

Use of Morphisms as a Tool to Help
Learning Object Oriented Concepts

Inés Friss de Kereki1, José Crespo2, and Javier Azpiazu2
1 Universidad ORT Uruguay, Facultad de Ingeniería,

Cuareim 1451, 11100 Montevideo, Uruguay
kereki_i@ort.edu.uy, WWW home page: http://www.ort.edu.uy
2 Universidad Politécnica de Madrid, Facultad de Informática

Campus de Montegancedo S/N, Boadilla del Monte, 28660 Madrid, España
{jcrespo, jazpiazu}@fi.upm.es, WWW home page: http://www.fi.upm.es

Abstract. Software design implies searching for and establishing an adequate
morphism between the real world and the desired software. Morphisms
establish correspondences between different domains while some properties
are preserved, at the same time. It allows seeing different things as the same,
taking the substitute image for the real one. The more adjusted to reality the
morphism is, the better the system models the real situation. We propose the
use of morphisms as a pedagogical tool in order to teach object-oriented
concepts and also to promote better software design. We developed a course
based on the explicit use of morphisms. Through experimentation, we
compared the results with an equivalent course not using morphisms. From
the results we may infer that using morphisms helps to develop strategies to
analyze and to construct adequate software models.

1 Teaching and Learning Object Oriented Concepts

Education is no longer primarily the one-way transmission of information and
knowledge [1]. Faculty must understand the different ways in which students learn,
so they can adapt teaching styles to the learning style most effective for individual
students, preparing students for a lifetime of learning [2]. Data or propositions, on
one hand, and skills or procedures on the other, are taught in teaching systems.
Those two learning ways are easily managed, weighed up and assessed [3].
However, as indicated by Pazos [4], students should be also prepared to synthesize,
to set up and to contrast conjectures and to use their creativity.

Students should be taught how to think and act independently. This will allow
them to gain more knowledge with increasing skill and dexterity [5]. Learning

2 Inés Friss de Kereki, José Crespo, and Javier Azpiazu

involves domain-specific and domain-transcending knowledge. The availability of
prior knowledge is a crucial factor, but meta-cognitive knowledge such as task
knowledge, self-knowledge and strategic knowledge is also important to the learning
process [6]. As Papert indicates, when students enter a new knowledge domain, they
usually encounter a multitude of new ideas [3]. Pazos [4], quoting Papert, refers to
the concept of "powerful ideas". Among them, it is important to emphasize
morphisms, "ductions" (deductions, inductions, retroductions and abductions) and
recursion. Morphisms establish correspondences between different domains while
preserving and enforcing some properties. Morphisms are more detailed and specific
than the usual notion of abstraction. The use of morphisms allows seeing different
things as the same, taking the substitute image for the real one.

In this work we propose the explicit use of morphisms as a tool to approach
issues relative to the utility of powerful ideas, allowing an improvement in both
quality and performance of the learning process. Particularly, we focused on the
introductory programming course, Computer Science 1 (CS1) in order to enhance the
opportunities for the students to become successful in learning design and
programming and, therefore, obtaining adequate models and programs.
 Teaching object-oriented (OO) problem-solving and programming has proved to
be more difficult than expected [7]. Many students find the conceptual issues
involved in OO programming hard to understand [8]. One of the major problems
when teaching an introductory course in OO problem solving and programming is
the lack of suitable and proved methods to teach OO concepts and programming [7].
Bruce stresses that there is still insufficient data to evaluate how effective are
pedagogical tools (such as pedagogical IDEs, special libraries providing useful
classes or microworlds) in introductory courses [9].

There are several approaches to teaching programming courses. Some of them
are basically related to the course organization: lectures versus lab work, individual
versus collaborative work [10] or objects from the very beginning with supplemental
instruction [7]. Other approaches, are oriented to methodology, for instance the use
of extreme programming practices [11,12], CRC-Cards [13] or software tools, such
as simulation [8] or visualization tools [14]. Additionally, problem-solving
strategies such as structuring, abstraction and formalisation, planning and revising,
are important [13]. McCracken et al. observed that students often skip the early
stages in the problem-solving process and concentrate on implementation activities,
rather than activities such as planning, designing or testing [15].

As are Huet et al. [10], we are actively involved in trying to enhance the students'
learning experience through reflection on teaching approach and trying new ideas to
help students succeed. Use of morphisms as a tool might help to develop mental
models and to give metacognitive support, as well as to promote planning activities
and better software design.

2 Computer Science 1 and Morphisms

The course CS1 at Universidad ORT Uruguay introduces students to programming
and to the paradigm of OO programming. Performance expectations are to identify,

Use of morphisms as a tool to help learning object-oriented concepts 3

explain, and use classes and objects and to develop programs in an OO manner. The
course applications are developed in Java. The summarised plan of CS1 is: weeks 1-
3: variables, control structures and pseudocode; week 4: introduction to classes and
objects; standard classes; weeks 5-8: creation of classes, aliases, relationships
between classes; week 9: inheritance; weeks 10-12: collections, exceptions, sort and
search; and weeks 13-15: advanced use of collections. Each week of the course
includes 4 theory hours (60 minutes each) and 2 practice hours (in laboratory).
 The usual CS1 course includes lectures/demonstrations and separate laboratory
sessions. It is based on learning theoretical and practical content taught with a
fundamentally descriptive strategy. Our proposal uses morphisms to enhance the
students' learning. Our hypothesis was that learning with morphisms improves the
learning by increasing students' ability to model and solve assigned problems.

In a morphisms-based course, the concepts about morphisms are introduced in
the 8th week. After that, programming examples and exercises are solved by
focusing on morphism concepts. In each example and exercise, the students analyze
and propose a model. Then, each operation and representation is carefully studied.
Using morphisms explicitly helps in elaborating specifications, as it requires
determining which elements of the domain will match which elements of the model
and which are the valid operations available. The gaps between the model and the
real problem are detected and solutions are discussed. Practical examples include,
for instance, modelling a temperature class, designing a system for house budget or
representing withdrawals and deposits into a bank account.

In addition, other examples are presented to reinforce the idea. In week 11 the
“JAM” [16] exercise is proposed with the intention that students discover the
morphism themselves. This exercise is isomorphous to the well known game Tic-
Tac-Toe. In the following weeks, additional work about morphisms is done. In each
instance, an effort is made to establish relations with the original domain. For
instance, the so-called “Year 2000 Date Problem” is analyzed, which provides an
example of how a careful study of the behavior of operations in different domains
should be a prerequisite in modelling and programming. In this case, a basic
calendar operation, the “next day” operation behaves undesirably in the digital
domain because of an inadequate representation.

3 Experimentation and Results

This section aims to document an empirical comparison carried out with two
different teaching methodologies, namely, standard and morphisms-based. We
wanted to assess if the morphisms-based methodology gave students better skills in
software design than the standard theory-practice courses.

Two student groups took part in the experiment. Students were randomly
distributed and they belonged to the same age group (18 to 20 years old). They
began having no prior programming experience and not being currently employed.
Group I (15 students) received the usual, standard course. Group II (16 students)
received the same course plus theoretical material and exercises about morphisms.
Solving strategies in Group II were based on morphisms. Each week, at least 20

4 Inés Friss de Kereki, José Crespo, and Javier Azpiazu

minutes of a class were dedicated to these topics. Also, the strategy for solving
problems was focused on detecting the morphism.
 The use of morphisms hypothetically helps to develop a better model of a
situation. The independent variable in our experiment is the morphisms training.
The dependent variable, which indicates if the treatment had some effect, is the
modelling capacity. This capacity is analysed in relation to: a) Model analysis:
beginning with a given reality model, identify possible problems; b) Data
representation for particular cases: analyse and define the representation of particular
types of data; and c) Creation of a domains’ model: representation of a domain,
detecting principal classes and relationships as well as attributes and methods.
 Two tests of three questions each were given to each student in each group, the
first in week 8 and the second at course's end (week 15). In each test, one question
was aimed to each referred point (a, b and c) in the preceding paragraph.
 Both tests were graded using ordinal scales. Each question was graded from 0 to
6. The samples were then compared using the Mann-Whitney and the Sign test [17].
In the first question, according to the Sign test, an improvement of reality grasping
was detected in Group II. Regarding the second question, groups were found
different (Mann Whitney; α = 0.05, 0.10) in the first test. When test scores were
analysed, Group I had a high proportion (80%) of high level results (4, 5 or 6 points),
while Group II only had 7 students in these conditions (43.75%). In the second test,
however, no significant statistical differences were found between the groups; it may
be inferred that training helped to develop skills for adequate data representation in
Group II. For the third question, no differences were found in the first test, but in the
second one Group II showed significant differences. 40% of Group I students got
high values (4, 5 or 6), while 75% of the Group II students got similar results.
 Therefore, from the Sign test and Mann-Whitney [17] test results, we may infer
that using morphisms allowed an improvement of skills in modeling a given
situation, helped to represent data accurately and contributed positively to develop
skills for constructing a domain model.

4 Conclusion and Future Work

The use of morphisms is presented in this paper as a useful tool to help developing
learning strategies for analyzing and constructing software models. Through
experimentation, it was found that students who participated in the morphisms-based
course obtained better results in topics related to modeling than students of the
standard course. A new experiment will be carried out in 2006 in order to try to
confirm that these results can be replicated. Also, as an additional element, a
software system for promoting model related skills based on the explicit use of
morphisms is being developed and will be used in future courses.
 It is proposed that future investigations study, besides morphisms, the influence of
ductions on learning. In this way, some conclusions might be drawn as to which of
these two powerful ideas has a larger positive impact on learning, or whether both
together interact, for instance in an additive or multiplicative way.

Use of morphisms as a tool to help learning object-oriented concepts 5

References

1. T. Bentley, Learning beyond the classroom, Educational Management & Administration,

28(3), 353-364 (2000).
2. National Academy of Engineering, The Engineer of 2020. Visions of engineering in the

new century (The National Academies Press, Washington DC, 2004).
3. S. Papert, Mindstorms (Basic Books, USA, 1980).
4. J. Pazos Sierra, Enseñanza del futuro: a grandes males pequeños remedios. Technical

Report, Universidad Politécnica de Madrid, España, 2001.
5. P. Jackson, Práctica de la Enseñanza (Ed. Amorrortu, Buenos Aires, 2002).
6. F. Dochy, C. de Rijdt, and W. Dyck, Cognitive prerequisites and learning, Active

Learning in higher education, 3 (3) 265-284 (2002).
7. L Kalling and M. Nordström, Teaching OO Concepts - A New Approach, in Proc. of the

34th. ASEE/IEEE Frontiers in Education Conference FIE 2004 (Savannah, 2004), pp.
F3C6-F3C11.

8. M. Esteves and A. Mendes, A simulation tool to help learning of object oriented
programming basics, Proc. of the 34th ASEE/IEEE Frontiers in Education Conference
(Savannah, 2004) pp. F4C7-F4C12.

9. K. Bruce, Controversy on how to teach CS1: a discussion on the SIGCSE-members
Mailing List, Inroads- The SIGCSE Bulletin 36(4), 29-35 (2004).

10. Huet, O. Rocha, J. Tavares and G. Weir, New challenges in teaching introductory
programming courses: a case study, Proc. of the 34th. ASEE/IEEE Frontiers in Education
Conference FIE 2004 (Savannah, 2004), pp.T2H5-T2H9.

11. V. Jovanovic, T. Murphy and A. Greca, Use of extreme programming (XP) in teaching
introductory programming, Proc.of the 32th. ASEE/IEEE Frontiers in Education
Conference FIE 2002 (Boston, 2002), p. F1G-23.

12. T. Ahern, Work in Progress: Effect of instructional design and pair programming on
student performance in an introductory programming course, Proc. of the 35th
ASEE/IEEE Frontiers in Education Conference FIE 2005 (Indianapolis, 2005), pp.
F3E11- F3E12.

13. J. Börstler and C. Schulte, Teaching object oriented modelling with CRC-Cards and
roleplaying games, Proc. of the 8th IFIP World Conference on Computers in Education
WCCE 2005 (Cape Town, 2005).

14. Virtanen, E. Lahtinen and H. Järvinen, VIP a Visual Interpreter for Learning Introductory
Programming with C++, 5th Koli Calling conference (Finland, 2005).

15. M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. Ben-David, C. Laxer,
L. Thomas, I. Utting and T. Wilusz, A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students, ACM SIGCSE Bulletin, 33
(4) 125-140 (2001).

16. Miscelánea de cuestiones matemáticas relacionadas con el taller.(December 26, 2005).
http://www.juntadeandalucia.es/averroes/iesarroyo/matematicas/taller/aspectosweb/aspec
tosweb.htm.

17. R. Mason and D. Lind, Statistical Techniques in Business and Economics- 8th edition
(Richard Irwin Inc, USA, 1993).

6 Inés Friss de Kereki, José Crespo, and Javier Azpiazu

