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Abstract. A search process implies an exploration of new, unvisited states. 
This quest to find something new tends to emphasize the processes of change. 
However, heuristic search is different from random search because features of 
previous solutions are preserved – even if the preservation of these features is 
a passive decision. A new parallel simulated annealing procedure is developed 
that makes some active decisions on which solution features should be 
preserved. The improved performance of this modified procedure helps 
demonstrate the beneficial role of common components in heuristic search. 

1 Introduction 

Heuristic search techniques can be analyzed by focusing on their “search operators” 
and their “control strategies”. A search operator creates new solutions by making 
some (usually small) changes to existing solutions. All of the remaining aspects of a 
heuristic search technique can be included as part of its control strategy [15] – which 
search operator(s) to apply; which solutions to keep, change, or remove; and when to 
stop. 

The role of the (local) search operator is to create a new candidate solution. 
Depending on the control strategy, (small) random changes may be sufficient. 
However, search operators should ideally perform two tasks in creating a new 
solution from the existing solution(s) – identify both the superior solution parts that 
are worth keeping and the weaker solution parts that should be changed. A search 
operator that performs these tasks and which produces better than random changes 
may be able to improve the performance of any control strategy/heuristic search 
technique that it is used with.  

Examples of heuristic search techniques that normally use random search 
operators are hill climbing and simulated annealing [10]. In hill climbing, random 
changes are applied (e.g. two-opt swaps for the Travelling Salesman Problem) and 
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the control strategy accepts only improving changes. In simulated annealing, the 
control strategy accepts non-improving changes probabilistically based on the 
temperature which is adjusted according to a cooling schedule. Attempts to improve 
the performance of simulated annealing often focus on finding better cooling 
schedules [9]. 

Another heuristic search technique that emphasizes the features of the control 
strategy over the design of the search operator is tabu search [6]. In tabu search, the 
control strategy causes escapes from local optima by making certain operations tabu. 
However, this tabu list of restricted operators is not designed to improve the isolated 
performance of the search operators. Specifically, tabu search and simulated 
annealing can use the same search operators [8], so both of these heuristic search 
techniques are potential beneficiaries of improved search operators. 

In the definitions of other heuristic search techniques like genetic algorithms [7], 
the search operators and the control strategy are both included. The primary search 
operator for genetic algorithms is crossover, and the three mechanisms of crossover 
are respect, transmission, and assortment [12]. Although assortment /recombination 
is seen as the “overt purpose” of crossover [14], respect/the preservation of common 
components is also an important feature [4]. In particular, this feature can be used to 
specify which solution parts should be kept – a useful complement to the focus that 
most search operators have on what to change.  

In the meta-heuristic of memetic algorithms [13], it has previously been shown 
that respect/the preservation of common components can be a beneficial feature [5]. 
Since the local optima of a globally convex search space share many similar features 
[2][11], it is reasonable to restart the heuristic search technique in a neighbourhood 
near good local optima. However, the potential benefits of respect for single-parent 
search operators has not been analyzed in isolation.  

To summarize, it is hypothesized that a search operator will be more effective if 
it actively performs both tasks of choosing what to keep and choosing what to 
change. Ideas for how to develop these operators will be taken from genetic 
algorithms in sections 2 and 3. These ideas will be transferred into simulated 
annealing in section 4. Experimental results will be developed and presented in 
sections 5 through 7. These results are discussed in section 8 before conclusions are 
drawn in section 9. 

2 Background 

The three primary features of a genetic algorithm (GA) are a population of solutions, 
fitness-based selection, and the crossover search operator [7]. In crossover, there are 
three mechanisms: “respect”, “transmission”, and “assortment” [12]. The principle of 
respect is that the common components of two parent solutions should be preserved 
in the offspring. Transmission states that all components in the final offspring should 
have come from one of the two parents, and assortment is the equivalent of 
recombination – parents with two non-competing traits should be able to produce an 
offspring with both features. 
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The two mechanisms that are unique to multi-parent operators are recombination 
and respect – it takes multiple parents to have/identify common and uncommon 
components that can be recombined or preserved. It is generally assumed that the 
advantage of crossover is its ability to assemble better offspring solutions by 
combining the superior solution parts of two parents [7][14]. However, attempts to 
transfer this advantage to other search operators and heuristic search techniques have 
led to mixed results and comments like “crossover can be compared to the very 
unpromising effort to recombine animals of different species” [16]. 

Focusing instead on the mechanism of respect, the Commonality Hypothesis [4] 
suggests that the advantage of the crossover search operator is its ability to leverage 
the knowledge accumulated in previous solutions and to use this knowledge as a 
foundation for further explorations. In particular, it has previously been shown that 
many combinatorial optimization problems have “globally convex” fitness 
landscapes that cause the best solutions to share many similarities [2][11]. By 
transferring respect to general search operators, it should be possible to allow other 
heuristic search techniques to more effectively explore globally convex fitness 
landscapes. 

3 An Analysis of Respect and Recombination 

Before adding respect to a search operator for simulated annealing, it is important to 
develop a functional model for how this mechanism generates benefits. To start, the 
performance of one-point, two-point, and uniform crossover are shown for the 
OneMax problem (where the fitness of a binary string solution is equal to its number 
of ones). The results presented in figure 1 are for 100 trials of a genetic algorithm 
with generational replacement where only solutions with a fitness higher than the 
average fitness of the entire population are allowed to mate. 
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Fig. 1. Results for a 100 bit OneMax problem started from a random population of 100 
solutions. 100 generations were used, but all trials converged within 40 generations. Average 
fitness refers to all solutions in the population and are averaged over 100 trials 

One interpretation for the superior performance of uniform crossover is that its 
larger number of crossing sites allow greater opportunities for recombination. 
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However, it is shown in figure 2 that the uncommon components being recombined 
have a below average fitness compared to the solution as a whole and to the above 
average fitness of the common components preserved by all forms of crossover. In a 
binary solution space, an uncommon component is necessarily a 1 in one parent and 
a 0 in the other. Since these uncommon components will have an average fitness of 
0.5 (for the OneMax problem), recombination is effectively random search in this 
instance. 
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Fig. 2. Results for a 100 bit OneMax problem started from a random population of 100 
solutions. 100 generations were used, but all trials converged within 40 generations. Average 
fitness refers to all solutions in the population and are averaged over 100 trials 

An alternative interpretation for the superior performance of uniform crossover is 
that it is a more efficient search operator than one-point and two-point crossover. 
Although all three operators preserve common components, uniform crossover 
searches with the most “unbiasedness” [1]. Focusing on the common components, 
the concept of “genetic repair” [1] provides a worthy explanation for why the 
accumulation of common components can be a beneficial part of the search process – 
these common components (i.e. the population centroid) are fitter than the individual 
solutions (see the common ratio in figure 2). Unfortunately, genetic repair gives little 
guidance for the design of search operators in discrete problem domains. 

Recalling the hypothesis that a search operator may be more effective if it 
actively performs the two tasks of identifying the superior solution parts worth 
keeping and the weaker solution parts to change, it is clear from figure 2 that 
preserving common components can do both. This benefit of preserving common 
components is explicitly demonstrated in figure 3. The uncommon components of 
two parent solutions necessarily have an average fitness of 0.5 (per component), and 
this will be below the average component fitness of two above-average parents (0.7 
in figure 3). Therefore, the average fitness of the remaining common components 
must be even greater (0.83 in figure 3). The effectiveness of a search operator should 
benefit from preserving common components because a solution improvement is 
more likely when changes are applied to the less fit uncommon components. 
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Fig. 3. In the OneMax problem, an improvement occurs when a 0 is turned into a 1. A random 
change applied to either parent above leads to an improvement only 30% of the time. 
However, a “respectful” change that is applied to an uncommon component will lead to an 
improvement 50% of the time [4] 

4 Simulated Annealing and Respect 

The control strategy for simulated annealing (SA) is designed to allow probabilistic 
escapes from local optima. Assuming a minimization objective, the simulated 
annealing process can be visualized as a ball rolling downhill through a landscape of 
peaks and valleys. Depending on how much “energy” is in the ball, it has the ability 
to “bounce out” of local minima. When the temperature/energy approaches zero, the 
ball will come to rest in a final minimum – ideally the global minimum if the cooling 
schedule has been slow enough. 

This control strategy does not specify how the “ball” will escape from local 
minima – it can climb any valley wall with equal probability. If local optima are 
randomly distributed throughout the search space, then this standard implementation 
of SA will be well suited. However, the local optima for many combinatorial 
optimization problems exhibit a “big valley” clustering – random local optima are 
more similar than random solutions, the similarities among local optima increase 
with their quality, and the global optimum is in the “centre” of the cluster of local 
optima [2][11]. 

The standard control strategy for simulated annealing is not as well suited for 
problems with “big valley” fitness landscapes. When escaping from local minima, 
simulated annealing makes no attempt to determine if it is climbing an “interior” 
wall (that is between the current solution and the global optimum) or an “exterior” 
wall (that is between the current solution and the perimeter of the big valley). (See 
figure 4.) Although the proof of convergence for simulated annealing does not 
require this insight, the practical (time-based) performance of an SA implementation 
may be affected.  

Simulated annealing can be modified for big valley fitness landscapes by adding 
the mechanism of respect from genetic algorithms. Having features from both SA 
and GA, the new modified procedure is called SAGA. SAGA provides the multiple 
solutions required by respect to identify common components by using two parallel 
runs. (See figure 5.) Using an elitist SA approach where the best solution visited 
during each temperature cycle is used as the starting point for the next temperature 
cycle, common components are recorded from the best solution of each run.  

Parent 1:    1 0 1 1 0 1 0 1 1 1 
Parent 2:    1 1 0 1 0 1 1 1 0 1 
 
Common:      1     1 0 1   1   1 
 
Uncommon 1:    0 1       0   1 
Uncommon 2:    1 0       1   0 
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Fig. 4. In a typical distribution of two-opt minima for the TSP, the best solutions have more 
common edges [2]. When escaping from a local minimum, a change that produces additional 
different/uncommon edges may be moving away from the better solutions found at the centre 
of the big valley 

The expectation that SAGA will perform better than a normal implementation of 
simulated annealing is based on the two previous observations. In figure 3, it can be 
seen that a change applied to an uncommon component is more likely to lead to an 
improvement. In figure 4a, it is shown that it is undesirable to have a large number of 
solution differences. By changing components that are already different, a respectful 
search operator is less likely to create additional solution differences that will lead 
the search process away from the centre of the big valley. 

5 A Base SA Application for the TSP 

To better isolate/emphasize the effects of the modified search operator, a relatively 
simple base SA application for the TSP (BaseSA) was used. BaseSA starts from a 
random solution, uses a geometric cooling schedule (� = 0.9) with n = 500 
temperature cycles, applies two million two-opt swaps per cycle, and returns to the 
best found solution at the end of each temperature cycle. Since a fixed number of 
temperature cycles are used, the temperature is not decreased if the best solution 
does not improve during that cycle. To determine the initial temperature, a 
preliminary set of 50 two-opt swaps is used where only improving steps are 
accepted. At the end of this set, the initial temperature starts at the average length of 
the attempted backward steps divided by ln(0.5) (i.e. an average backward step has a 
50% chance of being accepted). 
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Fig. 5. Pseudocode for SAGA. The two parallel runs (A and B) use the same cooling schedule. 
Information on common components is shared on line 6 before each temperature cycle (lines 
7-10). See sections 5 and 6 for the values of n and m 

6 Developing SAGA for the TSP 

SAGA has been developed for the TSP by using two parallel runs of BaseSA. Each 
instance of BaseSA uses all of the above parameters except that only m = 1,000,000 
two-opt swaps are now used during each annealing stage. This modification ensures 
that SAGA uses the same overall number of two-opt swaps (and thus a similar 
amount of computational effort) as the benchmark implementation of BaseSA. 

A two-opt swap changes two edges in a (single) solution. To implement the 
mechanism of respect so that common components can be preserved, SAGA records 
the common edges of the two parallel BaseSA runs at the beginning of each 
temperature cycle (see figure 5). The respectful two-opt operator will then select one 
uncommon edge and one random edge (which could be either common or 
uncommon). This preference to change uncommon components will help preserve 
common components which should help direct the overall search process towards the 
centre of the “big valley” of local minima.  

The only parametric difference between SAGA and BaseSA is an additional 
parameter to specify how often to apply the respectful two-opt operator versus the 
standard two-opt operator. This parameter was chosen from the 11 probabilities 
shown in table 1 by conducting a set of tuning experiments on PCB442. Measuring 

SAGA procedure                          line 

Begin                                 1 

 create initial random solution A                  2 

 create initial random solution B                  3 

 set initial temperature                       4 

 For i = 1 to n                            5 

  record common components of solutions A and B      6 

  For j = 1 to m                          7 

   apply search operator to solution A              8 

   apply search operator to solution B              9 

  End                                10 

  set solution A to best solution for A since line 6        11 

  set solution B to best solution for B since line 6        12 

  update temperature                        13 

 End                                 14 

 return best of solution A or B                   15 

End                                  16 
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the percent difference above the known optimal for the final solution in ten SAGA 
trials, it was determined that the respectful two-opt operator should be used 90% of 
the time (with random two-opt swaps being used for the remaining 10%). This 
parameter is used in all of the experiments presented in section 7. 

The results of the above tuning experiments also indicate that the improvements 
in SAGA are not due strictly to the use of two parallel runs – a result that is more 
fully explored in [3]. With a 0% probability of using the respectful two-opt operator, 
SAGA is essentially two (smaller and less effective) independent runs of BaseSA. 
Compared to these two independent runs, the performance of SAGA tends to 
improve with the increased use respect. The key exception to this trend is for a 
probability of 100%. It appears that SAGA benefits from divergent changes just like 
traditional genetic algorithms benefit from mutation. 

Table 1. Probability that the first-edge is specifically selected to be an uncommon edge. Values 
represent average percentage above optimal for 10 SAGA trials – n = 300 cycles, 60 million 
total two-opt swaps. Average performance of 10 BaseSA trials is provided for comparison 

Probability PCB442 
0.0 4.21 
0.1 3.60 
0.2 3.92 
0.3 3.68 
0.4 3.76 
0.5 3.49 
0.6 3.01 
0.7 3.17 
0.8 3.08 
0.9 2.79 
1.0 3.40 

BaseSA 3.79 

7 Experiments 

Using the above parameters, thirty trials of BaseSA and SAGA were each run on 5 
test TSP instances (dsj1000, d1291, fl1400, fl1577, and pr2392). The results for the 
experiments are shown in table 2. The respectful two-opt operator in SAGA has led 
to consistent and significant improvements compared to the benchmark 
implementation of BaseSA. 

It is important to note that only the relative results or differential performance 
should be considered from the above experiments. A rather simple control strategy 
was used in BaseSA to help isolate/emphasize the effects of the search operator. As a 
controlled parameter, any strengths or weaknesses in the basic operation of BaseSA 
should be reflected equally in the performance of both BaseSA and SAGA. 
Therefore, the superior performance of SAGA as compared to BaseSA is a clear 
demonstration of the benefits of respect. 



A Little Respect  (for the Role of Common Components in Heuristic Search) 9
 

Table 2. Average percentage above optimal for 30 trials of BaseSA and SAGA with one billion 
total two-opt swaps performed. One-tailed t-tests show that the chance of the SAGA results 
being the same as the BaseSA results is less than 0.01% for all five instances 

BaseSA SAGA Instance 
avg. std. dev. avg. std. dev. 

dsj1000 4.54 0.74 2.27 0.39 
d1291 8.87 1.41 3.12 1.12 
fl1400 3.07 1.04 2.00 0.88 
fl1577 6.47 1.58 0.64 0.55 
pr2392 9.24 1.37 6.53 0.56 

8 Discussion 

A heuristic search technique is defined by its search operator(s) and its control 
strategy. Some are defined almost exclusively by their control strategy (e.g. hill 
climbing, simulated annealing [10], and tabu search [6]). In these cases where there 
are relatively few restriction placed on the search operator, a new design model for 
search operators represents a broad opportunity to improve the performance of many 
implementations. The proposed design model suggests that the performance of a 
search operator (and of the heuristic search technique that uses it) can be improved if 
it preserves common components and focuses its changes on the uncommon 
components. 

The role of common components has been examined under many situations (e.g. 
in crossover operators [12] and memetic algorithms [5][13]). However, all of these 
previous situations involve populations of solutions, and the effects of preserving 
common components have not always been considered as favourable (e.g. premature 
convergence in genetic algorithms). The new model for search operators appears to 
be unique in that it applies respect to a (nominally) single-parent operator.  

It is interesting to note that the respectful search operator would not likely be 
accepted as a crossover operator since it does not use the mechanism of 
assortment/recombination. For example, imagine a two-parent operator where an 
offspring is created by making a random mutation to an uncommon component. The 
offspring would not be a recombination of the parent components and nothing would 
have “crossed over” between them, so the respectful search operator would not be a 
recombination/crossover operator. Since the crossover search operator is a defining 
feature of genetic algorithms [7][14], the new model for search operators may be 
more suitable to evolution strategies where it appears that nothing similar to the new 
respectful search operators has been used [1]. 

9 Conclusions 

The difference between heuristic search and random search is that heuristic search 
exploits/preserves some information from previous solutions. The proposed model 
for respectful search operators suggests that in globally convex search spaces, these 
preserved components should be common components. A search operator that 
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changes uncommon components can have a better than random chance of finding an 
improvement, and this increased effectiveness in the search operator may be able to 
improve the overall performance of a heuristic search technique. 
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