
Enhancing the Adoption of Formal Methods to
Design Real-Time Systems

Victor Adrian Braberman, Miguel Felder, Fabio Javier Pieniazek
{vbraber, felder, fpienia }@dc.uba.ar

Dep. de Computación - FCEyN
Universidad de BUenos Aires
Buenos Aires, Argentina

Formal methods are.being increasingly used in -engineering industrial software. They are moatly
used for specifying and verifying software requirements, but seldom in later development phases.
This paper tries ·to bridge the gap between formal requirements specific~tion and final code by
introducing a formally defill.ed désign notatlon. The propased design notation extends strtictured
analysis specification notationswith conatructs derived from POSIX real-time extensions. The
design notation proposed in this anide is formally defined. Also; an operational semantic la given
by meana of high-Ievel timed Petri neta, and can be.formally analyzed using tools and techniques
available for Petri nets.

Categories and Subject Descriptora: D.2.1O (Software Engineering): Design

Additional Key Words and Phrases: Design Notations, Formal Design, Real-Time Syste~, Petri
Neta, POSIX

This work is partially supported by UBACyT project EX-186 and European Community project
KIT 125.

258
2do. Congreso Argentino de Ciencias de la Computación

Victor Adrian Braberman. Miguel Felder. Fabio Javier Pieniazek

1. INTRODUCTION, , .. ,'

In the field of real-time systems, several well-settled specification and design lan­
guages now exist and are used in the academia world. However a few of them are
used in the real world: the industry. On the other hand, every day a new formal
and powerful method is developed in the academia while the industry continues to
use their informal and semiformal methods. The unbridging of this gap impacts
directly on the quality of any kind of systems, but particularly in real-time systems.

Real time systems are often used in safety critical applications where failures can
cause unacceptable damages. High reliability standards are required to met the
fault-free goal.

There is no discussion about the advantages in using formal notations and meth­
ods to limit the possibility of erring in every phase of the development: powerful
analysis and verification techniques can be applied to reveal errors [Gerhart et al.
1991]. There is also no discllssion about the difficulties to introduce them in the in­
dustry. Formal specifications are largely ignored in the industry due to the already
mentioned gap between thc real needs of practitioners and the aspects considered
by the scientists for defining a notation.

On the other hand, the probability of erring in the specification and design phases
can be also reduced by using methodologies and notations well-suited for the appli­
cation domain and well-knownto domain experts. Usually, such notations are rich,
but often lack of formal foundation. Examples of such notations are extensions of
data flow diagrams for real-time systems: Hatley and Pirbhai notation [Hatley and
Pirbhai 1987] and Ward-Mellor methodology [Ward and Mellor 1986]. Effectively,
such notations are pretty popular in industry, and well supported by software en­
gineering environments. Howevcr, the lack of formal foundation prevents many
analysis and verification techniques to be applicd.

The ESPRIT IDERS projec:t proposed animation of graphical software specifica­
tion notations, design notations and embedded code as a technique to improve the
visibility of real-time systems under development. The IDERS project proposed a
solution to software animation which allows the adaptation of graphical notations
to company or project-specific requirements. This will be achieved by allowing the
full configurability of the syntax and semantics of notations. Configurability is vi­
tal to gain the full benefit of graphical design Ilotation, since the detailed design of
embedded systems is greatly influenced by thc real-time operating system features
which are available in the target system.

Another project funded by thc European Community, KIT 125, has been pro­
posed as a cooperation between the Universidad de Buenos Aires, Argentina, Po­
litecnico di Milano, Italy, and the IFAD Institute, Denmark, for providing com­
plementary results to the IDERS project. The project KIT 125 aims at extending
and validating technology and tooIs provided within the ESPRIT project IDERS.
In particular, the project KIT 125 aims at dcfining new notations to be formally
introduced in the IDERS platform using the IDERS customization facilities [Chris­
tensen et al. 1994].

The first results of this cooperation have been presented in [Baresi et al. 1995] and
in [Baresi et al. 1996]. In such publications a first version of a formal design notation
for the Hatley and Pirbhai methodology supported by IDERS has been introduced.

259
2do. Congreso Argentino de Ciencias de la Computación

Enhancing the Adoption of Formal Methods to Design Real-Time Systems

The notation is meant to be used with the requirements specification notation
proposed by Hatley and Pirbhai, based on structured analysis methodologies. The
proposed notatioll extends the requirements specification llotation with primitives
that are common in, the design of hard real-time systems, such as messages, signals,
data stores. In this way, this new notation allows a smooth transition between
the requirement definition to the design phase by providing systems engineers with
compatible specificatiqn and design notations. Moreover, the generality of the
nqtation is guaranteed since its new constructs have been derived from the standard
IEEE Posix [IEEE 1992J.

This, paper extends the results therein presented by introducíng a formeilization
of that notation and ,byr~viewing some semanticai definitions in order to enllance
t,he compatibility between the specification and design notations. Thispaper airos
particularlyat promoting the work that is currently carried out at Universidad de
Buenos Aires for the KIT project to accomplish one of its goals: transferenc~ of
technology and raising the basis of research cooperation within Argentina.

The paper is structured as follows. Sections 2 and 3 introduce the new design
notation 'highlighting analogies with the H&P notation and the real-time extensions
of POSIX. Section 2 describes the system level model, i.e., the specifica.tions of
the architecture of the sYlltem designed in terms of tasks and their connections.
Section 3 describes the task level model, i.e., the specifications of the internals of
tasks. Section 4 introduces the operational semantii;s of the design notation using
high level timed Petri nets. Section 5 cliscusses the main resuíts.

2. SYSTEM LEVEL MODEL

2.1 Task

The notation is an abstract view of the execution architecture of the system based
on the task as the sequential unit concepto

The proposed design notation comprises two levels: lJystem level and tas/¡; level.
The system level describes too main components: tasks and terminators, and their
connections: message queues,' shared memories and mutexes (see figure 1). The
task level describes the internals of each task.

Fig. 1. Example of system level model

Terminators model the embedding of the system. Terminators can generate

260
2do. Congreso Argentino de Ciencias de la Computación

Victor Adrian Braberman, Miguel Felder, Fabio Javier Pieniazek

events at given inst.ants, and they can absorb events produced by tasks. Terminators
are associated with precise textual annotations that speciíy the data to be generated
and the time instants at which such data are sent to t.he connected shared memories.

Tasks are sequential activities that interact among them and with terminators.
Tasks can be executed conc:urrently, provided a suitable availability oí processing
resources. Tasks can communicate each other and with terminat.ors synchronously
or asynchronously. Asynchronous communication channels are message queues and
shared memories. Synchronization elements are mutexes and conditional variables.

Message queues are multi-reader and multi-writer priority queues oí messages
with finite capacit.y and deadline. Shared memories are repositories with non block­
ing read and writeoperations. They are shared among tasks and terminators.
Shared memories have unlimit,ed capacity. Mutexes are used Ior synchronization.
They guarantee mutual exclusion among concurrent tasks. Mutcxes can be locked
and unlocked by tasks. Conditional variables are intended to suspend tha task
waiting Ior a condition.

Tasks also have an asynchronousevent notijication mechanism. This mechanism
is visualized into a task as a set oí prioritized event handlers. An event handler is a
code oI the task devoted to attend notifications. Each oI t.hem have an associated
event notification queue.

AH these elements aim at bringing tools and discipline patterns Ior designing
systems in a POSIX.13 Minimum Real Time Systems Profile [IEEE 1991] compli­
ance framework. In this version only connectors are taken from this st.andard (see
section 5) l.

2.2 Communication and Synchronization

The elements that serve as connectors are message queues, shared memories, mu­
texes and conditional variables, as was said. Message qucues andshared memories
are the communication elements between tasks and terminators, while mutexes and
conditional variables are synchronization elements.

The semantics oI the communication elements is given by indicating the semantics
oI the objects themselves and the servíces they provided. The semantics oí the
objects describes how the data are stored, i.e., the abstract data type that supports
the communieation media. This abstract data type will be called repository.

The semantics oI thc services is given by indicating its effects on the state oí the
system and how it changes the control flow. Only a characteristical set oI services
are shown. The íull set oI operations are prcsented in [Braberman et al. 1996].

The state oI the system 2 is given by:

(1) the state oI the reposit.ories oI the communicat.ion elements.
(2) the history oI the rclevant events to each task.
(3) the state oI mutexes.
(4) thc set oI waiting queues oI tasks which are blocked, waiting Ior a resource or

an evento

lTasks can be thought as operating system processes, although the Minimum Real Time Systems
Profile requircs a single procesa and multithreading environment.
2rt is supposed that operating system concurrcnt operation's code do not interfere among them,
Le., the operating system manages concurrent opcrations in a Bcrializable fashioIl.

261
2do. Congreso Argentino de Ciencias de la Computación

Enhancing the Adoption of Formal Methods to Design Real-Time Systems

Then, to describe the state of the system the following functions are introduced3 :

-Data: idem ~ repOem
-History: idtask ~ sequence [event.]
-Loeked? : idmutez ~. bool
-IsLockedBy? : idmutez x idtask ~ bool
-Waiting: op x idem ~ queue [idtask]

Data returns the repository of a given communication media of the system, wich
has an identifier id (e.g., a priority-queue fora. message queue). History returns
the sequence of relevant events that happens for a task. For example, sent a mes­
sage, received a message, read data, blocked-Iocking, blocked·sending a message,
unbloeked, etc. Lockerl? indicates if a mutex is blocked by sorne task. IsLockedBy?
indicates 'if the mutex is locked by this task. Waiting is the waiting queue of tasks
wich are blocked by performing the operation op in the corresponding communica-
tion media. .

Message Queues
Message queues are multi-reader and multi-writer priority queues of messages

with finite capacity and ~eadline.. Messages are' assign~d ,with priorities that de­
termine their extraction order. Messages are discarded after the deadline, unIess
extracted before. Tasks can either send or receive messages. Send operations can
be blocking or non-blocking. Blocking sends cause tasks to wait if the queue is
full (note that deadlines ensure non infinite wait in this case). Non-blocking sends
cause messages to be lost if the queue is' ful!. Similarly, receive operations can
be blocking or non-blocking. Blocking redñves cause tasks to be suspended if the
queue is empty. Non-blocking reGei.ves may return no vaIues if the queue is empty.
Tasks blocked on amessa,ge queue ltreawaken according to a FIFO poliey.

Time issues, Le., deadlines, are described by marking the time an element is
pushed in the queue, and referring to such time-stamp for de:fining the life. o~ that
elemento ..

The repository for a message queue is a priority queue (FIFO policy), with fi­
nite capacity and deadline, and have the usual functions empty, push, pop, full?
and empty? The operations on a message queue are: SendNcmBlock, Send,
ReceiveN cmBlock and Receive. Send operations push. messages in the message
queue while receive operations extract messages from the message queue. If a task
performs a non-bloeking operation that fails, it is notifiedand continues executing.

Pattern matching is used to identify the queue: . [1 denotes the empty queue,
and M.Q denotes that the highest priority element stored is M and the rest of the
queue is Q.

To describe each operation, the pre and post condit.ion notation is used :([Gries
1991]). Lines are related by an ando The subindex O indicates the value in the
previous state. Only the modifications in the global state are explicitly indicate,
without mentioJlÍng unaffected components. '

Rules:
TSendMtoQ

3id stands for an identifier, cm stands for communication media,'~po stands for repository and
op stands for an operation that may cause a task to be blocked. . .

262
2do. Congreso Argentino de Ciencias de la Computación

Victor Adrian Braberman, Miguel Felder, Fabio Javier Pieniazek

T Send M to Q

TSendMtoQ

..,full?(Data(Q))
W aiting(Receive, Q) = [1

Datct(Q) = p'Ush(Datao(Q), M)
H istory(T) = sent(Q, M).H istoryo(T)

..,full?(Data(Q))
Waiting(receive,Q) = Tl.L

Waiting(receive, Q) = L
History(T) = sent(Q, M).HistorYo(T)"
History(Tl) ==received(Q,M).(unblocked.Historyo(Tl»

full?(Data(Q»

Waiti'!lg(Send, Q) = p'Ush(Waitingo(Send, Q), T)
History('1') = blocked..sending(Q, M).Hi .• toryo(T)

T Receive from Q

T Receive from Q

Data(Q) = M.Ql
Waiting(Send, Q) = [I

Data(Q) = Ql
History(T) = received(Q, M).Historyo(T)

Data(Q) = M.Ql
Waiting(Send,Q) = Tl.L

Data(Q) = p'USh(Ql, Ml)
Waiting(&nd, Q) = L
History(T) = received(Q, M).HistorYo(T)
History(T¡) = sent(Q, MI). (unblocked.Historyo (TI»

where Mi = what..is..se7&ding(Historyo(T¡)

T Receive from Q

Data(Q) = [1
Waiting(Receive, Q) = p'Ush(Waitingo(Receive, Q), T)
History(T) = blocked.Historyo(T)

Conditional Variables
Conditional variables are intended to wait for a condition. Conditional variables

have four operations: Wait, CWait, Signal and SignalBroad.

263
)do. Congreso Argentino de Ciencias de la Computación

Enhancing the Adoption of Formal Methods to Design Real-Time Systems

Usually, if the task is executing in a critical section the mutex that gives the
exclusivity should be yield to allow the progress of others cooperative tasks. Then
the Wait(V,M) operation isequivalent to:

'Unlock(M)j Wait1(V)j Lock(M)'

The Unlock and the Wait1 are performed atomically.
AIso, conditional variables have an associated predicate to be evaluated. A CWait

operation over a conditional variable and a mutex, means that, while the associated
predicate with the conditional variable is not true, the task waits for a signal. If
the conditional variable is Signaled and the task is waken up or the conditional
variable is SignalBroadcasted then the task contends for the yielded mutex again.
When the task gets the mutex again, the predicate is checked to see whether it
should repeat the wait sequence. Then, the CWait(V,M) is equivalent to

while -,AssociatedPredicate(V)
Wait(V,M)

endwhile

CWait operation is not a POSIX primitive but this scheme is observed as an usual
prograrnming discipline [IEEE 1992J.

A Signal operation on a conditional variable wakes up the first task waiting for
the variable. On the other hand a SignaIBroad wakes up all the waiting tasks.

Rules:
T Waitl V

T Signal V

T Signal V

T SignalBroad V

true
Waiting(signalj V) = push(Waitingo(signal, V), T)
History(T) = blocked.Historyo(T)

Waiting(signal, V) = [1
History(T} = signal(V).Historyo(T)

Waiting(signal, V) = Tl.L
Waiting(signal, V) = L
History(T) = signal(V).Historyo(T)
History(Tl) == unblocked.lIistoryo(T¡)

true
Waiting(si,gnal, V) = [1
H'i.9tory(T) = signalbroad(V),Historyo(T)
V Tl E Waitingo(signal, V)

History(Tl) = unblocked,Historyo(Tl)

264
2do. Congreso Argentino de Ciencias de la Computación

Victor Adrian Braberman, Miguel Felder, Fabio Javier Pieniazek

3. TASK LEVEL MODEL

3.1 BasicElements

Functionalities of tasks are described using a subset of the H&P notation. A task is
specified as a H&P data flow diagram (DFD) comprising: processes (i.e., functions,
not OS processes !), time-transient flows, split and merge points, and data stores,
as illustrated by the example in figure 2.

(

~
rnq2

Fig. 2. Example of task level model

1
l

T' • . __ ~ •• vuHJltleS and timings of processes can be specified using a precise language.
Either VDM [Larsen et al. 1994] or C++ are used. Timing specifications of pro­
cesses indicate the minimum and maximum execution time. Processes are activated
when all their input data f10ws carry data. The execution of a process terminates
producing data on all its output data stores and on exactly one of the output data
flows. To a more detailed explanation see [Christensen et al. 1995].

Processes ofthis DFD are partitioned into handlers: a main functionality handler,
and a set of event handlel's. Handlers are executed in mutual exclusion, Le., at
most one handler for each task can be executing. Event handlers are associated
with notijication queues, that stores incoming cvents to be handled. Processes
belonging to the samc task bllt to different handIers couId internalIy commllnicate
only through data stores. The dynamics of handIers is governed by a control ftoUJ
specijication (CFS) that describes the execution path. The exccution modeI and
the asynchronous event handling are expIained in next sections.

3.2 Expressing Communication and Synchronization

To express commllnication and synchronization, the designer has the concept of I/O
operations (e.g. Receive and Read for input, Send, Write, SigQueue for output)

265
2do. Congreso Argentino de Ciencias de la Computación

Enhancing the Adoption of Formal Methods to Deslgn Real-Time Systems

and synchronization,primitives (Lock, lJnlock, Wait,Signal).
AH these opl;!r!lti~nsare naturally modeled as processes. These special processes

receive orprovide iriformation from or to other processes of the same task using
data flows (if they are inputjoutput operations)l They follow the task operation
semantics explained in the former rules. .

AH, connections of tasks with communication elements at the system level must
correspond to co~ections of processes of the corresponding tasks with the commu­
nication elements at the task level.

3.3 CFS and Execution Model

To model the internal sequentialityof a task ii must be assured that at most one
process is executing at a given time. Moreover, in real time systems the task should
have the most predictable behavior avoiding a non deterministicexecuting model.
So a precise execution order must be defined. '

Deterministic CFSs are the key concept to achieve this behavior. The functional
model (DFD) formerly explained shows the functionalities, l/O and synchroniza­
tion operations and a static data precedence order. A process executes iff all its
input data flows carry data and it receives an explicit GOl pr,ovided from the corre­
sponding CFS. When the process finishes its execution it sends to the CFS a DONE
signal to notify its termination and to enable a new start. The terminating p,rocess
could provide data condition wich would be used by the CFS to choose next process
to .execute.

So, a possible choose for the CFS mathematical model is a function, called NEXT,
from process ids and its control output to process ids. This fimction determines
the next process to be executed by considering the last executerlprocess and' by
evaluating the different alternatives for its control output values (if any). Such an
evaluation must be deterministic.

A special value must be used by NEXT to indicate the end of the handler. The
first process to be executed should be explicitely defined.Then, a CFS could
pe thought as the control flow graph that defines an explicit interleaving :arder
constraining the potential parallelism expressed by the DFD 4. .

3.4 Asynchronous Event Notification Mechanism

The language provides facilities to signal (operation SigQueue) and handle events
in an asyncbronous way (i.e., without blocking or pooling). Tbe event notification
types are prioritized. The task should comprise an event handler for each possible
user event type it is supposed to handle.

When a task is statted the main functionality handler is enter~ ~cuting its
initial GOl action of its CFS. The deliver of notifications could ~ect the natural
executing order. Handlers execute following their CFS as pr~vi01llily eXplalIied.

When an event notification 1s delivered several situa.tion~ might arise.' lf the
notification priority is higher than the executing handler prior~ty, the exec'titing

4Note that it is possible to trigger processes that are not data enabled. :This would lead to a.n
indefinition of the whole task. To avoid this undesired situation, common traveling strategies (e.g.
depth first, breath first, etc.) over the DAG of processes accordingtoDFD should be followed in
the NEXT function definition.

266
2do. Congreso Argentino de Ciencias de la Computación

Victor Adrian Braberman. Miguel Felder. Fabio Javier Pieniazek

process is immediately suspended and the corresponding event handler is started
(the main functionality is supposed to have the lowest priority). If the priority is not
higher than the current handler level, the notification is stored in its priority queue.
Iná simultaneous deliver 01' notifications, one of the highest priority notification is
chosen to apply the samc a.nalysis already explained, the rest are queued in some
non specified arder into thcir corrcsponding quelles.

When the current handler finishes, the highest priority suspended handler is cho­
sen to resume (resumlng the suspended process) unless there is an accumulated
notification of higher priority than the suspended one. In the later case the highest.
priority notification that is stored determines the handler to be followed immedi··
ately. The first stored notification of the type selected to be attended is available
for the corresponding handler using ReceiveNotification operation (FIFO). So event
notification could be thought roughly as asynchronous message passing mechanism
without explicit invocation of a receive operationj the receive is execut.ed when the
handler wants to know the data stored in the queue.

Another source of ambiguities is the simultaneous arrival of an internal DONE
and external notifications (note that there is no possibility to generate two simul­
taneous intcrnal events). The following approach is adopted. The internal control
event is evaluated by the current CFS and thcn the external events are analyzed.
This avoids remembering internal events.

There are also system notifications that a1fect the status of a task from the OS
point of view. There are t.hree system signals: start, suspend and resume. The
start signal makes a not active task start executing again its main functionality. Ir
the task is active (executing, blocked 01' suspended) the start signal makes it start
again, abandoning all waiting queues if necessary. This signal, in combination with
timers (not directly supported in this version hllt modelable in terms of a ficticious
task) makes the representation of periodic tasks possible.

The suspend and resume signals freezes and wakes up tasks respectively. When a
task is suspended the notification mechanism is suspended too and the new incom­
ing notifications are lost.. In this version all task are sllpposed to he simultaneously
active at initial time. As shown in the former rules some operations (e.g., Send,
Receivc, Lock) may cause the current handler to he blocked. How does it afféct
the mechanism explained so far ? Actually the operation that causes the blocking
delays (maybe forever) the DONE delivery. Consequently, the execution model and
notifying mechanism behaves naturallyas if the process is really being executed.
Thus only higher priority llotifications are allowed to be attended when a handler
is blocked.

4. OPERATIONAL SEMANTICS USING HIGH LEVEL TIMED PETRI NETS

Semiformal notations could bé furnishcd with a formal semantics using some kernel
formalismo HTLPN (high lcvel timed Petri nets) [Ghezzi et al. 1991] are used to
achieve this goal. HLTPN are Petri nets where tokens carry typed data and a time
stamp. Transitions arc enhanced with predicates and two timing expressions that
calculate the minimum and maximum time that the transition can fire after been
functionally enabled (data in the preset places satisfying the transition predicate).
The tokens produced by the firing of a transition are timestamped with the firing
time.

267
.2do. Congreso Argentino de Ciencias de la Compu,lación

Enhancing the Adoption of Formal Methods to Design Real-Time Systems

This paper overviews how to represent sorne oI the elements 01 the design nbtation
by means of Petii nets: For a more detaíled description see tBraberman et~.' 1996].
The given semantics is compatible with the semantics oI the H&P notation that
was given in [Christensen et al. 1995], i.e., req1,liremeI)ts ~d design specifications
can be validated and compared using the sarneanalysis tools and techniques~ The
possíbility of analyzing heterogeneous requirernént and design specifications allows
systems to be incrementally verified, thus anticipating the detection oI many errors.

A compositional approach is followed as far itis aUowed by the absence of modular
mechanisms in the kernel 'formalismo The main objective is to explain ho~ the
elements of the user notation are modeled aS sub-nets and how they are connected
to build the entire neto A mechanism based on graph grarnmars could be llsea to
achieve this goal '[Baresi et al. 1995]. '

4.1 Semantics of Requirements Notation Elements

As was already mentioned, processes, data ftows, data stores and split/merge points
are requirement notation elements that' can be placed into a task. The semantics
that was given in [Baresi et al. 1995] is used for these eleménts.

Fig. 3. Procesa net

There are several End transitions, one for each output dataftow, all of them write
in the done place and in the related data stores.

The token that is alternatively in the executing or suspended pl.a:ce, plays an
important role. It records the time units executed by the prpcess (timeunitsexec
[k]). The reason Ior keeping track oI this information is that, when aprOC~S is
interrupted (i.e. suspend transition is fired) , it is necessary to know how much
time it has been executed so faro

timeunitsexec [k] := timeunitsexec [k] + enabling time - timestamp

So, when a token is in the executing place again the corresponding End ,transition
is fired after the l'ight amount of time. '

tmin = tmax = timesize oi data - timeunitsexec [k]

268
2do. Congreso Argentino de Ciencias de la Computación

Victor Adrian Braberman, Miguel Felder, Fabio Javier Pieniazek

Note that the interruption of a process is subordinated to the state of its comprising
handler (handler _suspended, handle.-executing). Scheduling, not dcalt with in this
language version, could be treated using the formerly explained techniches.

4.2 Semantics of Communkation and Synchronization Elements

Messages queues, shared memories, mutexes and conditional variables are repre­
sented by two places: state place keeping the data token (of the type of the reposi­
tory), and a waiting place keeping a token with the waiting queue of the resource.
The respective operations should modify these tokens according to their seman­
tics. To illustrat.e these cOlLcepts the net representing the Receive operation of the
message queues is shown.

In the blocking case, the SuccessReceive..i transition fires if there are data to be
read. Its firing changes the data contained in the token on the state place. The
U nsuccessReceive_i OCCUrH when there is no data or there are waiting processes,
then the handler is blocked. An U nblock occurs when the data is ready for this
task. Unblock transitions have higher priority than SuccessReceives transitions to
assure that, if data is stored, the waiting processes are the first to be executed.

In the non-blocking case only the success branch is modeled.

)utput d;lla(kJW

Fig. 4. Receive net

5. CONCLUSIONS ANO FlJTURE WORK

This paper extends the results presented in prcvious papers. It presented a formally
defined design notation for structured methodology: an extension of Hatley and
Pirbhai notation to cope with design of real-time' systems. This definitioIl has
been done as an extension of the requirement specification notatioll to enhance its
introduction in industrial environments and enhance vcrifiability. Generality of the
notation is guaranteed since the extension was based on the widc-adopted standard
POSIX.

Several improvements can be done to the notation to ease a direct map to an op­
erating system t,hat fulfils POSIX Minimal Real Time Systems profile: Scheduling,

269
2do. Congreso Argentino de Ciencias de la Computación

Enhancing the Adoption of Formal Methods to Design Real-Time Systems

providing mechanisms to establish priorities and policies (e.g., in the rate mono­
tonic framework), Multi-Thread can be addressed from the design point of view
where a thread is a sequential activity (like a task) encapsulated into a module
called OS Process that defines certain access to all its threads.

Besides language enhancements, there are several topies to develop around the
user notation reIated to verification and testing issues. Due to the formal semantics
of the notation, it would be possible to set a sound framework to reason about
smooth transition from requirements to designo From the methodological point of
view a set of sound transformation rules and heuristics should be given to lead to
a detailed solution.

ACKNOWLEDGMENTS

The authors wish to thank Prof. Mauro Pezzé and Luciano Baresi, members of the
italian partner, with whom many of the previous results were developed.

REFERENCES

BARESI, L., BRABERMAN, V., FELDER, M., PEZZE, M., AND PIENIAZEK, F. 1995. A deaign
notation for the hatley and pirbhai methodology. Technica! Report kit-Ol, KITI25.

BARESI, L., BRABERMAN, V., FELOER, M., PEZZE, M., ANO PIENIAZEK, F. 1996. A practi­
ca! approach to forma! design of real-time syatems. In IEEE Intemational Conlerence on
Systems, Man and Cybernetics.

BARESI, L., PEZZE, M., ANO ZANCHI, P. 1995. A grapgh-grarnmar definition of Hatley and
Pirbhai's notation. Thchnica! report, Politecnico di Milano.

BRABERMAlI', V., FELDER, M., ANO PIENIAZEK, F. 1996. Enhancing the adoption of formal
methods to design real-time ayatems. Thchnical Report TR-96-002, Dep. de Computación,
FCEyN, Universidad de Buenos Aires.

CHRISTENSEN, H., ELMSTR0M, R., Voss, H., BARESI, L., CALZOLARI, F., AND PEZZE, M. 1994.
The cuatomization toolset: Specification documento Thchnica! report (October), Politecnico
di Milano and The Institute of Applied Computer Science (IFAD).

CHRISTENSEN, H., KIRKEGAARD, N. K., AND BARESI, L. 1995. Definition oí the IDERS Hatley
& Pirbhai notation. Thchnica! report (November), Politecnico di Milano and The Institute
of Applied Computer Science (IFAD).

GERHART, S., M.BoULER, GREENE, K., JAMSEK, D., RALSTON, T., AND RUSSINOFF, D. 1991.
Forma! methods transition study final reporto Thchnica! Report STP-FT-322-91 (August),
MCC, Austin (Thxas).

GHEZZI, C., MANDRIOLI, D., MORASCA, S., AND PEZZE, M. 1991. A Ilnified high-Ievel Petri
net model for time-critica! systems. IEEE 1hmsactionB on Software Engineering 17(f),
160-172.

GRIES, D. 1991. The Science 01 Progromming. Springer Verlag.
HATLEY, D. AND PIRBRAI, 1. 1987. Strotegies lor Real-Time SIIBtem Specification. Dorset House,

New York.
IEEE 1991. Real-Time SlIstem Profile. IEEE.
IEEE 1992. POSIX.4 Real-Time Extensions lor Porlable Operoting Systems. IEEE.
LARSEN, P., ELMSTR0M, R., ANO LASSEN, P. 1994. The IFAD VDM-SL toolbox: A practica!

approach to formal specifications. ACM Sigplan Notices f9(9), 77-80.
WARD, P. T. AND MELLaR, S. J. 1985-1986. Structured Development lor Real-Time Systems,

Volume 1-3. Yourdon Press, New York.

270
2do. Congreso Argentino de Ciencias de la Computación

