

Towards a Framework for Knowledge
Discovery:
An Architecture for Distributed Inductive Databases

Jeroen S. de Bruin, Joost N. Kok
Universiteit Leiden, Leiden Institute of Advanced Computer Science

(LIACS), Niels Bohrweg 1, 2333 CA Leiden, The Netherlands,
jdebruin@liacs.nl

Abstract. We discuss how data mining, patternbases and databases can be
integrated into inductive databases, which make data mining an inductive
query process. We propose a software architecture for such inductive
databases, and extend this architecture to support the clustering of inductive
databases and to make them suitable for data mining on the grid.

1 Introduction

The size and variety of machine-readable data sets have increased dramatically and
the problem of data explosion has become apparent. Scientific disciplines are
starting to assemble primary source data for use by researchers and are assembling
data grids for the management of data collections. The data are typically organized
into collections that are distributed across multiple administration domains and are
stored on heterogeneous storage systems. Recent developments in computing have
provided the basic infrastructure for fast data access as well as many advanced
computational methods for extracting patterns from large quantities of data.

These collections provide excellent opportunities for data mining. Data mining
refers to the process of analyzing data in databases hoping to find patterns that are
novel, interesting, and useful. In a way it is comparable to statistics since it uses
techniques based on statistics, but takes it a bit further in the sense that where
statistics aims at validating given hypotheses, in data mining often millions of
potential patterns are generated and tested, aiming at potentially finding some that
are prove to be useful. This is however a much more computationally intensive
process. Examples of well-known data mining techniques are discovery of
association rules (which properties of individuals are typically associated with each
other?); building predictive models (decision trees, rules, neural nets) that can be
used to predict unknown properties of individuals; building probabilistic models that
summarize the statistical properties of a database, etc.

2 Jeroen S. de Bruin, Joost N. Kok

The enormous amount of data generated from scientific experiments, together
with the developments in data mining and data warehousing, have led to a paradigm-
shift in scientific research from hypothesis-driven science to discovery-driven
science. No longer need experiments be conducted in a hypothesis-driven fashion,
where the experimenter has an idea, and tries to validate by experimenting. Rather,
the trend is to collect as much data as possible on a specific function or system, look
for emerging patterns, interpret those patterns, and relate them to the current
knowledge.

The challenge is to provide a persistent and consistent environment for the
discovering, storing, organizing, maintaining, analyzing patterns, possibly across
distributed environments.

2 Inductive Databases

With respect to such pattern bases, the important question arises how the existing
methods and algorithms can be elegantly integrated into current database
management systems. In order to meet this reqirement, Imielinsky and Mannila
proposed the concept of so-called inductive databases [3]. In an inductive database it
is possible to get answers about the collected data in the database as well as answers
to questions about inductively gathered "knowledge" in the form of patterns
concerning that data.

Inductive databases have been studied extensively within the European cInQ
project and also play a central role in its recently founded successor IQ (acronym for:
Inductive Queries for Mining Patterns and Models, EU IST-FET). In order to
efficiently and effectively deal with patterns, researchers from scientific domains
would greatly benefit from adopting a Pattern-Base Management System (PBMS) in
which patterns are made first-class citizens. This provides the researcher with a
meaningful abstraction of the data.

The general idea is to modify existing databases to support efficient pattern
storage, and extend databases with an implementation of an inductive query
language and in this manner transforming a DataBase Management System (DBMS)
into a DataBase Knowledge Discovery System (DBKDS). Since inductive databases
provide architecture for pattern discovery as well as a means to discover and use
those patterns through the inductive query language, data mining becomes in essence
an interactive querying process. Some of these queries, however, will not be efficient
despite query optimizations. Therefore, some data mining primitives must be built
into the database system itself, and must serve as primitive functions within the
inductive query language.

The efficiency of the data mining process also depends on the way that data is
represented within the database, so a compromise must be made between efficient
storage and efficient discovery. Since a gigabyte is becoming cheaper and cheaper
every day, we are inclined to prioritize a representation that facilitates efficient
discovery over efficient storage.

Over the past few years much research has been done on (efficient) pattern
representation and pattern storage issues [2, 5]. The studies in the PANDA project
(http://dke.cti.gr/panda/) have shown that the relational way of storing patterns is

http://dke.cti.gr/panda/

Towards a Framework for Knowledge Discovery: 3

very inefficient, and proves to be too rigid to efficiently and effectively store
patterns, since patterns often have a more semi-structured nature. To be able to
support a wide variety of patterns and pattern classes, XML or variations have been
explored and the results were encouraging. [6, 7]

3 Distributed Knowledge Discovery

Over the last few years grid computing – the use of the memory and/or processing
resources of many computers connected with each other by a network to solve
computation problems – has received much attention, and not without reason. The
research community - universities, academic research institutes, and industrial
research laboratories - is becoming ever more dependent on previous research
outcomes from third parties. The complexity of modern experiments, usually
requiring the combination of heterogeneous data from many fields (physics,
astronomy, chemistry, biology, medicine), requires multidisciplinary efforts. This
implies that this community is becoming increasingly dependent on the quality of the
e-Science infrastructure. Such an infrastructure allows scientists to collaborate with
colleagues world-wide and to perform experiments by utilizing resources of other
organizations. A common infrastructure for experimentation also stimulates
community building and the dissemination of research results. These developments
apply to pure as well as applied sciences, including data mining.

Data used in knowledge discovery is often distributed over a multiple of
resources, which in their turn can be spread among several different logical or
physical places. Of course, the same can be true for patterns over that data. It is
therefore important to see how standard data mining algorithms can be adapted to
cope with these distributions to make data mining on the grid possible.

The problem stated above can be addressed in two ways. One way is to adapt
current mining algorithms to cope with distributed data and pattern sources. Current
data mining algorithms usually address problems on a single resource, and require a
somewhat rigid structure for the data. Relational mining algorithms, thus mining
algorithms specifically developed for relational databases and thus able to work with
several tables within such a database could prove to be a good basis for such
adaptation.
 The second way is through an architecture that supports a distributed
environment, allowing the database or patternbase itself to support and internalize
remote connections to other databases and patternbases. In this case, the client is
unaware of the fact that is mining in fact scheduled and executed on different
databases or patternbases, since to the user there appears to be only one location of
data storage. It is the task of the database or patternbase itself to keep track of all
connections and remote access protocols.
 Another advantage of data mining on the grid is the ability to process data mining
requests on a location other than the client or the data server(s). This poses some
implications on the inductive query language supported by the inductive database,
since it must be able to evaluate and segment queries into subqueries that can be
simultaneously processed by multiple (distinct and/or remote) processing locations.

4 Jeroen S. de Bruin, Joost N. Kok

To be able to support such remote query processing, it should be addressed and
internalized in the architecture of the inductive database itself. The architecture
should support load balancing algorithms that are efficient enough to dynamically
and continuously check whether or not a (sub)query should be handled locally or be
outsourced to another grid node.

4 Knowledge Discovery Architecture

In this section we propose an architecture that addresses the challenges posed in
sections 2 and 3. We have based this architectural design on component technology,
which is commonly seen as the evolution of object oriented technology. The reason
for choosing the component-oriented paradigm lies in the fact that it is well suited
for the description of architectures and that it decentralizes the development effort.
Especially the last property is important for an inductive database, since a user must
be able to outfit the inductive query language with its own custom developed data
mining algorithms. Component software i.e. software made out of software
components, is designed for extensibility, and therefore the use of component
technology seems an obvious one.
 The remainder of this section will be used to discuss four different architectural
levels that together form the Distributed Inductive Database Architecture. These
levels are:

- The Fusion level
- The Query level
- The DataNet level
- The Delegate level

The Fusion level
At the heart of our architecture lies the inductive database. As stated earlier, we view
an inductive database as a traditional (relational) database extended with a
patternbase. Of course, for the sake of simplicity and security, the user should remain
oblivious of the separation between patternbase and database, creating the need for
automatic, transparent updating of patterns whenever changes are made in the
patternbase or database.
 In order to explain the fusion architecture, we first need to specify some
constraints on a pattern, and define the relationship between patterns and their related
underlying data. A pattern is a semantically rich representation of a collection of
data. A pattern, as defined in this architecture, has at least the following properties: A
unique id or name, the data collection that it applies to, a set of measurements, and
the component and function that calculates these measurements.

Now consider the (simplified) architecture in Figure 1, which functions as a
fusion component between patternbase and database, thereby using the component
catalog of data mining primitives that are supported by the inductive query language.
Notice that there is a notifier present in the fusion architecture, namely
Notify_Table_Update, which is used by the database to signal that a certain table has
changed. The fusion component is a passive component that listens for update
notifications, and remains idle if there are none.

Towards a Framework for Knowledge Discovery: 5

To illustrate what happens when an update notification is received, let us consider
the case that the data in a set of tables T has changed. In this case, the database sends
a notification to the Fusion component specifying T. The Fusion component then
requests the pattern collection P, which consists of all patterns in the patternbase that
have t ∈ T in their data collection specification. At the same time, the Fusion
component requests all the data from T, and specifies both sets P and T in a call to a
component in the Data Mining Primitives catalog. It knows exactly what components
and routines to call, since this is part of the pattern’s specification. After the
calculations have been completed, the Fusion component returns the updated patterns
to the patternbase via the Update_Patterns interface.

Figure 1: The Fusion Level

The situation described above shows how updating of patterns can be done in an
automatic, transparent way without interference from the client.

The Query level
The Query architecture addresses the issues related to the inductive query language
built on top of the inductive database. Currently, a number of inductive query
languages that have been implemented, i.e. MSQL [4] and MINE RULE [1]. For
now, we will not address their individual properties, advantages and disadvantages,
nor the effects they might have on the proposed architecture. Instead, we will present
a global architectural framework, where the choice of query language could be
considered an implementation detail that becomes an issue when the architecture
becomes a blueprint for a more application-specific design as part of the product
family that the architecture constitutes.

As is illustrated in Figure 2, this architecture provides a layered approach to the
analysis, optimization and execution of a query. This is pretty straightforward if the
query concerns only patterns or only data, but it becomes complex if both are
addressed in the same query, via so called crossover operations.
 The top layer of the architecture consists of the query parser, which parses the
entire query and assigns meaning to each identifier in the query string. It
subsequently passes these tokens on to the query analyzer and the query optimizer.
Both operate closely together, and have an almost synergetic relationship: The query
analyzer checks what parts of the query can be handled in parallel or can be handled
more efficiently, and passes this on to the optimizer. The optimizer, in turn,
optimizes these queries, which may yield in a new set of (sub)queries, which are

6 Jeroen S. de Bruin, Joost N. Kok

passed back to the query analyzer for further analysis, until no more optimizations
are possible. We are fortunate that lately inductive query decomposition and
optimizing such (sub)queries have been given a great deal of attention [8] [9].
 After the query has been analyzed and optimized, it is passed on to the query
scheduler, which schedules the subqueries for execution, either locally or remotely.
The query scheduler is also responsible for parallel or sequential scheduling of
queries.
 At the lowest level of the Query architecture the query executor is found. This
layer is responsible for delegating the queries to the correct data storage facility at
the fusion level and performing the correct data mining primitives on them, such as
crossover operations or other data mining operations. After the queries have been
executed their individual results are passed back to the query scheduler, which passes
the final result to the client.

Figure 2: The Query Level

The DataNet level
Up to this point we have modeled a database and a patternbase as a single entity.
However, we mentioned earlier that data mining over multiple data sources could be
accomplished in an architectural manner by having databases keep track of remote
connections with other databases. The architecture we foresee here is based on a
peer2peer network architectural style; each data server also functions as a router in a
private data net.

The use of an internal data net could have many advantages. For the user, it
appears that there is only one database that they can query, and depending on the
user permissions, the database dispatches his or her requests to the right database or
patternbase in the data net, resulting in a greater ease of use and increased security.

There are some drawbacks to this method as well, especially in the area of
overhead management. For each user of the database his or her status must be

Towards a Framework for Knowledge Discovery: 7

checked for access rights, operational rights, etc. It is a huge challenge to solve this
in an efficient and scalable way.
 The DataNet architecture in Figure 3 addresses some of the issues and
functionalities discussed above. Each database (or patternbase) contains three
catalogs: the Data Catalog, which is used by the database to specify which tables it
contains; the User Catalog, which specifies which users or user groups have access
to (part of) its content; and finally, the Connection catalog, which contains (private)
information on all the other databases that are part of the data net. The DataNet
architecture is built on top of the Query architecture, but the separation is not strict:
After all, the query analyzer and scheduler check whether or not the data queried is
available in the database. If not, the subquery addressing that data will be forwarded
by the query scheduler via the DataNet level to the database that does contain the
data, which can be found out by broadcasting a request on all data catalogs in the
data net.

Figure 3: The DataNet Level

The Delegate level
The Delegate Architecture is the part of the architecture that interacts with the data
grid to which the database is possibly attached. This architectural part concerns itself
with intelligent structures and components that perform load-balancing algorithms,
remote method invocations and procedure migration to processing nodes.
 The Delegate architecture, as depicted in Figure 4, displays a possible framework
for implementation. Notice that this architectural level is also connected to the Query
level, since the query scheduler needs the routines the Delegate level to make a
decision whether or not the (sub)query execution should be performed locally, or on
a remote processing node in the grid.

As can be seen, there are two major parts in this layer. The first part is the load-
balancer, which contains algorithms that check whether the task should be performed
locally or on a grid node. The decision depends on a range of factors, such as the
type of query, the load of the local node, the load of the external nodes, etc. Apart
from providing the optimal solutions at any given time, these algorithms must also
be fast enough to provide the solution in a reasonable amount of time.

The second part of the Delegate architecture is the grid driver, which wraps the
remote method invocation requests of the database so they are compatible with the
grid software. To execute the query on a remote location, that remote location will
need the data and the procedure code of the query, which are delivered in one
package by the grid driver.

8 Jeroen S. de Bruin, Joost N. Kok

Figure 4: The Delegate Level

5 Use Case

In this section we will present a use case scenario that illustrates the workings of the
diverse parts of the architecture. Suppose we have a database that contains
transaction information on product sales for a supermarket and we want to perform
some market-basket analysis. Normally we would use the apriori-algorithm to
uncover frequent item sets and association rules in the data collection. In this
example we will illustrate how this can be done in an inductive database.
 First, consider a query that tries to find frequent patterns in the transaction data
using a data mining primitive FREQ_ITEM. When the user poses this query to the
inductive database, the query scheduler uses the query analyzer and optimizer to
receive an optimized set of (sub)queries.
 The next task of the query scheduler is to verify whether the tables addressed in
the (sub)queries are available locally or if it’s somewhere else in the data net.. When
they are available locally, the query scheduler uses the data mining primitives to
execute the (sub)queries using the data retrieved from the tables. If some of the data
is not available locally, the (sub)queries involving those data are forwarded to the
DataNet level, where it sends out a broadcast to discover the location of the required

Towards a Framework for Knowledge Discovery: 9

data. After the location has been received and the user has been verified, the
subquery is sent to the query scheduler at that location. In this example, let the
required data be available locally, so the query scheduler executes the query using
the data mining primitive FREQ_ITEM, which results in a collection P containing
frequent patterns over the transaction data set.
 Let the collection P be stored in a pattern table T. Now that we have all frequent
patterns over the data set, we can use those patterns to find association rules in them
using a second data mining primitive ASSOC_PATTERN. This example illustrates
the benefits of storing patterns as well as data. The reuse of patterns could prove to
be an enormous optimization in data mining.
 Now consider the case where we want to check if the same frequent item sets hold
for another transaction database. To do this, we could either formulate the same
query again over the second dataset, or we can use patternset P of the last query and
apply a CHECK_PATTERN crossover data mining primitive operation to it. This
illustrates the potential power of the inductive database: intuitively, the patternset P
describes a subset of the data and thus it is intuitively more efficient to operate on
those patterns instead of the whole dataset. While it is true that you can derive all
patterns from the underlying data, but sometimes it might be more efficient to gain
patterns from the patterns already available, as is the case in the example described
above.

6 Conclusions and Future Work

In this paper we have discussed the topics of inductive databases and distributed
knowledge discovery. We introduced a global architecture for the implementation of
an inductive database that is suited for distributed computing and querying over the
grid and discussed its various components. We have also described how a query
would be handled by the architecture.
 Our plan is to implement this architecture using the inductive database SINDBAD
(acronym for: structured inductive database development) [10] which has been
developed by Stefan Kramer and his team. By using an existing inductive database
we can see how modifications in the architecture affect the efficiency of storage and
querying, allowing us to maximize its performance.
 Another goal is to provide a complete set of data mining primitives which are
suitable for distributed data mining. However, research needs to be done on how
existing algorithms can be modified for distributed computing. Furthermore, a
thorough investigation must be done on which algorithms should be in this set.

Acknowledgements

This work is part of the BioRange programme of the Netherlands
Bioinformatics Centre (NBIC), which is supported by BSIK grant BSIK03013
through the Netherlands Genomics Initiative (NGI). The authors also gratefully
acknowledge support from the Leiden Universiteits Fonds. Finally, the authors

10 Jeroen S. de Bruin, Joost N. Kok

would like to thank Stefan Kramer for allowing us to get involved in the SINDBAD
project, and Dr. Fons Verbeek for proofreading this paper.

References

[1] J-F Boulicaut, M. Klemettinen, H. Mannila, Querying Inductive Databases: A
Case Study on the MINE RULE Operator. PKDD 1998: 194-202

[2] L. de Raedt, A perspective on inductive databases. SIGKDD Explorations 4, pp.
69–77, 2003.

[3] T. Imielinski, H. Mannila, A database perspective on knowledge discovery,
Communications of the ACM, v. 39 n. 11, pp. 58-64, Nov. 1996

[4] T. Imielinski, A. Virmani, MSQL: A Query Language for Database Mining,
Data Mining and Knowledge Discovery, Vol. 2(4), pp. 373-408, 1999.

[5] R. Meo, Inductive Databases: Towards a New Generation of Databases for
Knowledge Discovery, invited paper at First International Workshop on Integrating
Data Mining, Database and Information Retrieval (IDDI), at DEXA, Copenhagen,
Denmark, August, 22, 2005.

[6] R.Meo, G.Psaila, Toward XML-Based Knowledge Discovery Systems, Proc. of
the IEEE International Conference on Data Mining, pp. 665-668, 9-12 December,
2002, Maebashi City, Japan.

[7] E. Bertino, B. Catania, E. Kotsifakos, A. Maddalena, I. Ntoutsi, Y. Theodoridis,
PBMS Querying and Storage Issues, PANDA Technical Report PANDA-TR-2004-
02, Feb. 2004

[8] C. Masson, C.Robardet, J-F. Boulicaut: Optimizing subset queries: a step
towards SQL-based inductive databases for itemsets. SAC 2004: pp. 535-539

[9] L. de Raedt , M. Jaeger , S. D. Lee , H. Mannila, A Theory of Inductive Query
Answering, Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM'02), p.123, December 09-12, 2002

[10] S. Kramer, V. Aufschild, A. Hapfelmeier, A. Jarasch, K. Kessler, S. Reckow, J.
Wicker, L. Richter: Inductive Databases in the Relational Model: The Data as the
Bridge. In Knowledge Discovery in Inductive Databases: 4th International
Workshop, KDID 2005, Porto, Portugal, October 3 , 2005.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Klemettinen:Mika.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mannila:Heikki.html
https://portal.acm.org/poplogin.cfm?dl=ACM&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D240472&CFID=62389225&CFTOKEN=91450675
https://portal.acm.org/poplogin.cfm?dl=ACM&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D240472&CFID=62389225&CFTOKEN=91450675
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Masson:Cyrille.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Robardet:C=eacute=line.html
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D844746&CFID=62481024&CFTOKEN=96322212
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D844746&CFID=62481024&CFTOKEN=96322212
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D844746&CFID=62481024&CFTOKEN=96322212

	1 Introduction
	2 Inductive Databases
	3 Distributed Knowledge Discovery
	4 Knowledge Discovery Architecture
	5 Use Case
	6 Conclusions and Future Work
	Acknowledgements
	References

