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The main contribution of this paper is a method for pruning multi-extensions of a 

defeasible theory by using the exceptions to order the defeasible fonnulae. 

We construct a defeasible logic -- DEFEASIBLE WGIC WrrH EXCEFrIONS FIRST(DLEF) 

-- in which extensions are buílt taking into account the order on the defeasible fonnu1ae 

induced by the exceptions. 

This device prompts DLEF as a powerful tool to formalize common sense 

reasoning. It is on the formalization of the frame problem that we best evaluate the 

original features of DLEF. DLEF allows the formalization of the persistence axiom in the 

temporal projection problem in a stepwise way. That is, the persistence axiom is applied 

locally after every action is performed. Thus, if no exception to sorne properties is 

present while an action is performed the persistence axiom is used to conclude that those 

properties will remain unaltered in the resulting situation. Therefore, no property at the 

present is changed just for the sake of not changing sorne other properties in the future. 

The only reason for changes in properties are explicit changes provoked by the action 

being perfonned at the momento 

It is straightforward to see that with this fonnalization of the persistence axiom 

DLEF precludes in a general and natural way unwanted extensions on temporal projection 

problems including the now (in)famous Yale Shooting Problem [H&M87]. 

The rest of this paper is structured as follows: In section 2, we present the syntax 

of DLEF. Section 3 presents the order on the defeasible formulae induced by the 

exceptions. In section 4, we build DLEF extensions for defeasible theories. The stepwise 

approach to the fmme problem is presented in section 5. Finally, section 6 presents our 

conclusions and further development to DLEF. 

1 Papee presented in the 11 Dutch/German Workshop on Non-Monotonic Reasoning, Utrecht, March, 

29 - April, 1, 1995. 

2 On leave from Slate University oC Ceara. 
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2 Syntax of DLEF 

The ontology of DLEF comprises three kinds of expressions. Absolute, conclusive 

formulae or faets; defeasible, inconclusive formulae or defaults; and exceptions or 

defeaters. 

The language LA of the absolute and defeasible formulae consists of all ordinary 

f1l'st order formulae (wffs) which can be formed using an alphabet A consisting of 

countably many variables x, y, Z, XI' YI' ZI' .•• , countably many functions letters a, b, e, f, 

g, h, al' bl' el' ... , countably many predicate letters P, Q, R, PI' QJ, RJ, ... , the usual 

punctuation signs ',', 'e' and ')', and the standard logical constants ...., (not). 1\ (and), v (or), 

~ (implies) and quantifiers 't/x (for al1 x), 3x (there exists an x). O-ary function letters 

will sometimes be called constants. Terms, atoms and literals are defmed in the standard 

way [End72]. To represent defeaters a new connective '//' is introduced. A defeater is any 

expression of the form 
(1) (l(x) / / ro(x), 

where (l, we LA are wffs whose free variables are among those oí x = Xl' ... , X". 

(l( X J is called a defeater or exception for »{ X J, and »{ x J is called the head of the 

defeater. Expression (1) intuitively reads as "if something is an (l then the defeasible 

formula w is not applicable for it", i.e., (l blocks the application of w. 

An axiomatie base, or a defeasible theory is a triple <W, D, U>, where W is a sel 

of closed wffs of LA' D is a set of (possibly open) wffs of LA' and U is a set of (possibly 

open) defeaters for the wffs in D. W and D are intended to represent the conclusive and 

inconclusive statements respectively, and U is intended to represent the exceptions to the 

statements in D. 

The open expressions in D and U are meant as schemata representing the set of all 

ground instances of the expressions over the language LA' 

A defeasible theory <W. D, U> is closed iff every defeasible formula of D and 

every defeater of U are closed. 

The language of DLEF allows a flexible representation of the defeasible information. 

Specially, as defeaters are written separately from the defeasible formulae, it allows a 

modular representation of the exceptions to the defeasible formulae. New exceptions are 

added by just writing new defeaters with no need to change any formula already in the 

theory. 
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3 Partial Order on the Defeasible Formulae 

Given a closed defeasible theory T = <W, D, u> we order the defeasible formulae in D 

in such a way that defeasible formulae that support an exception for a defeasible formula 

have higher priority than the latter on the construction of the extension. Thus if the 

supporting formulae are compatible with the rest of the formulae in the extension, the 

exception will be carried into the extension. ConsequentIy, the respective defeasible 

formula will be drawn off the extension. 

Next we define precisely the order on the defeasible formulae in a defeasible 

theory. For the definitions below let T = <W, D, u> be a closed defeasible theory. 

Definition 1 A set R ~ D supports a sentence a of LA with respect to the closed 

defeasible theory T = <W, D, U>, iff (i), (ii) and (iii) hold. Notice that 'A' stands for 

first order logic derivation. 

(i) W u R is first order logic consistent; 

(ii) WuRAa; 

(iii) R is minimal, i.e., if W u R' is consistent, W u R A a and R' ~ R, then 

R'=R. 
R is said to be a supporting set for a with respect to the theory T. We also say that every 

member d of R supports a or that d is a supporter for a. and we represent it as d « a. 
Observe that if W is inconsistent then the support relation is empty. 

Condition (iii) guarantees that if d is a supporter for a. then d is relevant to a fll'st 

order derivation of a. 

Definition 2 A defeasible formula di is immediately smaller than another defeasible 

formula d2 in a c10sed defeasible theory T = <W, D. U>, denoted by di ( d2, iff there 

exists a defeater a 11 d2 e U and di supports a (dI « a). 

Definition 3 The partial order on the defeasible formulae of a c10sed defeasible 

theory T = <W, D, U>. 'L'. is defined as the transitive c10sure of the relation '(', i.e., the 

following conditions hold. 

(i) if di ( ~, then dI L d2• 

(ii) If di L d2, and d2 ( d3 then dI L d3• 

The order on the defeasible formulae plays a fundamental role on the defmition of 

extension in the next section (condition (3) in definition 7). First, it allows a constructive, 

though not effective, characterization of an extension (theorem 1). Secondly, it enables 

DLEF to prec1ude sorne extensions. Let d be a ground defeasible formula and a II d be a 
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defeater, that is, a is an exception to d in the theory in hand. Since a11 supporters for a 
are smaller than d, they will have preference over d on the construction of the extension. 

Thus a will be put into the extension (provided its supporters are compatible with the 

other formulae in the extension) before than d, in consequence d will be ruled out. This is 
how DLEF prunes the set of extensions for a defeasible theory. 

Example 1 Let T = <W, D, U> be a defeasible theory where 

W={A,C, B =>A} 

D= {A =>-,F, C =>B, B=>F} 

U = {B 11 (A => -,F)} 

In this theory e => B LA=> ·.,F (note that e => B «B e B 11 A => -,F). We shall 

show in next section that this theory has only one extension in DLEF, namely 

E = Th(W u {e => B, B => F}). For an intuitive reading of the example, let A 

stands for Animal; B for Bird,' C for Cqnary and F for Flies. 

Definition 4 A closed theory T = <W, D, U> is ordered or acyclic iff for no 

formula d E D, d L d. 

Example2 Let T = <W, D, U> be a defeasible theory where 

W=0 
D={B,e} 

U = {e / / B, B / / e} 

This theory is not ordered since B Le and eL B, hence B LB. 

Etherington [Eth88] proposes an order on default theories that resembles very 

much the order introduced here on defeasible theories. In [Peq94], we show that a 

defeasible theory is ordered if its cOlTesponding default theory is ordered according to 

Etherington's defmition, but the converse is not valido Etherington shows that ordered 

default theories are coherent, in the sense that they have extensions. In DLEF, by 

defmition, only ordered theories have extensions, and a1l ordered defeasible theories have 

extensions as we prove in [Peq94] (notice that theorem 1 is a constructive way of 

calculating an extension for DLEF). 
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4 Building Extensions 

Although a defeasible theory T = <W, D, u> might contain sorne open defeasible wff's 

and defeaters, we shall always associate to it a closed defeasible theory called the 

associated ground defeasible theory, consisted of W (all formulae of Ware closed) and 

the set of all ground instances (over the Herbrand universe of the language of 1) of the 

expressions in D and U, respectively. We only define extensions for closed theories, 

extensions to open theories are determined assuming they represent the associated 

ground theories. 

The main distinction from DLEF to other nonmonotonic logics lies in the faet that 

DLEF takes into account the order on the defeasible formulae defmed in section 3 to 

prune the set of extensions for adefeasible theory. 

Sorne preliminary concepts are necessary before defining extensions for defeasible 

theories. In the following definitions and lemmas let T = <W, D, u> be a closed ordered 

defeasible theory, and 'L' be the order on the defeasible formulae associated to T. 

Definition S A defeasible formula d E D is applicable in a set S of formulae with 

respect to T iff: 

(a) d is consistent with S, and 

(b) For all (0./1 d) E U, a ~ Th(S). 

Definition 6 A defeasible formula d is reachable in a set of formulae S with respect 

to T, iff for all defeasible formula d' E D such that d' L d, either d' E Th(S) or d' is not 

applicable in S. 

Extensions are only defined for closed ordered defeasible theories. Unordered 

theories have no extensions in DLEF. 

Definition 7 Let T = <W, D, U> be a c10sed ordered defeasibIe theory. 

E = Th(W U S), S ~ D, is an extension for T iff: 

1. E is maximal, Le., if d E D and d is reachable and applicable in E, then d E 

S. 
2. E is sound, i.e., if d E S then d is reachabIe and applicable in E. 

3. E complies with the exceptions-ftrst principIe, i.e., for all d E S, if d' L d and 

d' ~ S, then d' is not applicable in Th(W uSA, where for all d e S 

5 d = S - S>d' and S><l = {a E S; d L ex.}. 

The set S is called a generating set for the extension E with respect to T. 
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We can find a constructive though not effective characterization of extensions for 

defeasible theories. 

Theorem 1 Let T = <W, D, U> be a closed ordered defeasible theory. Defme 

.. 

So=0 

Eo=W 
And for i ~ 0, 

E¡+l = Th(E¡) U S¡+l' where S¡+l !: D and 

a) E¡ u Si+l is consistent; 

b) If de Si+l then d is reachable and applicable in El' 
(The idea is that S¡+l extends E¡ with defeasible fonnulae from D which are 
reachable and applicable in E¡ ) .. 
Let S = US¡o 

i .. o 

If E = UE¡ = Th(W u S) and S is maximal, in the sense that if de D is applicable and 
i .. o 

reachable in E then d E S, then E is an extension for T. 

This theorem is proved in [Peq94]. Perhaps the best way to grasp the feeling of our 

defmition is seeing an example. In the example below let T = <W, D, U> be a defeasible 

theory. 

Example 1 revisited. 

W = {A, e, B => A} 

D = {A => ...,F, e => B, B => F} 

U = {B 11 (A => ...,F) } 

This theory has only one extension: 

E = Th(W u {e => B, B => F }). 

Notice that (e => B) L (A => ...,F). 

Observe that E' = Th(W u {A => ...,F, B => F}) is not a DLEF extension for T. 
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5 The Frame Problem 

DLEF allows the formalization of the persistence axiom in the temporal projection 

problem in a stepwise way. That is, the persistence axiom is applied locally after every 

action is performed. Thus, if no exception to sorne properties is present while an action is 

performed the persistence axiom is used to conc1ude that those properties wi1l remain 

unaltered in the resulting situation. Therefore, no property at the present is changed just 

for the salce of not changing sorne other properties in the future. The only reason for 

changes in properties are explicit changes in the properties by the action being performed 

at the moment. 

Jt is straightforward to see that with this formalization of the persistence axiom 

DLEF precludes in a general and natural way unwanted extensions on temporal projection 

problems including the now (in)famous Yale Shooting Problem [H&M87]. 

Formalization oC the Yale problem in DLEF 

We shall adopt the notation of the situation calculus developed in [M&H69]. Consider 

the following axioms: 

(1) t(ALIVE, So) 

The person is alive in the initial situation. 

(2) \;;Is. t(LOADED, result(LOAD, s) 

The gun becomes loaded any time a LOAD event happens. 

(3) \;;Is. t(LOADED, s) => relevant(ALIVE, SHOOT, s) 

If the gun is loaded, then the SHOOT event is relevant to the fact that the person is alive. 

(4) 'Vs. t(LOADED, s) => t(-,ALIVE, result(SHOOT, s) 

Ifthe gun is loaded, then the event SHOOT causes the person to be dead. 

(5) 

(6) 

t(f, s) ~ t(f, reslllt(e, s» 

relevant(f, e, s) / / (t(f, s) ~ t(f, result(e, s») 

(5) and (6) represent the axiom of persistence in DLEF. (5) asserts that a property / still 

holds after the preformance of action e, and (6) asserts that if the action e is relevant to 

property / (that is, e changes property f) than (5) is not applicable. 
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Let T = <W, D, U> be the following defeasible theory: 

W = {(1), (2), (3), (4)} 

D = {(5)} 

U = {(6)} 

Let Sl,S2 and S3 be the following situations: 

Sl = result(LOAD, So) 

S2 = result(W AIT, Sl) 

S3 = result(SHOOT, S2) 

The following axioms are closed instances of the axioms (1) to (6) aboye: 

(1.1) 

(2.1) 

(3.1) 

(4.1) 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(6.1) 

t(ALIVE, So) 

t(LOADED, Sl) 

t(LOADED, S2) => relevant(ALIVE, SHOOT, S2) 

t(LOADED, S2) => t(,ALIVE, S3) 

t(ALIVE, Sl) => t(ALIVE, S2) 

t(ALIVE, S2) => t(ALIVE, S3) 

t(LOADED, SI) => t(LOADED, S2) 

t(LOADED, S2) => t(LOADED, S3) 

relevant(ALIVE, SHOOT, S2) / / (t(ALIVE, S2) => t(ALIVE, S3» 

Observe that (5.3) L (5.2), for (5.3)« relevant(ALIVE, SHOOT, S2)' and 

relevant(ALIVE, SHOOT, S2) /1 (5.2). 

Therefore there is only one extension E = Th(W u S) of T in DLEF, with 

{(5.1), (5.3), (5.4)} s:: S. E corresponds to the expected descriptions for the situations 

So' ... ,S3' In particular t(LOADED, S2) e E and t(,ALIVE, S3) e E. Notice that 

El = Th(W u {(5.1), (5.2), (5.4)}} is not an extension for T. 

6 Conclusions and Further Work 

DLEF is a defeasible logic which peunes the set of extensions for a defeasible theory by 

ordering the defeasible formulae according to the order induced by the exceptions upon 

these fonnulae. The c10sest nonmonotonic logics to DLEF are Reiterls Default Logic 
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[Rei80], Delgrande's and Jackson's PJ-Logic [D&J91] and Poole's Theorist [Po088]. We 

show in [Peq94] that these logics coincide for nonnal prerequisites-free theories -

theories where exceptions are not explicitIy represented - that is, E is an extension for a 

defeasible theory in DLEF iff E is an extension for the corresponding theories in these 

logics. However, in the presence of exceptions DLEF has less extensions than the other 

logics, we prove that any extension of DLEF - actually of a variant of DLEF called GDLEF 

for PJ-Logic and Theorist - is also an extension in these logics, but the inverse is not 

necessarily valido A comprehensive comparison of DLEF with these logics is done in 

[Peq94]. 

A main application of DLEF is on the fonnalization of the frame problem. We 

showed in section 5 how DLEF implements the persistence axiom in a stepwise way. 

Further developments to DLEF are in order. At the moment we investigate how the 

implicit hierarchy imposed by the order induced by the exceptions relates to the 

hierarchic nonmonotonic logics of Brewka [Bre89] and Konolige [Kon88]. 

[Bre89] 

[D&J91] 

[End72] 

[Eth88] 

[H&M87] 

[Kon88] 

[M&H69] 

[Peq94] 

[Peq92] 
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