
EVALUATION OF A LOCAL STRATEGY FOR HIGH PERFORMANCE

MEMORY MANAGEMENT✶

✶ This paper was supported in part by Finep (Brazilian Funding Agence) under Hypersystems Project.

Edson Toshimi Midorikawa, João Antônio Zuffo
{emidorik, jazuffo}@lsi.usp.br

Laboratory of Integrated Systems
Department of Electronic Engineering

Liria Matsumoto Sato
liria@pcs.usp.br

Department of Computer Engineering
and Digital Systems

Polytechnic School of the University of São Paulo
Av. Prof. Luciano Gualberto, travessa 3, no. 158

05508-900 - São Paulo SP Brazil

ABSTRACT

Conventional operating systems, like Silicon Graphics’ IRIX and IBM’s AIX, adopt a single
memory management algorithm. The choice of this algorithm is usually based on its good
performance in relation to the set of programs executed in the computer. Some approximation
of LRU (least-recently used) is usually adopted. This choice can take to certain situations in
that the computer presents a bad performance due to its bad behavior for certain programs.

A possible solution for such cases is to enable each program to have a specific
management algorithm (local strategy) that is adapted to its memory access pattern. For
example, programs with sequential access pattern, such as SOR, should be managed by the
algorithm MRU (most-recently used) because its bad performance when managed by LRU. In
this strategy it is very important to decide the memory partitioning strategy among the programs
in execution in a multiprogramming environment. Our strategy named CAPR (Compiler-Aided
Page Replacement) analyze the pattern of memory references from the source program of an
application and communicate these characteristics to the operating system that will make the
choice of the best management algorithm and memory partitioning strategy.

This paper evaluates the influence of the management algorithms and memory
partitioning strategy in the global system performance and in the individual performance of
each program. It is also presented a comparison of this local strategy with the classic global
strategy and the viability of the strategy is analyzed. The obtained results showed a difference
of at least an order of magnitude in the number of page faults among the algorithms LRU and
MRU in the global strategy. After that, starting from the analysis of the intrinsic behavior of
each application in relation to its memory access pattern and of the number of page faults, an
optimization procedure of memory system performance was developed for multiprogramming
environments. This procedure allows to decide system performance parameters, such as
memory partitioning strategy among the programs and the appropriate management algorithm
for each program. The results showed that, with the local management strategy, it was obtained
a reduction of at least an order of magnitude in the number of page faults and a reduction in the
mean memory usage of about 3 to 4 times in relation to the global strategy. This performance
improvement shows the viability of our strategy.

It is also presented some implementation aspects of this strategy in traditional operating
systems.

1. INTRODUCTION

A series of research work has been motivated by the problem of the memory systems in
current high-performance computers. The literature presents a very big group of alternatives
that was produced as a result of these researches conducted by several groups in universities
and research centers around the world. In a general way, most of them deals with the aspect of
the memory latency, that is to say, of the long time to access the resident data in the main
memory [WULF95][SAUL96].

The proposed methods can be classified in two categories: the first tries to reduce the
latency and the second attempts to tolerate the latency. The techniques to reduce the latency of
the medium access to the memory operands can be divided in two classes: to reduce the number
of faults1 and to reduce the time spent in the faults. The techniques to improve the hit ratio of
cache memories are a classic example of the strategy of reducing the number of faults
[CARR94], because the number of requisitions to the main memory is reduced maintaining data
closer to the processor. The techniques to reduce the time spent in the faults include faster
interconnection networks [HEXS94], multiple levels of cache memories and DRAMs with
smaller access times.

As a matter of fact, these solutions have been improving the performance of the modern
memory systems. Unfortunately, due to some difficulties, there isn’t a definitive solution for the
problem. This paper presents our contribution in the search of this solution. Finally, we argued
that the solutions adopted now, in a general way, don't solve the problem of performance of
memory systems completely and we present a new strategy for improving the memory
performance. Our strategy attempts to change the current approach used in modern operating
systems. Some decisions could be took off from the operating system and managed by other
system programs.

As the modern systems of parallel computation offer support for temporal and spatial
multiprogramming, new management techniques become necessary. This work proposes and
evaluates a strategy for this situation. Our conviction is that, while the researches in the several
areas of high performance computing continue to be accomplished in an independent way, they
won't find an effective and durable solution for the several problems. What intends here is to
show a first step in direction of an integrated system, where all system components participate
actively in the resource management of the system and in the execution of the programs.

The rest of this paper is organized in the following way. We present a brief review of
current research in resource management in high-performance systems in section 2. The
framework of our current research is presented in section 3. Section 4 describes the local
strategy for memory management studied here. We next present our experimental results in
section 5. Relevant issues about the implementation of our strategy are discussed in section 6,
and we present our conclusion and future work in section 7.

2. HIGH PERFORMANCE MEMORY MANAGEMENT

Resource management is a great challenge for modern parallel operating systems
[VERH98]. As parallel machines are now being used, new strategies should be devised for this
class of machines. One reason for this necessity is the current approach adopted in the
operating systems: in general, current resource management algorithms are simply a parallel
extension of traditional, monoprocessor algorithms.

Ben Verghese points one problem in his thesis [VERG98]: “current operating systems
have little support for controlling the allocation of resources to groups of processes, or for
providing fairness by any abstraction other than individual processes... The lack of control over
resource sharing leads to poor isolation in current shared-memory multiprocessors. As a result

1 This includes cache misses and page faults.

of unconstrained sharing, the performance seen by an individual user in a multi-user
environment is dependent on the load placed on the system by other users. Users have no
reasonable guarantee of minimum performance even if they are using much less than the share
of the resources they are assigned to. A single user or process can easily load the system
unfairly, and tie up a large fraction of the resources. Examples of activities that can lead to
unfair load are a user starting many processes, a process touching a large number of pages
resulting in a huge working set, or a process making a large number of accesses to a disk.”

Let’s consider the second example presented by Verghese. It happens because current
operating systems use a “recent past analysis” approach to decide which pages to keep in main
memory. Then, greedy processes tend to be favored in regard of other processes because in the
“recent past” they accessed more memory pages than the others.

Accurate control over resource allocation is desirable across a broad spectrum of
processes with different behavior. Published work usually concentrates in the processor
scheduling area. Extensive research produced many classes of algorithms: priority scheduling,
real-time scheduling, fair-share scheduling, proportional-share scheduling, microeconomic
resource management and rate-based network flow control [WALD95] [STOI95] [CHER93].

Conventional operating systems employ numerical priorities for scheduling processes
[STAL98]. A priority scheduler simply grants a processor to the process with the highest
priority. Traditional operating systems, like Unix [VAHA96] and Windows NT [SOLO98],
adopt a decay-usage variant strategy, where the priority is dynamically changed with the recent
processor usage.

Recently, John Chapin discussed the memory prioritization problem in [CHAP97]. He
argues that the way computer systems are used has changed substantially. These changes are
sufficient to require reevaluating some fundamental assumptions made in operating systems
memory management. One obvious problem motivating this reevaluation is that current systems
do a terrible job of maintaining performance for high-priority processes when the system comes
under pressure due to the behavior of low-priority processes. There is no memory scheduling
policy inside the current operating systems.

Current memory management algorithms are designed to ensure that a process that
receives more CPU time will keep a larger working set in memory. These algorithms are less
effective today than they were twenty years ago since processors have increased substantially in
performance relative to the other system components. Another cause for this problem is that
current page replacement algorithms are designed to emphasize overall system throughput
rather than process prioritization. This objective was adopted in early timesharing systems
[DENN80]. The global clock algorithms used in many Unix variants seek to maximize the
probability that the next reference issued by the processor will not cause a page fault. The
working set trimmer in Windows NT appears to seek to equalize the page fault rate of different
processes [SOLO98].

Edwards and Cao presents an experiment with memory allocation limitation
mechanisms [EDWA96]. They propose a user-oriented resource management approach,
introducing a set of simple kernel mechanisms to allow users to adjust memory allocation and
I/O priorities, and an authorization scheme to prevent users from misusing the kernel
mechanisms. Their approach includes a user-level policy daemon, which monitors and
dynamically adjusts resources to create a better working environment for the user.

The above examples show the need for new approaches for memory management.
Many other aspects must be taken into consideration, such as, new 64-bit microprocessors
(huge virtual address space and virtual memory), multithreaded processors, multiple gigabyte
main memories, parallel programs using multiple threads, etc. All these topics must strongly
affect the way operating systems manage memory.

3. FRAMEWORK

Current systems use a sequential approach of separate phases for memory management
of application programs [MIDO97a]. In this traditional approach, each system component is
responsible for just one task and executes it as best as possible (at least it tries to). Although a
component could possibly help another one, there is no interaction among them. There are
many possibilities to explore such interactive approach. We present some examples:

• during the execution of an application program, the operating system can collect
information about the memory access pattern, memory demand of different
processing stages of the application, and the system behavior. Such data could be
examined and used by the compiling system to generate an improved executable
program that is better adjusted to the computer system;

• the execution data collected by the operating system can also be used by the linker
to modify the composing strategy of object modules to create the executable
program. Current linkers use simple strategies, like inserting the object modules in
the same sequence of input files or ordering them by size (ex. Gnu C);

• based on the memory access pattern, the programmer could restructure his source
program, organizing its variables in a different way. For example, defining a matrix
of structured types instead of a set of simple matrixes;

• the compiler has the knowledge of general structure of the program. So, it can insert
some special directives to inform the operating system about future behavior of the
program. Examples of some decision areas that can be aided by this situation are
page replacement, dynamic memory management, garbage collection and memory-
conscious process scheduling).

Under our proposal, named Communion, the system programs “work together” in order
to achieve enhanced performance [MIDO97a]. The figure 1 shows a diagram of the
Communion approach.

Figure 1 - Interaction among system components.

It can be noted from figure 1 that our approach includes the programmer. It is our
belief that the most important component of a computer system is the one that design and
implements the application. If the program isn’t well designed, although the other components
do their best, all they can achieve is just “order the messy”. In order to achieve such objective,
it’s necessary to supply the programmer with some program execution behavior information.
Traditional systems only provide the total execution time and average memory usage. Modern
computer systems require a new approach to program design and tuning, an integrated
approach.

In the next sections we detail one specific interaction: between the compiler and the
operating system (named CAPR), presenting its application to high performance memory
management. The others are detailed elsewhere [MIDO97b] [MIDO98].

Resurgence

programmer

operating
system

run-time
system

CAPR

traditional
approach

Communion
approach

Adjacence

compiling
system

Assistance

4. A LOCAL STRATEGY FOR MEMORY MANAGEMENT

CAPR was the first developed strategy of Communion [MIDO95]. It is a form of
interaction between the compiler and the operating system. In this section we first review the
nature of page replacement algorithms to detect their weaknesses, and propose this novel
memory management technique.

4.1. Page Replacement Algorithms

In a virtual memory system, one of the most important management policies is the one
that controls the choice of pages to be removed from the memory in order to make room for the
page to be brought in. This policy is implemented by page replacement algorithms.

There are several algorithms proposed in the literature in the last three decades. The
criteria for choosing the page and the variability of program resident set size are some
characteristics that differentiate these algorithms. Two classes of algorithms are often used in
modern systems: fixed partitioning and variable partitioning. The main difference between
them is the number of pages in the resident set. If the resident set size is a fixed constant, then
it’s said that a fixed partitioning approach is being used. Otherwise, we say that the algorithm
has a variable partitioning approach. LRU, FIFO, Clock, NRU and LFU are some examples of
fixed partitioning algorithms. Examples of the other approach are Working Set and PFF.

We can say that all page replacement algorithms must answer the following question:
“among the pages in main memory, which one is that will be referenced aftermost in future?”.
All the algorithms above have one point in common: the choice of the page is based on the
knowledge of past behavior of the program. The basic strategy adopted by all these algorithms
is “use the past and/or the present as an indication of the future.” Consider the following
examples:

• LRU (“least recently used”): make the choice based on an analysis of the recent
past, where it is determined by the page that is not referenced for the longest time.

• Clock: discard pages not referenced since last clock scan in a circular list of pages
(it is an approximation of LRU).

• WS (“working set”): maintain in memory only those pages that were accessed
during a time window (in past).

However, studies show that “the past and the present are not good indications of the
future.” So, it’s clear we need to adopt a new strategy for the replacement algorithms. This need
is confirmed in [FRANK78] that presents a study of behavior anomalies in some classical
replacement algorithms.

4.2. The CAPR Strategy

An alternative is to endow the operating system with some source of information about
the future behavior of the programs. Thus, it is possible to get more precise indication of the
future and then make a better choice. In order to do this it is necessary to know the programs
structure, detect their localities and their transitions. Among the system programs, it is the
compiler that has such an information.

Our strategy, named CAPR (“compiler-aided page replacement”), presents a new
memory management technique based on the interaction between the compiler and the
operating system. In CAPR, both system programs exchange information related to the memory
requirements and usage.

After analyzing the source program, the compiler detects possible sources of locality
and automatically inserts directives to inform the operating system. Examples of directives are:

• locality change

• change in memory requirement

• change in algorithm specific parameters

• change the management algorithm

On the other hand, after executing the program, the operating system can send all data
collected during the execution to the compiler informing the memory access patterns and
localities characteristics. Using this information, the compiler can restructure the program code
and data in order to improve performance. Examples of information that the operating system
can send to the compiler are:

• page-fault rate of selected sections of the program

• average resident set size

• total execution time

• execution space-time product

So, this strategy proposes a custom memory management technique that is the most
adequate for that program. The figure 2 illustrates the interaction between the compiler and the
operating system.

Figure 2 - Interaction between compiler and operating system under CAPR strategy.

The main objectives of the CAPR strategy are:

• to get a better system performance;

• to lower the page fault rate;

• to enhance the memory system usage.

CAPR does not propose new page replacement algorithms as the Compiler Directed
(CD) approach of Mohammad Malkawi [MALK86]. Our approach consists in augmenting each
traditional algorithm with additional functionality, like controlling the resident set size and
dynamically modifying some parameters. For example, for the Working Set algorithm, it’s
possible under CAPR approach to define upper and lower limits of the resident set size and to
have different virtual time windows in some sections of code.

4.3. A Local Memory Management Strategy

Traditionally, operating systems adopt only one page replacement algorithm for
managing all the processes in execution in the system. The choice of this algorithm takes into
account many aspects: low implementation and execution overhead, good performance and
previsibility of behavior. The adopted algorithm is usually LRU (or some approximation like
Clock or NRU) or FIFO.

CAPR allow the possibility of choose a particular page replacement algorithm for each
program, dependent on the memory access pattern. The compiler can insert a special directive
to the source code of the program informing the better management algorithm for the program
access characteristic.

 page fault rate of sections of the program
 average resident set size

execution time (total and section)
 space-time product

operating
system

compiler

locality change advice
 change in memory requirement
 change algorithm parameter
 change management algorithm

5. STRATEGY EVALUATION

We developed a study where we verified the effects of CAPR in a multiprogramming
environment, where the main objective was to reduce to memory occupation during the
execution of a program. We made an analysis of the viability of this strategy with the study of
the influence of the adoption of multiple memory management algorithms in the system, and
additionally, a study of the influence of the memory partitioning strategy. After that, we
compare the results of our study with the adoption of a global strategy.

The following programs were adopted for the accomplished study:

• local: synthetic program that presents a high data access locality. It represents the
applications with an appropriate pattern of accesses to the memory system. It
presents a total size of 492 pages;

• seq: synthetic program with a sequential pattern of memory accesses. It tries to
evaluate extreme cases of applications as the SOR. It composes a total size of 54
pages.

Although real applications have not been used in our evaluation, the obtained results
can be used to verify the effects of our strategy: adoption of multiple local page replacement
algorithms and influence of strategies of memory partitioning among active processes.

5.1. Evaluation Infrastructure

The benefits of the CAPR strategy was evaluated with the implementation of a
simulation system of memory systems, named Elephantus. Due to the complexity of
incorporating of the CAPR algorithms in a real operating system, like Linux or FreeBSD, we
decided for the use of simulation techniques.

In Elephantus, we adopted the simulation technique driven by direct program execution
(“execution-driven simulation”) and the simulation technique driven by program traces (“trace-
driven simulation”).

Elephantus is composed by five main components:

• on-line simulator: responsible for the execution-driven simulation. It executes the
instructions of the application program and the CAPR directives and makes the
collection of the statistical data of the simulation. Based on the Mint [VEEN93] and
Augmint [SHAR96] software packages, it’s available for simulating machines with
MIPS R3000, Sparc and x86 processors;

• off-line simulator: responsible for the trace-driven simulation. Starting from a file of
program traces, it executes the processing of the date accesses and generates the
output files. It implements multiple page replacement algorithms and a
multiprogramming simulation environment too;

• trace file generator: in the same way that the on-line simulator, it executes the
instructions of the application and, like this, generates a file of traces representing
the program references to the memory and the specification of the CAPR directives;

• post-processor: based on a file of the program execution events (execution traces),
it makes an analysis of the data and generates graphs and a statistical summary;

• graphical interface: implemented in Tcl/Tk, it allows the configuration of the
simulation parameters and the visualization and analysis of the final results (fig.3).

5.2. Evaluation Metrics

In order to evaluate our strategy, we adopted three metrics to compare the alternatives
and policies:

• number of page faults: the total number of page faults that was generated during the
total program execution time;

• space-time product: a program’s space-time product is the integral of its resident set
size over the time it is running or waiting for a missing page to be swapped into
main memory [DENN80].

• average resident set size: it can be defined as the ratio between the space-time
product and the total execution time. It represents the average memory occupancy of
the program over its execution.

Figure 3 - Elephantus graphical interface.

5.3. Selection of the Local Replacement Algorithm and Memory Partitioning Strategy

It’s known that the system performance is dependent of the memory management
algorithm. One reason for this behavior is based on the programs memory access pattern: for
example, for programs that exhibit a sequential access pattern, the MRU algorithm performs
better than LRU or FIFO [GLAS97] [MIDO97b]. Figure 4 presents the page fault behavior for
each program under LRU and MRU memory management algorithms.

We decided to verify the influence of the adoption of a local strategy, with the
management of each process with an individual algorithm. In accordance with our previous
work, we chose the algorithm LRU for the local program and MRU for the program seq.
The available memory was partitioned in a static way among the processes, that is, the reserved
memory for each process is maintained unchanged during the process execution.

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

0 100 200 300 400 500

memory size

pa
ge

 fa
ul

ts

LRU

MRU

seq

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

0 20 40 60
memory size

pa
ge

 fa
ul

ts

LRU

MRU

local

Figure 4 - Individual behavior of each program for LRU and MRU algorithms.

As each process is managed by a different algorithm, the memory pages must be
partitioned among them. So, a memory partitioning strategy should be chosen. Due to the fact
that a lot of proportions could be applied in the memory partitioning among the processes, we
decided to study the effect of these several possibilities. Due to space problems and of visibility
of the data in the graphs, we had to restrict the presented cases here. The cases are nominated
“x/y” and they represent an allocation in that x% of the memory is reserved the program seq
and y%, to the program local. The studied cases include 10/90, 30/70, 50/50, 70/30 and 90/10.

One possible heuristic for memory partitioning could be based on the size of the
programs. Then, as the relation between their sizes is 54/492, the case 10/90 could be one
partitioning proposal. Based on our following simulation results we can verify the validity of
this heuristic.

5.4. Analysis of Partitioning Alternatives

The results obtained in our simulation studies are presented in figures 5 to 8. First we
will present the global system performance in our analysis presenting the total number of page
faults and the space-time product for the execution of both programs.

From figure 5, we can see that for memory sizes larger than 140 pages the best memory
partitioning strategy is 90/10, followed by the other cases, and the worst case is 10/90. The
number of page faults is about 4 times better. But for memory sizes smaller than 140 pages, the
case 30/70 presents the smaller number of page faults.

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

0 100 200 300 400 500 600
memory size

pa
ge

 fa
ul

ts

10/90 30/70

50/50 70/30

90/10

Figure 5 - Total number of page faults.

This result is very surprising, because the case 30/70 presents a much better
performance than the case 90/10: for memory sizes between 20 and 140 pages, the number of
page faults for the case 30/70 is close to 2,500, and 100,000 for the case 90/10. This difference
represents more than one order of magnitude.

For that cases with small memory sizes, it’s possible to verify the high number of page
faults for the 90/10 partitioning case. The reason for this is due to the internal behavior of the
program local (figure 6). This graph shows the individual behavior of the program local in
the multiprogramming execution.

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

0 100 200 300 400 500 600
memory size

pa
ge

 fa
ul

ts
10/90 30/70

50/50 70/30

90/10

Figure 6 - Number of page faults for program local.

It has to be noted that only y% of the total memory size is allocated for the program
local. So, in the case 90/10 only 10% of the total memory is reserved to local and 90% to
seq. In this manner, for example, in the case which the memory size is 100 pages, only 10
pages is available to execute the program. This can explain the bad performance of this case in
relation to the others.

The figure 7 shows the individual behavior for the program seq. All partitioning cases
present a similar page fault behavior but the case 10/90 with a peak for low memories. Again,
this can be explained by the fact that only 10% of memory are allocated for the program.

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

0 100 200 300 400 500 600

memory size

pa
ge

 fa
ul

ts

10/90 30/70

50/50 70/30

90/10

Figure 7 - Number of page faults for seq program.

Considering the memory occupancy, figure 8 show the space-time product of all
partitioning cases. For memory sizes larger than 60 pages, the case 10/90 presents the lower
memory usage. The case 90/10 exhibits a value 5 times larger than case 10/90.

Unfortunately both cases present a bad behavior for small memory sizes with a peak
value close to 1011 pages.cycles. Surprisingly, in this small memory interval, the best
partitioning strategy in terms of space-time product is again the case 30/70.

1E+9

1E+10

1E+11

1E+12

0 100 200 300 400 500 600
memory size

sp
ac

e-
tim

e
pr

od
uc

t

10/90 30/70

50/50 70/30

90/10

Figure 8 - Space-time product for local strategy.

Based on the previous results, we cannot decide for a single memory partitioning
strategy for all possible memory sizes. Depending on the adopted approach, a special case can
be selected: if we are interested on minimizing the number of page faults, the case 90/10
should be used for large memories.

5.5. Comparison with a Global Strategy

We compare here the adoption of the local memory management algorithms for each
process against the traditional global approach. The question here is: “how better a local
strategy could be compared to a global strategy adopted by conventional operating systems?”

The strategies studied are composed by the same local approaches studied in the
previous section and global approaches using the LRU and MRU algorithms. The results
obtained are presented in figures 9 and 10.

Related to the number of page faults, figure 9 show that the global LRU presents a
good performance, comparable to the local alternatives. The case 90/10 has the best
performance for memory sizes larger than 140 pages, but also presents the worst behavior for
smaller memory sizes. For the memory sizes where case 90/10 has a worse performance than
global LRU, the case 30/70 has a similar performance. Among all alternatives, the
global MRU is the alternative with the worst performance.

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

0 100 200 300 400 500 600
memory size

pa
ge

 fa
ul

ts

10/90 30/70

50/50 90/10

LRU MRU

Figure 9 - Comparing local and global strategies: total number of page faults.

The results above show that a static local strategy cannot achieve a much better
performance than a global one in all memory sizes. Some partitioning strategies have better
behavior than others for some memory size interval. Concluding, a dynamic partitioning
strategy could be considered for analysis.

The next graph (figure 10) shows the average memory occupation of the studied cases:
in general, all curves have the same shape. It is possible to confirm that the case 10/90
presented the smaller memory occupancy, about 4 times smaller than the global strategies. Even
the case 30/70 is 1,6 times better than global LRU and MRU. This fact can be explained by
the fact that, in global approaches, all memory is used by the programs. In local approaches, as
each program receive a quota of memory, some pages can stay free.

1E+1

1E+2

1E+3

0 100 200 300 400 500 600
memory size

av
er

ag
e

re
si

de
nt

 s
et

 s
iz

e

10/90 30/70
50/50 90/10
LRU MRU

Figure 10 - Comparing local and global strategies: average resident set size.

Based on these results, we can say that for situations where the extreme memory
partitioning cases present worst performance than the global strategy, some intermediate cases
(30/70 or 50/50, for example) present good performance, close to the global LRU and MRU.
We conclude that the adoption of a fixed partitioning strategy doesn't take to the best
performance in all the situations.

6. IMPLEMENTATION ISSUES

In the previous sections we discussed our strategy for implementing a local policy for
memory management. We now describe some implementation issues of this strategy in real
operating systems like Linux [BECK98] or Windows NT [SOLO98]. The aspects presented
here are not specific to any operating system, and would apply to other operating systems.

Modern operating systems have very few controls for memory allocation. The
information provided for each active process include the total size of virtual address space, the
current resident set size and a configurable limit to the total virtual memory a process can
allocate. Unfortunately these information aren’t sufficient to allow the implementation of our
strategy.

A local adaptive memory management strategy requires some additional counters of
pages: entitled, allowed and used. The kernel must keep track of the total number of pages that
is allocated for a process through the used counter. The difference between entitled and allowed
counters is that the first counter maintain the initial share of pages assigned to the process and
the second counter hold the current limit of the process size. Usually both counters hold the
same value. The allowed counter can be changed in case of page migration among processes in
a heavy-load moment of the computer system.

These counters can be added on the process control block maintained by the operating
system to hold all useful information of active processes. The process control block is named
“task structure” in Linux and “executive process block” in Windows NT2.

With the reference to the paging mechanism, all operating systems adopt a demand
paging strategy with a separate page replacement support. When the number of free pages of
the system reaches a lower limit, the kernel usually starts a procedure to free some pages of
active processes. In order to decide which page to release, both Linux3 and Windows NT4

implement a variation of the LRU algorithm known as the clock algorithm.

As the current operating systems support only one page replacement algorithm, a
particular problem arises to implement our strategy. How multiple replacement algorithms can
be accommodated in the kernel? How the paging procedure can be modified?

The support of multiple algorithms isn’t new in the Linux operating system. The
current version 2.0 of the kernel provides two alternatives for scheduling a real time process
(round robin and FIFO). The chosen algorithm is specified by a field in the task structure.

Our solution to this problem is the following: first, it’s necessary to encapsulate each
algorithm in a separate kernel object in order to allow an independent memory management of
each process. Second, a new field is added to the process control block to hold the replacement
algorithm selected to the process. Third, the points in the operating system that is related to the
paging procedure must be modified to accommodate a parametrized execution according to the
process algorithm. Forth, an independent data structure (queue, stack, etc) is necessary to hold
the pages of each process. This data structure is used to implement the selected policy.

Our first prototype is being implemented in a multiprocessor platform based on a dual
Pentium II computer with RedHat Linux 5.1 (kernel 2.0.33).

7. CONCLUSION AND FUTURE WORK

This work presented a study of a novel memory management strategy in modern high
performance computers. In our proposal, each program can be managed by a different algorithm
and the system memory is partitioned among the programs in execution.

The studies and evaluations showed good results and they validated our focus. In a
general way, we verified that the directives with the specification of the management algorithm
has great influence in the global performance of the system (space-time product) as in the
individual performance of the applications (number of page faults).

In spite of the preliminary results that demonstrate a small advantage of the adoption of
a local strategy in multiprogramming environments, several subjects stay open and they deserve
a deepened study:

• memory partitioning among the processes in execution: strategies of dynamic
partitioning should be studied for the obtaining of better performance. The study
described here adopted a static approach in that each process received a fixed
percentage of the available memory;

2 For detailed description of the process control block of each operating system see [BECK98] and

[SOLO98].
3 In fact, Linux implements different policies for swapping pages out. To shrink the page and buffer

cache, the clock algorithm is adopted. However, the swap daemon uses an aging procedure to decide
which page to discard from memory.

4 As a matter of fact, this algorithm is used only in the uniprocessor version of the Windows NT. On
multiprocessor x86 systems and on all Alpha systems, Windows NT implements a variation of a local
FIFO replacement algorithm.

• choose of the best algorithm for each process: tools to aid the system in the choice
of the best management algorithm should be developed. Today we adopted the
simulation results made under the Elephantus environment;

• possibility to specify an algorithm for each section of the program: each program
presents several processing phases with different memory access patterns. It is
important a study in that the adoption of different management algorithms is
analyzed for each processing phase.

Other future works include the extension of the strategy CAPR to be applied in another
situations, for example, in the scheduling of parallel programs and in the data distribution
across the memory modules of a distributed system.

ACKNOWLEDGMENTS

The authors would like to thank all the members of our research groups for their valiant
work. We are also thankful to all that revised the preliminary versions of this work, for their
critics and suggestions of improvements.

REFERENCES

[BECK98] BECK, M. et all. Linux kernel internals. 2nd edition, Addison-Wesley, 1998.

[CARR94] CARR, S.; McKINLEY, K. S.; TSENG, C.-W. Compiler optimizations for
improving data locality. In: Proceedings of the 6th Int. Conf. on Architectural
Support for Programming Languages and Operating Systems, San Jose, CA.
p.252-262. October, 1994.

[CHAP97] CHAPIN, J. A fresh look at memory hierarchy management. In: Proceedings
of the HOTOS VI. 1997.

[CHER93] CHERITON, D. R. and HARTY, K. A market approach to operating system
memory allocation. Stanford University, Computer Science Department. 1993.
URL page: http://www-dsg.stanford.edu/Publications.html

[DENN80] DENNING, P. J. Working sets: past and present. IEEE Transactions on
Software Engineering, SE-6:1, p.64-84, January 1980.

[EDWA96] EDWARDS, J. K. & CAO, P. User-oriented resource scheduling in UNIX.
Technical Report CS-TR-96-1318, Department of Computer Science, University
of Wisconsin, 1996.

[FRAN78] FRANKLIN, M. A. et alii. Anomalies with variable partition paging algorithms.
Communications of the ACM, 21:3, p.232-236, 1978.

[GLAS97] GLASS, G. W. Adaptive page replacement. MSc Thesis. University of
Wisconsin-Madison. 1997.

[HEXS94] HEXSEL, R. A. A quantitative performance evaluation of SCI memory
hierarchies. PhD Thesis. Department of Computer Science, The University of
Edinburgh. 1994.

[KRIS95] KRISHNAN, P. Online prediction algorithms for databases and operating
systems. PhD Thesis. Department of Computer Science, Brown University.
1995.

[MALK86] MALKAWI, M. I. Compiler directed memory management for numerical
programs. Ph.D. Thesis. Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign. 1986.

[MIDO95] MIDORIKAWA, E. T. & ZUFFO, J. A. A technique for compiler-aided
memory management. In: Proceedings of the 21st CLEI, Canela, RS, Brazil.
August 1995. (in portuguese)

 [MIDO97a] MIDORIKAWA, E. T. et all. Communion: a new strategy for memory
management in high-performance computer systems. In: Proceedings of
CACIC’97, La Plata, Argentina. October 1997.

[MIDO97b] MIDORIKAWA, E. T. A new strategy for memory management to high
performance computer systems. PhD Thesis. Polytechnic School, University
of São Paulo, Brazil. 1997. (in portuguese)

[MIDO98] MIDORIKAWA, E. T. Data locality optimization in real application and
strategies for dynamic memory allocation. In: Proceedings of the 10th

Brazilian Symposium on Computer Architecture and High Performance
Processing, Búzios, RJ, Brazil. September 1998. (in portuguese)

[SAUL96] SAULSBURY, A. et alii. Missing the memory wall: the case for
processor/memory integration. In: Proceedings of 23rd International
Symposium on Computer Architecture, 1996. May 1996.

[SOLO98] SOLOMON, D. A. Inside Windows NT. 2nd edition, Microsoft Press, 1998.

[STAL98] STALLINGS, W. Operating systems: internals and design principles. 3rd
edition, Prentice-Hall, 1998.

[STOI95] STOICA, I. and ABDEL-WAHAB, H. A new approach to implement
proportional-share resource allocation. Technical Report 95-05, Old
Domonion University, Department of Computer Science. April 1995.

[VAHA96] VAHALA, U. Unix Internals: the new frontiers. Prentice-Hall, 1996.

[VERG98] VERGHESE, B. Resource management issues for shared-memory
multiprocessors. PhD Thesis. Department of Electrical Engineering and
Computer Science, Stanford University. 1998.

[WALD95] WALDSPURGER, C. A. Lottery and stride scheduling: flexible
proportional-share resource management. PhD Thesis. Department of
Electrical Engineering and Computer Science, Massachusetts Institute of
Technology. 1995.

[WOLF96] WOLFE, M. High performance compilers for parallel computing. Addison-
Wesley, 1996.

[WULF95] WULF, W. A . & McKEE, S. A. Hitting the memory wall: implications of the
obvious. Computer Architecture News, 23:1, p.20-24. March 1995.

