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1. INTRODUCTION, , .. ,' 

In the field of real-time systems, several well-settled specification and design lan­
guages now exist and are used in the academia world. However a few of them are 
used in the real world: the industry. On the other hand, every day a new formal 
and powerful method is developed in the academia while the industry continues to 
use their informal and semiformal methods. The unbridging of this gap impacts 
directly on the quality of any kind of systems, but particularly in real-time systems. 

Real time systems are often used in safety critical applications where failures can 
cause unacceptable damages. High reliability standards are required to met the 
fault-free goal. 

There is no discussion about the advantages in using formal notations and meth­
ods to limit the possibility of erring in every phase of the development: powerful 
analysis and verification techniques can be applied to reveal errors [Gerhart et al. 
1991]. There is also no discllssion about the difficulties to introduce them in the in­
dustry. Formal specifications are largely ignored in the industry due to the already 
mentioned gap between thc real needs of practitioners and the aspects considered 
by the scientists for defining a notation. 

On the other hand, the probability of erring in the specification and design phases 
can be also reduced by using methodologies and notations well-suited for the appli­
cation domain and well-knownto domain experts. Usually, such notations are rich, 
but often lack of formal foundation. Examples of such notations are extensions of 
data flow diagrams for real-time systems: Hatley and Pirbhai notation [Hatley and 
Pirbhai 1987] and Ward-Mellor methodology [Ward and Mellor 1986]. Effectively, 
such notations are pretty popular in industry, and well supported by software en­
gineering environments. Howevcr, the lack of formal foundation prevents many 
analysis and verification techniques to be applicd. 

The ESPRIT IDERS projec:t proposed animation of graphical software specifica­
tion notations, design notations and embedded code as a technique to improve the 
visibility of real-time systems under development. The IDERS project proposed a 
solution to software animation which allows the adaptation of graphical notations 
to company or project-specific requirements. This will be achieved by allowing the 
full configurability of the syntax and semantics of notations. Configurability is vi­
tal to gain the full benefit of graphical design Ilotation, since the detailed design of 
embedded systems is greatly influenced by thc real-time operating system features 
which are available in the target system. 

Another project funded by thc European Community, KIT 125, has been pro­
posed as a cooperation between the Universidad de Buenos Aires, Argentina, Po­
litecnico di Milano, Italy, and the IFAD Institute, Denmark, for providing com­
plementary results to the IDERS project. The project KIT 125 aims at extending 
and validating technology and tooIs provided within the ESPRIT project IDERS. 
In particular, the project KIT 125 aims at dcfining new notations to be formally 
introduced in the IDERS platform using the IDERS customization facilities [Chris­
tensen et al. 1994]. 

The first results of this cooperation have been presented in [Baresi et al. 1995] and 
in [Baresi et al. 1996]. In such publications a first version of a formal design notation 
for the Hatley and Pirbhai methodology supported by IDERS has been introduced. 
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The notation is meant to be used with the requirements specification notation 
proposed by Hatley and Pirbhai, based on structured analysis methodologies. The 
proposed notatioll extends the requirements specification llotation with primitives 
that are common in, the design of hard real-time systems, such as messages, signals, 
data stores. In this way, this new notation allows a smooth transition between 
the requirement definition to the design phase by providing systems engineers with 
compatible specificatiqn and design notations. Moreover, the generality of the 
nqtation is guaranteed since its new constructs have been derived from the standard 
IEEE Posix [IEEE 1992J. 

This, paper extends the results therein presented by introducíng a formeilization 
of that notation and ,byr~viewing some semanticai definitions in order to enllance 
t,he compatibility between the specification and design notations. Thispaper airos 
particularlyat promoting the work that is currently carried out at Universidad de 
Buenos Aires for the KIT project to accomplish one of its goals: transferenc~ of 
technology and raising the basis of research cooperation within Argentina. 

The paper is structured as follows. Sections 2 and 3 introduce the new design 
notation 'highlighting analogies with the H&P notation and the real-time extensions 
of POSIX. Section 2 describes the system level model, i.e., the specifica.tions of 
the architecture of the sYlltem designed in terms of tasks and their connections. 
Section 3 describes the task level model, i.e., the specifications of the internals of 
tasks. Section 4 introduces the operational semantii;s of the design notation using 
high level timed Petri nets. Section 5 cliscusses the main resuíts. 

2. SYSTEM LEVEL MODEL 

2.1 Task 

The notation is an abstract view of the execution architecture of the system based 
on the task as the sequential unit concepto 

The proposed design notation comprises two levels: lJystem level and tas/¡; level. 
The system level describes too main components: tasks and terminators, and their 
connections: message queues,' shared memories and mutexes (see figure 1). The 
task level describes the internals of each task. 

Fig. 1. Example of system level model 

Terminators model the embedding of the system. Terminators can generate 
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events at given inst.ants, and they can absorb events produced by tasks. Terminators 
are associated with precise textual annotations that speciíy the data to be generated 
and the time instants at which such data are sent to t.he connected shared memories. 

Tasks are sequential activities that interact among them and with terminators. 
Tasks can be executed conc:urrently, provided a suitable availability oí processing 
resources. Tasks can communicate each other and with terminat.ors synchronously 
or asynchronously. Asynchronous communication channels are message queues and 
shared memories. Synchronization elements are mutexes and conditional variables. 

Message queues are multi-reader and multi-writer priority queues oí messages 
with finite capacit.y and deadline. Shared memories are repositories with non block­
ing read and writeoperations. They are shared among tasks and terminators. 
Shared memories have unlimit,ed capacity. Mutexes are used Ior synchronization. 
They guarantee mutual exclusion among concurrent tasks. Mutcxes can be locked 
and unlocked by tasks. Conditional variables are intended to suspend tha task 
waiting Ior a condition. 

Tasks also have an asynchronousevent notijication mechanism. This mechanism 
is visualized into a task as a set oí prioritized event handlers. An event handler is a 
code oI the task devoted to attend notifications. Each oI t.hem have an associated 
event notification queue. 

AH these elements aim at bringing tools and discipline patterns Ior designing 
systems in a POSIX.13 Minimum Real Time Systems Profile [IEEE 1991] compli­
ance framework. In this version only connectors are taken from this st.andard (see 
section 5) l. 

2.2 Communication and Synchronization 

The elements that serve as connectors are message queues, shared memories, mu­
texes and conditional variables, as was said. Message qucues andshared memories 
are the communication elements between tasks and terminators, while mutexes and 
conditional variables are synchronization elements. 

The semantics oI the communication elements is given by indicating the semantics 
oI the objects themselves and the servíces they provided. The semantics oí the 
objects describes how the data are stored, i.e., the abstract data type that supports 
the communieation media. This abstract data type will be called repository. 

The semantics oI thc services is given by indicating its effects on the state oí the 
system and how it changes the control flow. Only a characteristical set oI services 
are shown. The íull set oI operations are prcsented in [Braberman et al. 1996]. 

The state oI the system 2 is given by: 

(1) the state oI the reposit.ories oI the communicat.ion elements. 
(2) the history oI the rclevant events to each task. 
(3) the state oI mutexes. 
(4) thc set oI waiting queues oI tasks which are blocked, waiting Ior a resource or 

an evento 

lTasks can be thought as operating system processes, although the Minimum Real Time Systems 
Profile requircs a single procesa and multithreading environment. 
2rt is supposed that operating system concurrcnt operation's code do not interfere among them, 
Le., the operating system manages concurrent opcrations in a Bcrializable fashioIl. 
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Then, to describe the state of the system the following functions are introduced3 : 

-Data: idem ~ repOem 
-History: idtask ~ sequence [ event.] 
-Loeked? : idmutez ~. bool 
-IsLockedBy? : idmutez x idtask ~ bool 
-Waiting: op x idem ~ queue [ idtask ] 

Data returns the repository of a given communication media of the system, wich 
has an identifier id (e.g., a priority-queue fora. message queue). History returns 
the sequence of relevant events that happens for a task. For example, sent a mes­
sage, received a message, read data, blocked-Iocking, blocked·sending a message, 
unbloeked, etc. Lockerl? indicates if a mutex is blocked by sorne task. IsLockedBy? 
indicates 'if the mutex is locked by this task. Waiting is the waiting queue of tasks 
wich are blocked by performing the operation op in the corresponding communica-
tion media. . 

Message Queues 
Message queues are multi-reader and multi-writer priority queues of messages 

with finite capacity and ~eadline.. Messages are' assign~d ,with priorities that de­
termine their extraction order. Messages are discarded after the deadline, unIess 
extracted before. Tasks can either send or receive messages. Send operations can 
be blocking or non-blocking. Blocking sends cause tasks to wait if the queue is 
full (note that deadlines ensure non infinite wait in this case). Non-blocking sends 
cause messages to be lost if the queue is' ful!. Similarly, receive operations can 
be blocking or non-blocking. Blocking redñves cause tasks to be suspended if the 
queue is empty. Non-blocking reGei.ves may return no vaIues if the queue is empty. 
Tasks blocked on amessa,ge queue ltreawaken according to a FIFO poliey. 

Time issues, Le., deadlines, are described by marking the time an element is 
pushed in the queue, and referring to such time-stamp for de:fining the life. o~ that 
elemento .. 

The repository for a message queue is a priority queue (FIFO policy), with fi­
nite capacity and deadline, and have the usual functions empty, push, pop, full? 
and empty? The operations on a message queue are: SendNcmBlock, Send, 
ReceiveN cmBlock and Receive. Send operations push. messages in the message 
queue while receive operations extract messages from the message queue. If a task 
performs a non-bloeking operation that fails, it is notifiedand continues executing. 

Pattern matching is used to identify the queue: . [ 1 denotes the empty queue, 
and M.Q denotes that the highest priority element stored is M and the rest of the 
queue is Q. 

To describe each operation, the pre and post condit.ion notation is used :([Gries 
1991]). Lines are related by an ando The subindex O indicates the value in the 
previous state. Only the modifications in the global state are explicitly indicate, 
without mentioJlÍng unaffected components. ' 

Rules: 
TSendMtoQ 

3id stands for an identifier, cm stands for communication media,'~po stands for repository and 
op stands for an operation that may cause a task to be blocked. . . 
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T Send M to Q 

TSendMtoQ 

..,full?(Data(Q)) 
W aiting(Receive, Q) = [ 1 

Datct(Q) = p'Ush(Datao(Q), M) 
H istory(T) = sent( Q, M).H istoryo(T) 

..,full?(Data(Q)) 
Waiting(receive,Q) = Tl.L 

Waiting(receive, Q) = L 
History(T) = sent(Q, M).HistorYo(T)" 
History(Tl) ==received(Q,M).(unblocked.Historyo(Tl» 

full?(Data( Q» 

Waiti'!lg(Send, Q) = p'Ush(Waitingo(Send, Q), T) 
History('1') = blocked..sending(Q, M).Hi .• toryo(T) 

T Receive from Q 

T Receive from Q 

Data( Q) = M.Ql 
Waiting(Send, Q) = [ I 

Data(Q) = Ql 
History(T) = received(Q, M).Historyo(T) 

Data(Q) = M.Ql 
Waiting(Send,Q) = Tl.L 

Data(Q) = p'USh(Ql, Ml ) 
Waiting(&nd, Q) = L 
History(T) = received(Q, M).HistorYo(T) 
History(T¡) = sent(Q, MI). (unblocked.Historyo (TI» 

where Mi = what..is..se7&ding(Historyo(T¡) 

T Receive from Q 

Data(Q) = [1 
Waiting(Receive, Q) = p'Ush(Waitingo(Receive, Q), T) 
History(T) = blocked.Historyo(T) 

Conditional Variables 
Conditional variables are intended to wait for a condition. Conditional variables 

have four operations: Wait, CWait, Signal and SignalBroad. 
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Usually, if the task is executing in a critical section the mutex that gives the 
exclusivity should be yield to allow the progress of others cooperative tasks. Then 
the Wait(V,M) operation isequivalent to: 

'Unlock(M)j Wait1(V)j Lock(M)' 

The Unlock and the Wait1 are performed atomically. 
AIso, conditional variables have an associated predicate to be evaluated. A CWait 

operation over a conditional variable and a mutex, means that, while the associated 
predicate with the conditional variable is not true, the task waits for a signal. If 
the conditional variable is Signaled and the task is waken up or the conditional 
variable is SignalBroadcasted then the task contends for the yielded mutex again. 
When the task gets the mutex again, the predicate is checked to see whether it 
should repeat the wait sequence. Then, the CWait(V,M) is equivalent to 

while -,AssociatedPredicate(V) 
Wait(V,M) 

endwhile 

CWait operation is not a POSIX primitive but this scheme is observed as an usual 
prograrnming discipline [IEEE 1992J. 

A Signal operation on a conditional variable wakes up the first task waiting for 
the variable. On the other hand a SignaIBroad wakes up all the waiting tasks. 

Rules: 
T Waitl V 

T Signal V 

T Signal V 

T SignalBroad V 

true 
Waiting(signalj V) = push(Waitingo(signal, V), T) 
History(T) = blocked.Historyo(T) 

Waiting(signal, V) = [ 1 
History(T} = signal(V).Historyo(T) 

Waiting(signal, V) = Tl.L 
Waiting(signal, V) = L 
History(T) = signal(V).Historyo(T) 
History(Tl) == unblocked.lIistoryo(T¡) 

true 
Waiting(si,gnal, V) = [1 
H'i.9tory(T) = signalbroad(V),Historyo(T) 
V Tl E Waitingo(signal, V) 

History(Tl) = unblocked,Historyo(Tl) 
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3. TASK LEVEL MODEL 

3.1 BasicElements 

Functionalities of tasks are described using a subset of the H&P notation. A task is 
specified as a H&P data flow diagram (DFD) comprising: processes (i.e., functions, 
not OS processes !), time-transient flows, split and merge points, and data stores, 
as illustrated by the example in figure 2. 

( 

~ 
rnq2 

Fig. 2. Example of task level model 

1 
l 

T' • . __ ~ •• vuHJltleS and timings of processes can be specified using a precise language. 
Either VDM [Larsen et al. 1994] or C++ are used. Timing specifications of pro­
cesses indicate the minimum and maximum execution time. Processes are activated 
when all their input data f10ws carry data. The execution of a process terminates 
producing data on all its output data stores and on exactly one of the output data 
flows. To a more detailed explanation see [Christensen et al. 1995]. 

Processes ofthis DFD are partitioned into handlers: a main functionality handler, 
and a set of event handlel's. Handlers are executed in mutual exclusion, Le., at 
most one handler for each task can be executing. Event handlers are associated 
with notijication queues, that stores incoming cvents to be handled. Processes 
belonging to the samc task bllt to different handIers couId internalIy commllnicate 
only through data stores. The dynamics of handIers is governed by a control ftoUJ 
specijication (CFS) that describes the execution path. The exccution modeI and 
the asynchronous event handling are expIained in next sections. 

3.2 Expressing Communication and Synchronization 

To express commllnication and synchronization, the designer has the concept of I/O 
operations (e.g. Receive and Read for input, Send, Write, SigQueue for output) 
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and synchronization,primitives (Lock, lJnlock, Wait,Signal). 
AH these opl;!r!lti~nsare naturally modeled as processes. These special processes 

receive orprovide iriformation from or to other processes of the same task using 
data flows (if they are inputjoutput operations)l They follow the task operation 
semantics explained in the former rules. . 

AH, connections of tasks with communication elements at the system level must 
correspond to co~ections of processes of the corresponding tasks with the commu­
nication elements at the task level. 

3.3 CFS and Execution Model 

To model the internal sequentialityof a task ii must be assured that at most one 
process is executing at a given time. Moreover, in real time systems the task should 
have the most predictable behavior avoiding a non deterministicexecuting model. 
So a precise execution order must be defined. ' 

Deterministic CFSs are the key concept to achieve this behavior. The functional 
model (DFD) formerly explained shows the functionalities, l/O and synchroniza­
tion operations and a static data precedence order. A process executes iff all its 
input data flows carry data and it receives an explicit GOl pr,ovided from the corre­
sponding CFS. When the process finishes its execution it sends to the CFS a DONE 
signal to notify its termination and to enable a new start. The terminating p,rocess 
could provide data condition wich would be used by the CFS to choose next process 
to .execute. 

So, a possible choose for the CFS mathematical model is a function, called NEXT, 
from process ids and its control output to process ids. This fimction determines 
the next process to be executed by considering the last executerlprocess and' by 
evaluating the different alternatives for its control output values (if any). Such an 
evaluation must be deterministic. 

A special value must be used by NEXT to indicate the end of the handler. The 
first process to be executed should be explicitely defined.Then, a CFS could 
pe thought as the control flow graph that defines an explicit interleaving :arder 
constraining the potential parallelism expressed by the DFD 4. . 

3.4 Asynchronous Event Notification Mechanism 

The language provides facilities to signal (operation SigQueue) and handle events 
in an asyncbronous way (i.e., without blocking or pooling). Tbe event notification 
types are prioritized. The task should comprise an event handler for each possible 
user event type it is supposed to handle. 

When a task is statted the main functionality handler is enter~ ~cuting its 
initial GOl action of its CFS. The deliver of notifications could ~ect the natural 
executing order. Handlers execute following their CFS as pr~vi01llily eXplalIied. 

When an event notification 1s delivered several situa.tion~ might arise.' lf the 
notification priority is higher than the executing handler prior~ty, the exec'titing 

4Note that it is possible to trigger processes that are not data enabled. :This would lead to a.n 
indefinition of the whole task. To avoid this undesired situation, common traveling strategies (e.g. 
depth first, breath first, etc.) over the DAG of processes accordingtoDFD should be followed in 
the NEXT function definition. 
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process is immediately suspended and the corresponding event handler is started 
(the main functionality is supposed to have the lowest priority). If the priority is not 
higher than the current handler level, the notification is stored in its priority queue. 
Iná simultaneous deliver 01' notifications, one of the highest priority notification is 
chosen to apply the samc a.nalysis already explained, the rest are queued in some 
non specified arder into thcir corrcsponding quelles. 

When the current handler finishes, the highest priority suspended handler is cho­
sen to resume (resumlng the suspended process) unless there is an accumulated 
notification of higher priority than the suspended one. In the later case the highest. 
priority notification that is stored determines the handler to be followed immedi·· 
ately. The first stored notification of the type selected to be attended is available 
for the corresponding handler using ReceiveNotification operation (FIFO). So event 
notification could be thought roughly as asynchronous message passing mechanism 
without explicit invocation of a receive operationj the receive is execut.ed when the 
handler wants to know the data stored in the queue. 

Another source of ambiguities is the simultaneous arrival of an internal DONE 
and external notifications (note that there is no possibility to generate two simul­
taneous intcrnal events). The following approach is adopted. The internal control 
event is evaluated by the current CFS and thcn the external events are analyzed. 
This avoids remembering internal events. 

There are also system notifications that a1fect the status of a task from the OS 
point of view. There are t.hree system signals: start, suspend and resume. The 
start signal makes a not active task start executing again its main functionality. Ir 
the task is active (executing, blocked 01' suspended) the start signal makes it start 
again, abandoning all waiting queues if necessary. This signal, in combination with 
timers (not directly supported in this version hllt modelable in terms of a ficticious 
task) makes the representation of periodic tasks possible. 

The suspend and resume signals freezes and wakes up tasks respectively. When a 
task is suspended the notification mechanism is suspended too and the new incom­
ing notifications are lost.. In this version all task are sllpposed to he simultaneously 
active at initial time. As shown in the former rules some operations (e.g., Send, 
Receivc, Lock) may cause the current handler to he blocked. How does it afféct 
the mechanism explained so far ? Actually the operation that causes the blocking 
delays (maybe forever) the DONE delivery. Consequently, the execution model and 
notifying mechanism behaves naturallyas if the process is really being executed. 
Thus only higher priority llotifications are allowed to be attended when a handler 
is blocked. 

4. OPERATIONAL SEMANTICS USING HIGH LEVEL TIMED PETRI NETS 

Semiformal notations could bé furnishcd with a formal semantics using some kernel 
formalismo HTLPN (high lcvel timed Petri nets) [Ghezzi et al. 1991] are used to 
achieve this goal. HLTPN are Petri nets where tokens carry typed data and a time 
stamp. Transitions arc enhanced with predicates and two timing expressions that 
calculate the minimum and maximum time that the transition can fire after been 
functionally enabled (data in the preset places satisfying the transition predicate). 
The tokens produced by the firing of a transition are timestamped with the firing 
time. 
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This paper overviews how to represent sorne oI the elements 01 the design nbtation 
by means of Petii nets: For a more detaíled description see tBraberman et~.' 1996]. 
The given semantics is compatible with the semantics oI the H&P notation that 
was given in [Christensen et al. 1995], i.e., req1,liremeI)ts ~d design specifications 
can be validated and compared using the sarneanalysis tools and techniques~ The 
possíbility of analyzing heterogeneous requirernént and design specifications allows 
systems to be incrementally verified, thus anticipating the detection oI many errors. 

A compositional approach is followed as far itis aUowed by the absence of modular 
mechanisms in the kernel 'formalismo The main objective is to explain ho~ the 
elements of the user notation are modeled aS sub-nets and how they are connected 
to build the entire neto A mechanism based on graph grarnmars could be llsea to 
achieve this goal '[Baresi et al. 1995]. ' 

4.1 Semantics of Requirements Notation Elements 

As was already mentioned, processes, data ftows, data stores and split/merge points 
are requirement notation elements that' can be placed into a task. The semantics 
that was given in [Baresi et al. 1995] is used for these eleménts. 

Fig. 3. Procesa net 

There are several End transitions, one for each output dataftow, all of them write 
in the done place and in the related data stores. 

The token that is alternatively in the executing or suspended pl.a:ce, plays an 
important role. It records the time units executed by the prpcess (timeunitsexec 
[k]). The reason Ior keeping track oI this information is that, when aprOC~S is 
interrupted (i.e. suspend transition is fired) , it is necessary to know how much 
time it has been executed so faro 

timeunitsexec [k] := timeunitsexec [k] + enabling time - timestamp 

So, when a token is in the executing place again the corresponding End ,transition 
is fired after the l'ight amount of time. ' 

tmin = tmax = timesize oi data - timeunitsexec [k] 
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Note that the interruption of a process is subordinated to the state of its comprising 
handler (handler _suspended, handle.-executing). Scheduling, not dcalt with in this 
language version, could be treated using the formerly explained techniches. 

4.2 Semantics of Communkation and Synchronization Elements 

Messages queues, shared memories, mutexes and conditional variables are repre­
sented by two places: state place keeping the data token (of the type of the reposi­
tory), and a waiting place keeping a token with the waiting queue of the resource. 
The respective operations should modify these tokens according to their seman­
tics. To illustrat.e these cOlLcepts the net representing the Receive operation of the 
message queues is shown. 

In the blocking case, the SuccessReceive..i transition fires if there are data to be 
read. Its firing changes the data contained in the token on the state place. The 
U nsuccessReceive_i OCCUrH when there is no data or there are waiting processes, 
then the handler is blocked. An U nblock occurs when the data is ready for this 
task. Unblock transitions have higher priority than SuccessReceives transitions to 
assure that, if data is stored, the waiting processes are the first to be executed. 

In the non-blocking case only the success branch is modeled. 

)utput d;lla(kJW 

Fig. 4. Receive net 

5. CONCLUSIONS ANO FlJTURE WORK 

This paper extends the results presented in prcvious papers. It presented a formally 
defined design notation for structured methodology: an extension of Hatley and 
Pirbhai notation to cope with design of real-time' systems. This definitioIl has 
been done as an extension of the requirement specification notatioll to enhance its 
introduction in industrial environments and enhance vcrifiability. Generality of the 
notation is guaranteed since the extension was based on the widc-adopted standard 
POSIX. 

Several improvements can be done to the notation to ease a direct map to an op­
erating system t,hat fulfils POSIX Minimal Real Time Systems profile: Scheduling, 
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providing mechanisms to establish priorities and policies (e.g., in the rate mono­
tonic framework), Multi-Thread can be addressed from the design point of view 
where a thread is a sequential activity (like a task) encapsulated into a module 
called OS Process that defines certain access to all its threads. 

Besides language enhancements, there are several topies to develop around the 
user notation reIated to verification and testing issues. Due to the formal semantics 
of the notation, it would be possible to set a sound framework to reason about 
smooth transition from requirements to designo From the methodological point of 
view a set of sound transformation rules and heuristics should be given to lead to 
a detailed solution. 
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