

Recursive and Iterative Algorithms for N-
ary Search Problems

Valery Sklyarov, Iouliia Skliarova
University of Aveiro, Department of Electronics and

Telecommunications/IEETA, 3810-193 Aveiro, Portugal
skl@det.ua.pt, iouliia@det.ua.pt

WWW home page: http://www.ieeta.pt/~skl
http://www.ieeta.pt/~iouliia/

Abstract. The paper analyses and compares alternative iterative and recursive
implementations of N-ary search algorithms in hardware (in field
programmable gate arrays, in particular). The improvements over the previous
results have been achieved with the aid of the proposed novel methods for the
fast implementation of hierarchical algorithms. The methods possess the
following distinctive features: 1) providing sub-algorithms with multiple entry
points; 2) fast stack unwinding for exits from recursive sub-algorithms; 3)
hierarchical returns based on two alternative approaches; 4) rational use of
embedded memory blocks for the design of a hierarchical finite state machine.

1 Introduction

Adaptive control systems (ACS) are capable to change their functionality without
modifying physical components. In general this can be achieved with the aid of
reprogrammable devices such as field programmable gate arrays (FPGA). A method
for the design of ACS on the basis of hierarchical finite state machines (HFSM) was
proposed in [1] and it makes possible to realize modular and hierarchical
specifications of control algorithms based on such alternative techniques as iterative
and recursive implementations [2]. It was shown that recursive implementations are
more advantageous in hardware in terms of the execution time although they might
require slightly more FPGA resources. This paper suggests further advances in scope
of hierarchical, in general, and recursive, in particular, specifications (as well as the
relevant implementations) and presents new arguments in favor of the results [1,2].

There exists a technique [3] that enables recursion to be implemented in
hardware through establishing a special control sequence provided by a hierarchical
finite state machine. The paper shows that the efficiency of this technique can be
significantly improved through the use of the following novel methods: 1) supporting

mailto:skl@det.ua.pt
http://www.ieeta.pt/~skl

2 Valery Sklyarov, Iouliia Skliarova

multiple entry points to sub-algorithms that are called recursively; 2) employing a
fast unwinding procedure for stacks used as an HFSM memory; 3) establishing
flexible hierarchical returns; 4) the rational use of embedded memory blocks for the
design of HFSM stacks.

The remainder of this paper is organized in four sections. Section 2 discusses N-
ary search problems that can be solved using either iterative or recursive techniques.
Section 3 characterizes known results for the specification and implementation of
hierarchical algorithms and suggests four methods for their improvement. Section 4
describes the experiments. The conclusion is in Section 5.

2 N-ary Search Problems

Computational algorithms for many search problems are based on generation and
exhaustive examination of all possible solutions until a solution with the desired
quality is found. The primary decision to be taken in this approach is how to generate
the candidate solutions effectively. A widely accepted answer to this question
consists of constructing an N-ary search tree [4], which enables all possible solutions
to be generated in a well-structured and efficient way. The root of the tree is
considered to be the starting point that corresponds to the initial situation. The other
nodes represent various situations that can be reached during the search for results.
The arcs of the tree specify steps of the algorithm. At the beginning the tree is empty
and it is incrementally constructed during the search process.

A distinctive feature of this approach is that at each node of the search tree a
similar sequence of algorithmic steps has to be executed. Thus, either iterative or
recursive procedures can be applied [2]. The only thing that is different from node to
node is input data. This means that the entire problem reduces to the execution of a
large number of repeated operations over a sequentially modified set of data.

Of course, exhaustive checking all possible solutions cannot be used for the
majority of practical problems because it requires a very long execution time. That is
why it is necessary to apply some optimization techniques that reduce the number of
situations that need to be considered. In order to speed up getting the results various
tree-pruning techniques can be applied.

The other known method of improving the effectiveness of the search is a
reduction [5], which permits the current situation to be replaced with some new
simpler situation without sacrificing any feasible solution. However, reduction is not
possible for all existing situations. In this case another method is used that relies on
the divide-and-conquer strategy [4]. This applies to critical situations that have to be
divided into N several simpler situations such that each of them has to be examined.
The objective is to find the minimum number N.

Thus, an N-ary search problem can be solved by executing the following steps:
1. Applying reduction rules.
2. Verifying intermediate results, which permits to execute one of the

following three sub-steps:
2.1. Pruning the current branch of the algorithms and backtracking to the

nearest branching point;
2.2. Storing the current solution in case if this solution is the best;
2.3. Sequential executing the points 3 and 4.

Recursive and Iterative Algorithms for N-ary Search Problems 3

3. Applying selection rules (dividing the problem into sub-problems and
selecting one of them).

4. Executing either the point 4.1 (for iterative algorithm) or the point 4.2 (for
recursive algorithm).
4.1. Executing the next iteration (see points 1-4) over the sub-problem.
4.2. Recursive invocation of the same algorithm (see points 1-4) over the

sub-problem.
Thus, either an iterative (see points 1-3, 4.1) or a recursive (see points 1-3, 4.2)

algorithm can be executed and it is important to know which one is better.
Let us consider another example. Fig. 1 depicts a system, which receives

messages from an external source. The messages have to be buffered and processed
sequentially according to their priority. Each incoming message changes the
sequence, because it has to be inserted in a proper position.

Message with
priority P

in
co

m
in

g
m

es
sa

ge
s

1. Sequential receiving of
incoming messages;

2. Constructing a binary tree
taking into account
priorities of the incoming
messages.

3. Extracting from the tree the
next message for
processing;

4. Processing the message.

Message with
priority PJ<P

Message with
priority PK>P

Fig. 1. Example of an adaptive embedded system

Let us assume that the following strategy is applied. All incoming messages are
accommodated on a binary tree (N=2) whose nodes contain three fields that are: a
pointer to the left child node, a pointer to the right child node, and the message
identification, which is used to activate the respective processing procedure. The
nodes are maintained so that at any node, the left sub-tree contains only messages
that are less priority-driven (i.e. the messages that have smaller priority) than the
message at the node, and the right sub-tree contains only messages that are more
priority-driven. It is known that such a tree can be constructed and used for sorting
various types of data [6] and for our particular example we can sort messages
according to their priority. In order to build the tree for a given set of messages, we
have to find the appropriate place for each incoming node in the current tree. In order
to sort the messages, we can apply a special technique [6] using forward and
backward propagation steps that are exactly the same for each node.

In case of modular specification the algorithm can easily be modified to change
the sequence of processing. For example, messages with priorities less than some
given value can be ignored; priorities can be flexibly changed dependently on some
other external conditions, etc. Such changes do not require redesigning the complete
algorithm and just a module responsible for task 2 in Fig. 1 has to be altered.

It is very important to note that hierarchical algorithms, in general, and recursive
algorithms, in particular, can be very efficiently used for solving such problems and
it was shown and proven in [2].

4 Valery Sklyarov, Iouliia Skliarova

3 Specification and Implementation of Hierarchical Algorithms

3.1 Known Results

It is known [3] that hierarchical algorithms can be constructed from modules with the
aid of the language called hierarchical graph-schemes (HGS). Recursion is provided
through invocations of the same module. An HFSM permits execution of HGSs [3]
and contains two stacks (see Fig. 2), one for states (FSM_stack) and the other for
modules (M_stack). The stacks are managed by a combinational circuit (CC) that is
responsible for new module invocations and state transitions in any active module
that is designated by outputs of the M_stack. Since each particular module has a
unique code, the same HFSM states can be repeated in different modules. Fig. 2
demonstrates how the HFSM executes an algorithm. Any non-hierarchical transition
is performed through a change of a code only on the top register of the FSM_stack
(see the example marked with •). Any hierarchical call alters the states of both stacks
in such a way that the M_stack will store the code for the new module and the
FSM_stack will be set to the initial state (normally to a0=0…0) of the module (see
the example marked with ■). Any hierarchical return just activates a pop operation
without any change in the stacks (see the example marked with ♦). As a result, a
transition to the state following the state where the terminated module was called
will be performed. The stack pointer stack_ptr is common to both stacks. If the End
node is reached when stack_ptr=0, the algorithm terminates execution.

M_stack FSM_stackCombinational
circuit (CC)

x1 xL

y1 yN

current
state

current
module

next
state

new
module

a2

a2

Begin

y3

x1

a0

x2
0

1

a0

x1=0
x2=1y1,y2,z

a1

push z, set a0,
form y1,y2

Enda4
pop or

end

z

Control: clock, reset, push, pop

y1,y2

Fig. 2. Functionality of a hierarchical FSM

3.2 Novel Methods

Section 1 lists the proposed innovative facilities for HGSs and HFSMs. This
subsection provides detailed explanations of these facilities augmented by examples
that are illustrated through synthesizable Very High Speed Integrated Circuits
Hardware Description Language (VHDL) specifications.

Recursive and Iterative Algorithms for N-ary Search Problems 5

3.2.1. Providing Multiple Entry Points to Sub-algorithms

Fig. 3 demonstrates a fragment of a recursive sorting algorithm discussed in [2]. The
two stacks used in a HFSM (such as depicted in Fig. 2) can be described in VHDL as
follows (subscripts, such as 0 in a0, are not allowed in VHDL but they have been
used to provide consistency between VHDL codes and the relevant figures and
textual descriptions):

process(clock,reset) (1)
begin
 if reset = '1' then

-- setting to an initial state and initializing
-- if reset is active

 elsif rising_edge(clock) then
 if hierarchical_call = '1' then
 if -- test for possible errors
 else
 sp <= sp + 1;
 FSM_stack(sp+1) <= a0; -- ref1
 FSM_stack(sp) <= NS;
 M_stack(sp+1) <= NM;
 end if;
 elsif hierarchical_return = '1' then
 sp <= sp – 1; -- ref2
 else FSM_stack(sp) <= NS;
 end if;
 end if;
end process;

Here any module invocation/termination is indicated through a signal
hierarchical_call/hierarchical_return; sp is a common stack pointer; NS/NM is a
new state/module, a0 is an initial state of each module. Indicators ref1, ref2 will be
used for future references.

The combinational circuit (CC) in Fig. 2 has the following skeletal code
(template):

process (current_module,current_state,inputs) (2)
begin
 case M_stack(sp) is
 when z1 =>
 case FSM_stack(sp) is
 -- state transitions in the module z1
 -- generating outputs for the module z1
 end case;
 -- repeating for all modules, which might exist
 end case;
end process;

6 Valery Sklyarov, Iouliia Skliarova

As we can see from Fig. 3 any hierarchical module invocation, such as that is
done in the node a2, activates the same algorithm once again, starting from the node
Begin (a0). Skipping the node a0 removes one clock cycle from any hierarchical call.
However in this case the algorithm in Fig. 3 must have multiple entry points and a
particular entry point will be chosen by the group of rhomboidal nodes enclosed in
an ellipse. This possibility is provided by the additional tests performed in the nodes
with hierarchical calls (such as a2 and a3 in Fig. 3). The following fragment
demonstrates how these tests can be coded in VHDL for the state a2.

when a2 => -- generating outputs and the signal
 -- hierarchical_call
 NM<=z1;
 if x3='1' then NM_FS <= a1; -- this is because
 -- x1 cannot be equal to 1 after the state a2
 elsif x2 ='0' then NM_FS <= a5;
 elsif x4 ='0' then NM_FS <= a2;
 else NM_FS <= a3;
 end if;

Here NM_FS is the first state of the next module. The line ref1 in (1) has to be
changed as follows:

FSM_stack(sp+1) <= NM_FS;

Begin

x3

x1x2

x4

End, y10

10

11

1

0

0

0

y1,y2,z1

a0

a1a4a5a2a3

a6

y7,y8y6,y8y1,y4,z1 y9

z1 a0 – a6 – states of
(hierarchical) finite

state machine
b)

CB

CB CB

Fig. 3. HGS with multiple entry points provided through inserting the control block (CB) in
the nodes with hierarchical calls

3.2.2. Fast Stack Unwinding

Since there is just the node End after a2 and a3, hierarchical activation of any one of
the nodes a1, a4, a5 (see Fig. 3) leads to termination of the algorithm. To implement
this termination in [2] the lines in (1)

if hierarchical_return = '1' then
 sp <= sp – 1;

Recursive and Iterative Algorithms for N-ary Search Problems 7

are executed repeatedly until the pointer sp receives the value assigned at the
beginning of the algorithm (see the line if reset = '1' in (1) for our example).
In the general case, this value is assigned during the first call of the respective
module (such as that depicted in Fig. 3) followed by subsequent recursive
invocations of the module. Repeated execution of the line sp <= sp – 1;
requires multiple additional clock cycles. To eliminate these redundant clock cycles
the proposed method of fast stack unwinding is employed. The line ref2 in (1) is
changed as follows:

sp <= sp – unwinding;

where the signal unwinding is calculated as

unwinding <= sp - saved_sp + 1;

and saved_sp <= sp at the first invocation of the module. Thus, redundant clock
cycles for hierarchical returns will be avoided.

3.2.3. Execution of Hierarchical Returns

Hierarchical calls in [2] are carried out as follows:

if hierarchical_call = '1' then
 -- error handling

sp <= sp + 1;
 FSM_stack(sp+1) <= a0;
 FSM_stack(sp) <= NS; -- ***
 M_stack(sp+1) <= NM;

The line indicated by asterisks sets the code of the next state during a hierarchical
call. As a result, after a hierarchical return the top register of the FSM_stack contains
the code of the proper HFSM state (i.e. no additional clock cycle is required). Since
the next state is determined before the invocation of a module (such as z1), the latter
cannot affect the state transition, i.e. any possible change of the conditions x1-x4 in z1
cannot alter the previously defined next state. For our example this does not create a
problem. However, for many practical applications it is a problem and it must be
resolved. The following code gives one possible solution:

if rising_edge(clock) then
 if hierarchical_call = '1' then
 -- error handling
 sp <= sp + 1;
 FSM_stack(sp+1) <= NM_FS;
 M_stack(sp+1) <= NM;

After a hierarchical return from NM, the code above sets FSM_stack to the state
where the hierarchical call of NM was executed. This enables us to provide correct
transitions to the next state because all logic conditions that might be changed in the
called module NM have already received the proper values. However, this gives rise

8 Valery Sklyarov, Iouliia Skliarova

to another problem; namely it is necessary to avoid repeating invocation of the same
module NM and iterant output signals. The following code overcomes the problem:

if rising_edge(clock) then (3)
 if hierarchical_call = '1' then
 -- error handling
 sp <= sp + 1;
 FSM_stack(sp+1) <= NM_FS;
 M_stack(sp+1) <= NM;
 elsif hierarchical_return = '1' then
 sp <= sp - 1;
 return_flag <= '1';
 else FSM_stack(sp) <= NS;
 return_flag <= '0';
 end if;

The signal return_flag permits module invocation and output operations to be
activated during a hierarchical call and to be avoided during a hierarchical return.
Indeed, the return_flag is equal to 1 only in a clock cycle when the signal sp is
decremented (see the code (3) above). As soon as the currently active module is
being terminated, the control flow will be returned to the point from which this
module was called. Thus, the top of the M_stack will contain the code of the calling
module and the top of the FSM_stack will store the code of the calling state. The
return_flag enables us to eliminate the second call of the same module (and the
second activation of the relevant output signals). This is achieved with the aid of the
following lines that have to be inserted in the code (2):

when state_with_module_call => NS <=
 -- testing the conditions and

-- computation of the next state
 if return_flag = '0' then
 hierarchical_call <= '1';

-- specifying outputs
NM <= -- assigning the next module

 else
hierarchical_call <= '0';
outputs <= (others => '0');

 end if;

Finally, the proposed technique permits logic conditions to be tested after
terminating the called module, which might alter these conditions.

3.2.4. Using Embedded Memory Blocks

Synthesis of HFSMs from the specifications considered above has shown that stack
memories (see Fig. 2) are very resource consuming. However, for implementing the
functionality (1) embedded memory blocks can be used (such as that are available
for FPGAs [1]). It should be noted that the majority of recent microelectronic

Recursive and Iterative Algorithms for N-ary Search Problems 9

devices offered on the market either include embedded memory blocks (such as
FPGAs with block RAMs) or allow these blocks to be used.

4. Implementation Details and the Results of Experiments

Alternative iterative and recursive implementations for various problems were
analyzed and compared in [2]. Two types of recursive calls were examined, namely
for cyclic and binary (N-ary) search algorithms. The relevant comparative data were
analyzed through modeling in software and synthesis and implementation in
hardware from system-level (Handel-C) and RTL (VHDL) specifications. One of the
results was the following: using recursive algorithms in hardware for problems of N-
ary search seems to be more advantageous comparably with iterative
implementations.

This paper suggests methods for further improvements of the results [2], which
makes possible to demonstrate new advantages of recursive algorithms over iterative
algorithms. The first column of Table 1 lists HFSMs for the problems P1, P3 and P4
considered in [2] and for each of them shows the results of different
implementations, where Ns is the number of the occupied FPGA slices and Nclock is
the number of the required clock cycles. Note that the maximum allowed clock
frequency, obtained with the aid of implementation tools, is practically the same for
all columns related to the same problem.

Table 1. The results of experiments with HFSMs

Ns/NclockProblem

from [2] Implemen-
tation [3]

Block RAM Distributed RAM Multiple entries for [3]

P1 192/72 50/72 53/72 189/59
P3 68/62 17/62 19/62 67/51
P4 49/11 15/11 16/11 47/9

Analysis of Table 1 demonstrates significant advantages of the proposed

methods. Note that block and distributed RAM can also be used for synthesis from
HGSs with multiple entry points. This gives nearly the same number of slices as for
the columns Block RAM and Distributed RAM. Thus, combining different methods
proposed in this paper permits to achieve the best results.

Table 2 lists the same examples P1, P3, P4 that have been considered in [2] and
shows (comparing with [2]) the percentage reduction in either hardware resources
(FPGA slices) for the columns marked with Ns, or the number of clock cycles for the
columns marked with Nclock. All the conditions for providing experiments are the
same as in [2]. The synthesis and implementation of circuits from specification in
VHDL were done in Xilinx ISE 8.1 for xc2s400e-6ft256 FPGA (Spartan-IIE family
of Xilinx) available on the prototyping board TE-XC2Se [7]. Note once again that
advantages of all columns (i.e. Block RAM, Distributed RAM and Multiple entries)
can be combined. For example, considering for the problem P1 HGSs with multiple
entry points and using block RAMs for the implementation of HFSM enable us to

10 Valery Sklyarov, Iouliia Skliarova

decrease resources in 24% and reduce the number of cycles in 18%. Hence, in
addition to comparison performed in [2], the results of this paper present further
advantages which can be gained for modular algorithms in general, and recursive
algorithms in particular over non-modular iterative implementations.

Table 2. Experiments with examples from [2]

Ns/Nclock (%)

Problem from [2]
Block RAM Distributed RAM Multiple entries

P1 24/0 24/0 0/18
P3 12/0 12/0 0/5
P4 7/0 7/0 0/4

5 Conclusion

In this paper alternative recursive and iterative implementations of algorithms for N-
ary search problems have been analyzed. Such algorithms are frequently used for
describing functionality of adaptive control systems. From the results of [2] we can
conclude that recursive implementations are more advantageous in hardware in terms
of the execution time although they might require slightly more FPGA resources.
The paper suggests four methods for further improvements in the specification,
synthesis and hardware implementation of hierarchical, in general, and recursive, in
particular, algorithms. To clarify their use in practical projects many useful
fragments of synthesizable VHDL code are presented. The experiments described in
the paper have proven significant advantages of the proposed methods comparing
with other known results.

References

[1] V. Sklyarov, Models, Methods and Tools for Synthesis and FPGA-based Implementation of
Advanced Control Systems, Proceedings of ICOM’05, Kuala Lumpur, Malaysia, 2005, pp.
1122-1129
[2] V. Sklyarov, I. Skliarova, and B. Pimentel, FPGA-based implementation and comparison
of recursive and iterative algorithms, Proceeding of FPL’2005, Tampere, Finland, 2005, pp.
235-240.
[3] V. Sklyarov, Hierarchical Finite-State Machines and Their Use for Digital Control, IEEE
Transactions on VLSI Systems, vol. 7, no 2, pp. 222-228, 1999.
[4] I. Skliarova and A.B. Ferrari, The Design and Implementation of a Reconfigurable
Processor for Problems of Combinatorial Computation, Journal of Systems Architecture,
Special Issue on Reconfigurable Systems, vol. 49, nos. 4-6, 2003, pp. 211-226.
[5] A.D. Zakrevski, Logical Synthesis of Cascade Networks (Moscow: Science, 1981).
[6] B.W. Kernighan and D.M. Ritchie, The C Programming Language (Prentice Hall, 1988).
[7] Spartan-IIE Development Platform, Available at: www.trenz-electronic.de.

http://www.trenz-electronic.de/

	1 Introduction
	2 N-ary Search Problems
	3 Specification and Implementation of Hierarchical Algorithm
	3.1 Known Results
	3.2 Novel Methods
	3.2.1. Providing Multiple Entry Points to Sub-algorithms

	4. Implementation Details and the Results of Experiments
	5 Conclusion
	References

