of the Hierarchical N �Body method can be obtained from
WWW� at the URL ftp���hubble�ifa�hawaii�edu�pub�barnes�treecode�
This code was developed by Josh Barnes and Piet Hut� in ANSI C� and it is the
fourth release of it�

The main characteristics of the code are the construction of the oct�tree�
and the calculation of gravitational forces� In order to understand the code� the
data structures are described �rst� trying to recall the programming decisions
of the authors�

Each particle is represented as a struct� called body� having its position�
mass� velocity� acceleration and potential� A substructure� called node� contain�
ing the position and mass� plus structural information� is de�ned to improve
sharing of memory cells with the tree described below� The N particles are
stored in an array of bodies� The tree structure is de�ned as a struct� called
cell� with a node for the pseudoparticle information� the critical radius �used
for the divsion criteria�� an array of subtrees� and information for the quadrupo�
lar moment of the cell� Once constructed� the tree is threaded for a non�recursive
walk� and thus the array of subtrees are no longer needed� allowing the sharing
of memory with the quadrupolar moment information� The non�recursive walk
has the shape of a linked list with two succesors� one to the leftmost child�
meaning subdivision of the current cell� and one to the right sibling� meaning
calculation with the current cell� The construction of the tree is top�down� and
reuse of already allocated pointers is done via a linked list of garbage cells�

The volumes are not represented explicitely� They are represented with two
parameters� the position of the center� and the side length of the cube under
consideration� There is a global parameter rsize that keeps the size of the

largest volume used so far� and the position is recorded in the node of the cell �
this node is later updated with the pseudoparticle data� Initially a small volume
centered in the origin of coordinates is considered� and every time any particle
fall outside of it� its size is doubled until all the particles lie inside again� the
volumes never decrease�

There are also some global parameters that are used to customize the algo�
rithm� One of them is the accuracy parameter� �� but there are some others� a
parameter to softening the potential� called �� some parameters to record time�
tnow� tstop� and several others to control input�output and to record statistics�

The set of particles are read from and write to �les� and statistics are reported
on the standard output� Some option allows to generate the particles at random�
instead of reading it from the disk�

One interesting aspect of the code is that the number of dimension can be
set to � or � in compile time by a �define� and the precision of numbers can
be set to float or double by the same mechanism� being by this way �general�
in both aspects�

The number of code�lines is about one thousand and nine hundred lines�
being roughly eight hundred for the main application �method and data struc�
tures�� six hundred for input�output� and �ve hundred for base code�

� The Haskell Implementation

Haskell �PH��
� is a lazy functional language that becomes the standard in the
�eld� It was designed in the late eighties and early nineties by a comitee of the
most renowned members of the functional community� Haskell more important
features are lazy evaluation� modules� higher order functions� functions as data
types and a static type system with parametric polymorphism� algebraic types
and a class system for overloading�

Lazy evaluation is a mechanism of evaluation that follows the rule �compute
only when something is needed� and then� only once�� Lazy evaluation allows
modularization� because functions can be programmed independently of each
other without thinking in the order of evaluation� but e
ciency is still achieved�

Modules provide the de�nition of abstract data types� with the ability of im�
porting the functions needed from other modules� and of exporting the functions
visible from outside the module� They also provides the posibility of separate
compilation�

Higher order functions are functions that have other functions as arguments
or that return functions as their result� Partial evaluation and abstract version
of control structures de�ned by the user are some of the advantages provided�

In functional languages� functions can be stored in data types� and even
used as them� This characteristic allows to store functions to perform some
computation later�

Haskell is a strongly typed language� Its type system is static � which means
that the type of every expression is determined in compile�time � and provides
type inference � which means that the types can be determined even when the
programmer doesn�t provide type information� Some characteristics of the type
system are parametric polymorphism� algebraic data types and classes� Para�
metric polymorphism is the ability of a function to work without knoledge about
the type of some parameter� This allows� for example� to have code for lists that
don�t care about what things are stored in the lists� Algebraic types allows the
construction of user de�ned types� even recursive� without using pointers or
explicit representation at all� The class system provides overloading of func�
tions� A class is a collection of types that share the name of some functions�
an instance is one of these types� This mechanism allows the construction of a
common interface for several types� and by this way� do not rely on a particular
implementation� The instantiation mechanism decides� in compile time� wich
particular instance to use�

The Haskell language comes with a rich prede�ned system of classes� In
particular� there are several classes for numbers� providing classical operations
and standard convertions with the same name for all number types� An inter�
esting feature of Haskell is the way it understands the numerical constants� a
numerical constant is overloaded� and its exact type is determined by context
inference�

The Haskell code for the hierarchical N �body method has several modules�
and it can be obtained from the author by e�mail� Each module contains the
de�nition of a type or class of types for some abstract data structure� There are
modules de�ning Vectors� Volumes� Particles� Bodies� Trees and Systems� Each
module will be described independently�

The number of code�lines is approximately one thousand� This number is not
meaningful� because many lines were dedicated to type signatures and comments
that enhance code readability�

��� Vectors

Module Vector de�nes the class of vectors� providing functions to create� access
and operate with them� In particular� elementwise and scalar operations were
de�ned as higher order functions� and further instantiated for addition� sub�
straction and multiplication� Also dot vector product� distance between vectors
and module are declared here�

Two instance types were de�ned� for two and three dimensional vectors� The
particular implementations are for test purposes� and more e
cient instances
can be de�ned without alter the existing code in any way�

Vectors are a parametrized type� allowing the de�nition of vectors with di�er�
ent types of numbers� and providing by this way independence of the precision�

��� Volumes

In contrast to the C code� volumes are de�ned explicitely in the Haskell ver�
sion� The module Volume contains the de�nition of the class for volumes�
providing functions to create� access and manipulate them� Important func�
tions are quadrant that returns one subvolume needed for the subdivision and
changeToFit that� given a volume and a list of vectors� returns a new volume
that contains all the given vectors�

The type of volumes is parametric in both� the type of numbers and the type
of vectors used�

��� Particles

The module Particle contains the de�nition of the class of particles� A particle
is any element that has a position in the space and a mass� Functions to create
and access particles are provided� Particles play the role of the struct node of
the C version� but in an abstract way�

Particles are parametric in the both the type of numbers and the type of
vectors used�

This module also provides the code to calculate the center of mass of a given
list of particles�

��� Bodies

Bodies are particles that have velocity� accelaration and potential� The class of
bodies is a subclass of the class of particles� thus extending it with functions
to update and access the added data� There are also functions to update the
position and velocity according to the physical laws�

Bodies are parametric in the both the type of numbers and the type of
vectors used�

��� Trees

Trees are de�ned in two modules� BodyTree and Force� The module BodyTree
contains the de�nition of the type of trees used for the hierarchical calculation
of forces� and the module Force contains the function that actually calculates
them�

Body�trees are de�ned as�

� an empty tree�

� a single body� or

� a cell containing a particle� a list of body�trees and a function�

Empty trees are used only for intermediate calculation� and are not stored ex�
plicitely in the �nal tree� In a cell� the particle stores the data of the pseu�
doparticle� the list of body�trees containt the di�erent groups of bodies� and the
function is used in the calculation phase to determine if subdivision is needed�
A function for constructing a tree from a given list of particles is given� this
function performs a bottom�up construction� since functional programming is
best suited for recursive functions�

The module Force provides a function hackgrav that given a body and a
body�tree� calculates the gravitational in�uence of all the particles in the body
tree over a single body using the hierarchical method� Insted of using the non�
recursive walk �that would be impossible because there is no pointers in the
language�� a stack of pendant groups is mantained� and subdividing a group
means to push the subgroups�

Functions and types in this module are parametric in the type of numbers�
the type of particles and the type of volumes�

In this version of the functional code the trees were provided as a single
type� but a more abstract and general view can be implemented using the class
system� A class of trees needs to provide two main functions� one that builds up
the tree� and one that performes the force calculation� The previously described
type can be an instance of such a class� and other instances may be provided �
for example with the top�down method of construction�

��� Systems

In functional programming there are no global variables� For that reason� a new
abstraction� system� is de�ned� A system contains the list of particles and all
the �global� information required to input� output and evolve the system�

There are three modules for systems� Params� BodySys and Interface�
The module Params contains the de�nition and default values for the di�erent
parameters used � the accuracy� the softening of potential� the method used for
subdivision calculation� etc� The module BodySys provides functions to create
and manipulate systems� including the evolution in time and the input�output
to disk� The module Interface provides functions to convert data read from
and write to the �les in the format used by the C code�

Systems are parametric in the type of volumes� bodies and numbers�
In this version� systems were provided as a single type� but great level of

abstraction and generalization can be achieved by the de�nition of a class for
systems� The type described below can be an instance of such class� and also
other instances may be de�ned � for example systems that performs statistics�

� Comparing the Implementations

The results reported in this section are preliminar� as only a few runs of the
codes were performed� and the Haskell code was not optimized in any way�

In order to compare the implementations� they were compiled and runned
in a Sun workstation� running the SunOS ��� operating system� The C version
was compiled using the gcc compiler native to the operating system� and the
Haskell version was compiled using the Glasgow Haskell Compiler� version �����
which performs optimizations in compilation�

Three test cases were used� one with �
 particles� one with ���� particles
and one with ���
 particles� The �rst one is a toy example� but the other two
are simulation of galaxies� The Haskell code is aproximately ��� times slower
than the C version� Some analysis performed showed that much of the time
the program is performing I"O� More tests are needed to determine the exact
source of slowness�

� Conclusions

This article presents the implementation of the hierarchical N �body method
using the lazy functional language Haskell� The resulting code was compared
with a C implementation of the same algorithm�

The functional code is much more easier to read than the C version� With
respect to the e
ciency� without any enhancement� the functional version is
aproximately ��� times worst than its imperative counterpart� Having into
account that further enhancements are possible� the result is not so bad�

A great degree of �exibility is achieved by means of abstraction and general�
ization� Several implementation decisions can be studied� and di�erent methods
that follows the same pattern can be implemented� only adding new instances
for the classes that conforms the system�

Acknowledges

I want to thank my director� Roberto Di Cosmo� for joining me with this subject�
for the carefull reading of the draft of this paper� and for his advises� I also
want to thank my counsellor� Juan Echag�ue� for his guidance�

References

�BH��� Josh Branes and Piet Hut� A hierarchical O�N log N	 force
calculation algorithm�
Nature� ��
�
	�

��

�� December �����

�BW��� Richard S� Bird and Philip Wadler� Introduction to Functional Programming� Pren

tice Hall� �����

�JGF��� Simon L� Peyton Jones� Andrew Gordon� and Sigbjorn Finne� Concurrent Haskell�
In ACM Symposium on the Principles of Programming Languages �PoPL�����
St�Petersburg Beach� Florida� January �����

�JM��� Johan Jeuring and Erik Meijer� editors� Advanced Functional Programming� LNCS
��	� Springer
Verlag� May �����

�KR��� Brain W� Kernighan and Dennis M� Ritchie� The C Programming Language� Pren

tice Hall� �����

�PH���� John Peterson� Kevin Hammond� et al� Report on the programming language
Haskell� a non�strict� purely functional language� Version ���� Technical report�
Yale University� May �����

�R�oj��� Niklas R�ojemo� E�cient parsing combinators� In Garbage Collection� and Memory
E
ciency� in Lazy Functional Languages� G�oteborg� Sweden� May ����� Chalmers
University of Technology�Departmentof Computer Science� Part of the Ph�D� thesis�

�Wad��� Philip Wadler� editor� Journal of Functional Programming� Special Issue on State�
of�the�art Applications of Pure Functional Programming Languages� volume � ��	�
Cambridge University Press� July �����

