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Abstract. A search process implies an exploration of nemyisited states.
This quest to find something new tends to emphakieerocesses of change.
However, heuristic search is different from randesarch because features of
previous solutions are preserved — even if thegpovesion of these features is
a passive decision. A new parallel simulated anmggrocedure is developed
that makes some active decisions on which solufeatures should be
preserved. The improved performance of this madiifirocedure helps
demonstrate the beneficial role of common companienteuristic search.

1 Introduction

Heuristic search techniques can be analyzed bysfeglon their “search operators”
and their “control strategies”. A search operatm@ates new solutions by making
some (usually small) changes to existing solutiddisof the remaining aspects of a
heuristic search technique can be included asgbétg control strategy [15] — which
search operator(s) to apply; which solutions togpkebange, or remove; and when to
stop.

The role of the (local) search operator is to @eamtnew candidate solution.
Depending on the control strategy, (small) randomanges may be sufficient.
However, search operators should ideally performo tasks in creating a new
solution from the existing solution(s) — identifgth the superior solution parts that
are worth keeping and the weaker solution parts shauld be changed. A search
operator that performs these tasks and which pesibetter than random changes
may be able to improve the performance of any obrdtrategy/heuristic search
technique that it is used with.

Examples of heuristic search techniques that ndymase random search
operators are hill climbing and simulated annea[ib@]. In hill climbing, random
changes are applied (e.g. two-opt swaps for the€llilag Salesman Problem) and
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the control strategy accepts only improving chandessimulated annealing, the
control strategy accepts non-improving changes aiibistically based on the
temperature which is adjusted according to a cgaichedule. Attempts to improve
the performance of simulated annealing often foous finding better cooling

schedules [9].

Another heuristic search technique that emphastzedeatures of the control
strategy over the design of the search operat@bis search [6]. In tabu search, the
control strategy causes escapes from local optinmadking certain operations tabu.
However, this tabu list of restricted operatorads designed to improve the isolated
performance of the search operators. Specificalijgu search and simulated
annealing can use the same search operators [&Jotkoof these heuristic search
techniques are potential beneficiaries of improsearch operators.

In the definitions of other heuristic search tecjueis like genetic algorithms [7],
the search operators and the control strategy atteibcluded. The primary search
operator for genetic algorithms is crossover, dredthree mechanisms of crossover
are respect, transmission, and assortment [12hoAlih assortment /recombination
is seen as the “overt purpose” of crossover [Jegpect/the preservation of common
components is also an important feature [4]. Inigalar, this feature can be used to
specify which solution parts should be kept — gulssomplement to the focus that
most search operators have on what to change.

In the meta-heuristic of memetic algorithms [13]has previously been shown
that respect/the preservation of common comporeartsbe a beneficial feature [5].
Since the local optima of a globally convex seaphace share many similar features
[2][11], it is reasonable to restart the heuristgarch technique in a neighbourhood
near good local optima. However, the potential fisnef respect for single-parent
search operators has not been analyzed in isolation

To summarize, it is hypothesized that a searchatpewill be more effective if
it actively performs both tasks of choosing whatkeep and choosing what to
change. Ideas for how to develop these operatolis bgi taken from genetic
algorithms in sections 2 and 3. These ideas willttamsferred into simulated
annealing in section 4. Experimental results wil developed and presented in
sections 5 through 7. These results are discussséction 8 before conclusions are
drawn in section 9.

2 Background

The three primary features of a genetic algorit@A) are a population of solutions,
fitness-based selection, and the crossover seaetator [7]. In crossover, there are
three mechanisms: “respect”, “transmission”, arsktatment” [12]. The principle of
respect is that the common components of two pa@ations should be preserved
in the offspring. Transmission states that all congnts in the final offspring should
have come from one of the two parents, and assottrisethe equivalent of
recombination — parents with two non-competingtérahould be able to produce an

offspring with both features.



A Little Respect (for the Role of Common ComposentHeuristic Search) 3

The two mechanisms that are unique to multi-pao@etrators are recombination
and respect — it takes multiple parents to havefifecommon and uncommon
components that can be recombined or preservad.dgénerally assumed that the
advantage of crossover is its ability to assemtdteb offspring solutions by
combining the superior solution parts of two pasdii[14]. However, attempts to
transfer this advantage to other search operatmtfauristic search techniques have
led to mixed results and comments like “crossovam be compared to the very
unpromising effort to recombine animals of differepecies” [16].

Focusing instead on the mechanism of respect, timen@nality Hypothesis [4]
suggests that the advantage of the crossover sepeshtor is its ability to leverage
the knowledge accumulated in previous solutions @ndse this knowledge as a
foundation for further explorations. In particulérhas previously been shown that
many combinatorial optimization problems have “glhyp convex” fitness
landscapes that cause the best solutions to shary wimilarities [2][11]. By
transferring respect to general search operatostiould be possible to allow other
heuristic search techniques to more effectivelylanep globally convex fitness
landscapes.

3 AnAnalysisof Respect and Recombination

Before adding respect to a search operator forlatenl annealing, it is important to
develop a functional model for how this mechanismeagates benefits. To start, the
performance of one-point, two-point, and unifornossover are shown for the
OneMax problem (where the fitness of a binary gtgolution is equal to its number
of ones). The results presented in figure 1 arelfif) trials of a genetic algorithm
with generational replacement where only solutiaith a fitness higher than the
average fitness of the entire population are altbteemate.
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Fig. 1. Results for a 100 bit OneMax problem started feorandom population of 100
solutions. 100 generations were used, but alstdahverged within 40 generations. Average
fitness refers to all solutions in the populatiowl @are averaged over 100 trials

One interpretation for the superior performanceumform crossover is that its
larger number of crossing sites allow greater opities for recombination.
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However, it is shown in figure 2 that the uncomnemmponents being recombined
have a below average fithess compared to the snlats a whole and to the above
average fitness of the common components presdxywed forms of crossover. In a

binary solution space, an uncommon component isssecily a 1 in one parent and
a 0 in the other. Since these uncommon componetitiave an average fitness of

0.5 (for the OneMax problem), recombination is etffeely random search in this

instance.
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Fig. 2. Results for a 100 bit OneMax problem started feorandom population of 100
solutions. 100 generations were used, but alktdahverged within 40 generations. Average
fitness refers to all solutions in the populatiowl @re averaged over 100 trials

An alternative interpretation for the superior penfiance of uniform crossover is
that it is a more efficient search operator thae-paint and two-point crossover.
Although all three operators preserve common corepts; uniform crossover
searches with the most “unbiasedness” [1]. Focusimghe common components,
the concept of “genetic repair” [1] provides a vmyrtexplanation for why the
accumulation of common components can be a beakfiart of the search process —
these common components (i.e. the population deljtape fitter than the individual
solutions (see the common ratio in figure 2). Unfoately, genetic repair gives little
guidance for the design of search operators irretisgproblem domains.

Recalling the hypothesis that a search operator beymore effective if it
actively performs the two tasks of identifying teaperior solution parts worth
keeping and the weaker solution parts to changés itlear from figure 2 that
preserving common components can do both. Thisfibesfepreserving common
components is explicitly demonstrated in figureTBe uncommon components of
two parent solutions necessarily have an averagest of 0.5 (per component), and
this will be below the average component fitnessnaf above-average parents (0.7
in figure 3). Therefore, the average fitness of thmaining common components
must be even greater (0.83 in figure 3). The effeaess of a search operator should
benefit from preserving common components becauselwion improvement is
more likely when changes are applied to the legssnfiommon components.
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Parent 1: 1011010111
Parent 2: 1101011101
Comon: 1 101 1 1
Uncommon 1: 01 0 1
Uncommon 2: 10 1 0

Fig. 3. In the OneMax problem, an improvement occurs wan8ris turned into a 1. A random
change applied to either parent above leads tmprovement only 30% of the time.
However, a “respectful’ change that is appliednaiacommon component will lead to an
improvement 50% of the time [4]

4 Simulated Annealing and Respect

The control strategy for simulated annealing (SAYiésigned to allow probabilistic
escapes from local optima. Assuming a minimizatmrjective, the simulated
annealing process can be visualized as a balhgotiownhill through a landscape of
peaks and valleys. Depending on how much “energyfi ithe ball, it has the ability
to “bounce out” of local minima. When the temperatenergy approaches zero, the
ball will come to rest in a final minimum — idealllye global minimum if the cooling
schedule has been slow enough.

This control strategy does not specify how the I"balill escape from local
minima — it can climb any valley wall with equalopability. If local optima are
randomly distributed throughout the search spde this standard implementation
of SA will be well suited. However, the local optinfor many combinatorial
optimization problems exhibit a “big valley” clusitegy — random local optima are
more similar than random solutions, the similasitemong local optima increase
with their quality, and the global optimum is irethcentre” of the cluster of local
optima [2][11].

The standard control strategy for simulated anngai not as well suited for
problems with “big valley” fithess landscapes. Whestaping from local minima,
simulated annealing makes no attempt to deternfitiieis climbing an “interior”
wall (that is between the current solution and ghebal optimum) or an “exterior”
wall (that is between the current solution and pfeeimeter of the big valley). (See
figure 4.) Although the proof of convergence fomslated annealing does not
require this insight, the practical (time-basedfgenance of an SA implementation
may be affected.

Simulated annealing can be modified for big valfiyess landscapes by adding
the mechanism of respect from genetic algorithnaviky features from both SA
and GA, the new modified procedure is called SAGAGA provides the multiple
solutions required by respect to identify commomponents by using two parallel
runs. (See figure 5.) Using an elitist SA approagtere the best solution visited
during each temperature cycle is used as thergjgobint for the next temperature
cycle, common components are recorded from thedodgtion of each run.
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Fig. 4. In a typical distribution of two-opt minima foreéhil' SP, the best solutions have more
common edges [2]. When escaping from a local mininai change that produces additional
different/uncommon edges may be moving away froenbigiter solutions found at the centre
of the big valley

The expectation that SAGA will perform better treanormal implementation of
simulated annealing is based on the two previogemiations. In figure 3, it can be
seen that a change applied to an uncommon companerdre likely to lead to an
improvement. In figure 4a, it is shown that it imdesirable to have a large number of
solution differences. By changing components thatadready different, a respectful
search operator is less likely to create additicmdlition differences that will lead
the search process away from the centre of thedligy.

5 A BaseSA Application for the TSP

To better isolate/emphasize the effects of the fremtlisearch operator, a relatively
simple base SA application for the TSP (BaseSA) wsed. BaseSA starts from a
random solution, uses a geometric cooling schedqule= 0.9) with n = 500
temperature cycles, applies two million two-opt pwaer cycle, and returns to the
best found solution at the end of each temperatycte. Since a fixed number of
temperature cycles are used, the temperature islemeased if the best solution
does not improve during that cycle. To determine fhitial temperature, a
preliminary set of 50 two-opt swaps is used wherdy dmproving steps are
accepted. At the end of this set, the initial terapee starts at the average length of
the attempted backward steps divided by In(0.8) éin average backward step has a
50% chance of being accepted).
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SAGA procedure line
Begin 1
create initial random solution A 2
create initial random solution B 3
set initial temperature 4
Fori=1lton 5
record common components of solutions A and B 6
Forj=1tom 7
apply search operator to solution A 8
apply search operator to solution B 9
End 1d
set solution A to best solution for A since le 11
set solution B to best solution for B since lthe 12
update temperature 13
End 14
return best of solution A or B 51

Fig. 5. Pseudocode for SAGA. The two parallel runs (A Bpdise the same cooling schedule.
Information on common components is shared on@ibefore each temperature cycle (lines
7-10). See sections 5 and 6 for the values of mand

6 Developing SAGA for the TSP

SAGA has been developed for the TSP by using twallehruns of BaseSA. Each
instance of BaseSA uses all of the above paramexeept that only m = 1,000,000
two-opt swaps are now used during each annealagge siThis modification ensures
that SAGA uses the same overall number of two-epps (and thus a similar
amount of computational effort) as the benchmaniémentation of BaseSA.

A two-opt swap changes two edges in a (single)tsolu To implement the
mechanism of respect so that common componentbeaneserved, SAGA records
the common edges of the two parallel BaseSA runshatbeginning of each
temperature cycle (see figure 5). The respectfaltawt operator will then select one
uncommon edge and one random edge (which could iteer ecommon or
uncommon). This preference to change uncommon coems will help preserve
common components which should help direct thealvsearch process towards the
centre of the “big valley” of local minima.

The only parametric difference between SAGA andel3#s is an additional
parameter to specify how often to apply the redpkbivo-opt operator versus the
standard two-opt operator. This parameter was chdisen the 11 probabilities
shown in table 1 by conducting a set of tuning expents on PCB442. Measuring
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the percent difference above the known optimaltfier final solution in ten SAGA
trials, it was determined that the respectful tvpb-operator should be used 90% of
the time (with random two-opt swaps being used tf@ remaining 10%). This
parameter is used in all of the experiments preseintsection 7.

The results of the above tuning experiments ald@ate that the improvements
in SAGA are not due strictly to the use of two platauns — a result that is more
fully explored in [3]. With a 0% probability of usj the respectful two-opt operator,
SAGA is essentially two (smaller and less effedtivelependent runs of BaseSA.
Compared to these two independent runs, the pesfocen of SAGA tends to
improve with the increased use respect. The keymian to this trend is for a
probability of 100%. It appears that SAGA benefitem divergent changes just like
traditional genetic algorithms benefit from mutatio

Table 1. Probability that the first-edge is specificallysgtied to be an uncommon edge. Values
represent average percentage above optimal foAGASrials — n = 300 cycles, 60 million
total two-opt swaps. Average performance of 10 Bastrials is provided for comparison

Probability PCB442
0.0 4.21
0.1 3.60
0.2 3.92
0.3 3.68
0.4 3.76
0.5 3.49
0.6 3.01
0.7 3.17
0.8 3.08
0.9 279
1.0 3.40

BaseSA 3.79

7 Experiments

Using the above parameters, thirty trials of Base®d SAGA were each run on 5
test TSP instances (dsj1000, d1291, fl1400, flL&rd pr2392). The results for the
experiments are shown in table 2. The respectfatdpt operator in SAGA has led
to consistent and significant improvements compared the benchmark
implementation of BaseSA.

It is important to note that only the relative éswor differential performance
should be considered from the above experimentsatier simple control strategy
was used in BaseSA to help isolate/emphasize fhetefof the search operator. As a
controlled parameter, any strengths or weaknesst®ibasic operation of BaseSA
should be reflected equally in the performance ofhbBaseSA and SAGA.
Therefore, the superior performance of SAGA as aren to BaseSA is a clear
demonstration of the benefits of respect.
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Table 2. Average percentage above optimal for 30 trials as&SA and SAGA with one billion
total two-opt swaps performed. One-tailed t-tektsasthat the chance of the SAGA results
being the same as the BaseSA results is less tBafolfor all five instances

BaseSA SAGA
Instance avg. std. dev. avg. std. dev.
dsj1000 4.54 0.74 2.27 0.39
d1291 8.87 1.41 3.12 1.12
fl1400 3.07 1.04 2.00 0.88
fl1577 6.47 1.58 0.64 0.55
pr2392 9.24 1.37 6.53 0.56

8 Discussion

A heuristic search technique is defined by its cleasperator(s) and its control
strategy. Some are defined almost exclusively tgirthontrol strategy (e.g. hill
climbing, simulated annealing [10], and tabu sed6fh In these cases where there
are relatively few restriction placed on the seaspkrator, a new design model for
search operators represents a broad opportunitymve the performance of many
implementations. The proposed design model sugdkatsthe performance of a
search operator (and of the heuristic search tqakrthat uses it) can be improved if
it preserves common components and focuses itsgelBawn the uncommon
components.

The role of common components has been examineer undny situations (e.g.
in crossover operators [12] and memetic algoritfisi 3]). However, all of these
previous situations involve populations of soluipand the effects of preserving
common components have not always been considsria/aurable (e.g. premature
convergence in genetic algorithms). The new modekéarch operators appears to
be unique in that it applies respect to a (homypalingle-parent operator.

It is interesting to note that the respectful skasperator would not likely be
accepted as a crossover operator since it doesuset the mechanism of
assortment/recombination. For example, imagine e-garent operator where an
offspring is created by making a random mutatioariacuncommon component. The
offspring would not be a recombination of the pai@mponents and nothing would
have “crossed over” between them, so the respesgfuich operator would not be a
recombination/crossover operator. Since the cregssearch operator is a defining
feature of genetic algorithms [7][14], the new miofitg search operators may be
more suitable to evolution strategies where it appéhat nothing similar to the new
respectful search operators has been used [1].

9 Conclusions

The difference between heuristic search and ranseanch is that heuristic search
exploits/preserves some information from previoakitions. The proposed model
for respectful search operators suggests thatabadly convex search spaces, these
preserved components should be common componentseafch operator that
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changes uncommon components can have a betterahdom chance of finding an
improvement, and this increased effectivenesseénstbarch operator may be able to
improve the overall performance of a heuristic skaechnique.
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