
2do. Workshop sobre Aspectos Teóricos de la Inteligencia Arti:B.cial 527

Distinguishing ground from nonground information
in defeasible argumentation

Carlos 1. Chesñevar1 Guillermo R. Simari

Instituto de Ciencias e Ingeniería de Computación (ICIC)
Grupo de Investigación en Inteligencia Artificial (GUA)

Departamento de Ciencias de la Computación
Universidad Nacional del Sur

Av.Alem 1253 - (8000) Bahía Blanca - REPÚBLICA ARGENTINA
FAX: (54) (91) 553933 - PHONE: (54) (91) 20776 (ext.208) - Email: ccchesne@criba.edu.ar

KEYWORDS: artificial intelligence, defeasible reasoning, argumentative systems

Abstract

The problem of speeding up ínference has proved to be important in argumen­
tative systems. When computing dialectical structures, several paths are searched
(called argumentation lines), many of which will eventually prove useless. Morover,
the performance of backward chainers degrades quickly as the size of the knowl­
edge base increases. This is a major hindrance for argumentative systems, sínce
backward chaining is applied at two different levels (arguments themselves resemble
proof trees, and arguments are related to each other within a tree structure).

This paper presents a novel approach for speeding up inference. We will work
with arguments for nonground literaIs, on the basis of some results presented by
Levy [2]. As a result, most computations involving dialectical trees can be performed
independently from the current groulld facts in the system 's knowledge base. The
definition of abstraet dialectical tree will be introduced, which will account for aIl
nonground queries for a given literal.

lSupported by a fellowship of the Consejo Nacional de Investigaciones Científicas y Técnicas (CON­
ICET), República Argentina.

528 2do. Workshop sobre Aspectos Teóricos de la Inteligencia Artificial

Distinguishing ground from nonground information
in defeasible argumentation

1 Introduction and motivations

In A Mathematical Treatment of Defeasible Reasoning [6], or AITDR, a clear and theo­
retically sound structure for an argument-based reasoning system was introduced. Ever
since, rnany aspects of that frarnework have been the focus of research, producing sorne
interesting results [5, 4]. Within MTDR, an argurnent A for a hypothesis h represents
a tentative piece of reasoning an intelligent agent would be inclined to accept, all things
considered, as an explanation for h. The argurnent A rnay be defeated in presence oí
counterarguments, which on their turn may be defeated by counter-counterarguments,
and so on. As a consequence, several arguments may be raised, defeated, and reinstated
in order to determine whether the original argument A is accepted. This defines a tree
structure, called dialectical tree.

Speeding up inference has proved to be an important issue in argumentative sys­
tems, since the construction of dialectical trees is computationally expensive: consistency
checking within arguments and comparisons using a preference criterio n (specificity) are
involved. When computing dialectical trees, the argumentative inference engine considers
several paths (called argumentation lines), many of which will eventually prove useless.
Morover, the performance of a backward chainer degrades quickly as t,he size of the knowl­
edge base increases. This is a major hindrance for argumentative systems, since backward
chaining is applied at two different levels: on the one hand, arguments themselves resem­
ble proof treesj on the other hand, arguments are related to each other within a tree
structure. In order to solve all these problems, the notion of 'arguments base' was first
developed [1]' from which some correspondences between Truth Maintenance Systems and
Defeasible Argumentation could be observed.

In this paper, we will take a different approach for speeding up inference. As a basis,
we adopt some ideas presented by Levy in [2]. He introduces the concept of query tree,
which encodes all possible derivations for a given query. That way, incorporating new
ground facts do not affect the query tree, so that its computation may be amortized by
many queries. We proceed in a similar way, even though our approach to computing
arguments differs greately from Levy's, since inference in our framework is defeasible,
and hence non-monotonic. Instead of working with arguments for ground literals, (built
dyrtamicallyas the corresponding dialectical tree is generated), we will compute aryument
schemata fo1' nong1'ound literals. In fact, we will be able to compute a dialectical tree
structure relating several argument schemata, which can be later instanciated to particular
ground facts. As a result, most computations involving dialectical trees can be performed
independently from the current ground facts in the system's knowledge base. In order to
do so, we will extend the original MTDR framework, so that we can deal with relations
among nonground argumentation sequences. This will enable us to compute dialectical
tree structures, called abstract dialectical trees, accounting for all queries assocÍated with
a nonground 1iteral.

2do. Workshop sobre Aspectos Te6ricos de la Inteligencia Artificial 529

2 Abstract derivations and argument schemata

We refer those readers not familiar with the MTDR framework to the appendix, at the end
of this papero A complete definition of the framework can be also found elsewhere [6]. The
notions of argument, counterargument and defeat can be seen in the following example, 2

which will be used as motivation for introducing the definition of argument schemata.

EXAMPLE 2.1 (Vehicles are typically not allowed in parks)3 The following knowledge
base contains sorne information about what a vehicle is, and what kind of vehicles should
be allowed in a park. (Note: allowed stands for allowed_in_the_park)

{ vehicle(X) ::- -, allowed(X),
vehicle(X) 1\ used_for_emergencíes(X) ::- allowed(X),
has_wheels(X) 1\ has_motor(X) ::- vehicle(X),
has-Biren(X) ::- used_for_emergencies(X),
has_siren(X) 1\ off_duty(X) ::- -, used_for_emergencies(X),
vehicle(X) 1\ for_park_maintenance(X) ::- allowed(X)
toy(X) ::- -, vehicle(X) }

Ka {human(X) -t-, vehicle(X)}

Let Kp =
{ human(gardener), has_wheels(wheelbarrow), has_wheels(sports-car), hasJ'notor(sports-car) ,
has_wheels(ambulance), hasJ'notor(ambulance), has....siren(ambulance), has_motor(toy-car),
has_wheels(toy-car), toy(toy-~ar) }.

Then A= {has_wheels(ambulance) 1\ hasJ'notor(ambulance) ::- vehicle(ambulance),
vehicle(ambulance) ::- -,allowed(ambulance)}

is an argument for -'allowed(ambulance),

and B =

{has_wheels(ambulance) 1\ hasJ'notor(ambulance) ::- vehicle(ambulance),
has...siren(ambulance) ::- used_f or _emergencie,<¡(ambulance),
vehicle(ambula nce) 1\ used_f or _emergencies(ambulance) ::- allowed(ambulance) }

is an argument for allowed(ambulance).

Then (B, allowed(ambulance)} defeats (A, -,allowed(ambulance)), since the first argu­
ment counterargues (and is more specific than) the second. There is no argument structure
for -,allowed(wheelbarrow) (since there is no enough information for concluding anything
about allowance of wheelbarrow).

Next we will introduce sorne new definitions, which will allow us to extend MTDR
for dealing with nonground argument-like structures. These structures will be called

2For the sake oí clarity, predicate-letters will be denoted using lowercase italics, e.g. ftiesj constants
wiIl be denoted using lowercase sans-serií letter style, e.g.tweety, opus.

3This example was originally presented by R.Loui in [3J.

530 2do. Workshop sobre Aspectos Teóricos de la Inteligencia Artificial

argurnent schemata, since they may be later instanciated to a number of different argument
stru,ctures. Firstly, we will extend the paír (K,~) to a 3-uple (K,~, P), distinguishing a
set P of base predicates, which characterize basic input information. Predicates appearing
in K p will be a subset of those included in P.

EXAMPLE 2.2 Consider example 2.1 aboye. We will take P to be the set {toy, human,
has_wheels, has_motor, has-siren, for -parkJnaintenance, off_duty}.

Let X denote a vector of variables (Xl, X 2, . .. ,Xk). Analogously, C denotes a vec­
tor of constants (CI' C2, ••• , Ck). For ease of reading, parentheses will be dropped when
referríng to a single constant. Let q(W) 4 be a nonground literal of arity n (we will
also write arity(q) = n). Then q(W)! (or simply q!) denotes a ground instance of q.

If C = (c¡, C2, . .. ,cn) is a vector of constants, q!C denotes the ground instance q(C) =

q(Cl,C2"" ,cn)'

2.1 Abstract derivations

Abstract derivations5 allow us to perform inference from nonground queries, using back­
ward chaining. Through unification \Ve propagates variable names from the nonground
query to the leaves of the proof tree. Next we will state the formal definition of abstract
der'ivation:

DEFINITION 2.1 Abstract (defeasible) derivation Given a knowledge base (K,~, P), let
Rules ~ K G , let DefeasibleRules ~ ó., let Facts ~ P and let q(X) be a nonground
literal. An abstract defeasible derivation for q(X) from Rules U DefeasibleRules U Facts,
denoted Rules U DefeasibleRules U Facts~ q(X) is defined recursively as follows:

• There exists sorne predicate p E Facts, such that p = q and arity(p) = arity(q).
The nonground literal p(X) will be called activation literal.

• There exists a rule aIAa2A .. . ak-+b E Rules and an renaming sustitution O such
that be = q(X) and there exists an abstracto derivation for alO, a20, ... , akO.

• There exists a rule alAa2A ... ak >-- b E Def easibleRulcs and an renaming sustitu­
tion O such that. be = q(X), and there exists an abstract derivation for alO, a20, ... ,
akO.

The set {PI(X¡),P2(X2), ••• ,Pn(Xn)} of all activation literals will be called activation
seto If there are no applications of the third case in the abstract derivation of q, this can

a
be denoted as Rules U F acts f- q, O

4When no ambiguity arises, we will simply write q.
5Levy uses the term "symbolic derivations" (see [2]), because it is normally used in deductive databases

(A.Levy, personal communication). However, we consider the word "symbolic" too generic for our context.

2do. Workshop sobre Aspectos Teóricos de la Inteligencia Artificial . 531

As we can see in this definition, we consider rule chaining as usual in backward rea­
soning. We just irnpose the restriction of using a nonground query as the first goal to
be sol ved. We can chain nonground defeasible rules in order to explain sorne nonground
literal. Chained rules, satisfying certain constraints, constitute an argument schema.

DEFINITION 2.2 Let A ~ ~ be a set oí defeasible rules, and let h(X) be a nonground
literal. Then A will be an argument schema for h(X), denoted ((A, h(X))} , iff

a) There exists an activation set S ~ P such that KG U S U A r.. h(X) (explanation).

b) Let R ~ KG U A be the set oí rules used in the derivation of h. Then there are no
cornplementary literals p(X) and,p(X) in R (internal coherence).

c) There exists no A' e A, such that Ka U A' U S~ h(X). (minirnality).

A subargument schema of ((A, h(X))) is an argurnent scherna ((B, q(W))} such that B ~ A.
O

EXAMPLE 2.3 Consider exarnple 2.1. Then
A={ has_wheels(X)l\has_motor(X) >- vehicle(X), vehicle(X) >-,allowed(X)} is an ar­
gurnent scherna for -,allowed(X).

It should be rernarked that definitions 2.3 and 204 are similar to defs. A.3 and AA for
argurnent structures. However, we must note that counterargumentation has been defined
in terms of complernentary literals instead of inconsistency.

DEFINITION 2.3 Given two argurnent schernata ((Al, h1(X¡))} and ((A2 , h2(X2))), we say
that ((Al? h1(X¡))) counterargues ((A2, h2(X2))) iff there exists a subargument scherna
((S, h(Z))}, where S ~ A2 , and such that h1(X¡) and h(Z) are cornplernentary literals. O

DEFINITION 2.4 Let 1> = {a E e : a(X) is a nonground literal and KG U
~ U P~ a(X)}, and let ((Al? h1(X1)}} and ((A2, h2(X2))} be two argurnent schemata.
We say that ((Al, h1(X1))) is strictly more informed than ((A2 , h2(X2))), denoted
((Al? h1(X1))) >-info ((A2 , h2(X2))), if and only ií

i) \/S ~ V if KGUSUAl~ h1(X¡) and KGUS ~ h1(X¡), then KGUSUA2~1 h2(X2).
ii) 3S ~ V such that KGUSUA2~ h2(X2), KGuS ~ h2(X2) and KGUSU Al ~ h1(X¡).
O

DEFINITION 2.5 Given two argument schemata ((Al? h1(X1)}} and ((A2 , h2 (X:;¡))}, we say
that ((Al, h1 }) defeats ((A2, h2)) iff ((Al, h1(X1))) counterargues ((A2, h2)), and the counter­
argurnentation subargument ((S, -,h1(X1)) is such that
1. {(Al? h1 (X1))) is more informed than ((S,,h1(X1))) , or 2. ((Al, hl (X1))) is unrelated by
>-. ~ to ((S,,h1(Xt))). ln.o
O

532 2do. Workshop sobre Aspectos Teóricos de la. Inteligencia Artificial

((Al, -oallowed(X»))

~ 1
((A2 , allowed(X»)) (Ag , -ovehicle(X»))

~
((A4, allowed(X»))

/ ~
((A5 , -olor .J;mergencies(X»)) ((Aa, -ovehicle(X»))

I
((Aa, -ovehicle(X)))

Figure 1: An abstract dialectical tree for ({Ah -.allowed(X)))

In order to determine whether an argument schema supports an argument for a
grounded literal h(C), constants in C are propagated backward in the argument schema
through unification, until a base predicate Pi and sorne vector of constants Ci is reached.
If Pi(Ci) belongs to Kp , for every base predicate Pi in A, and the consistency condition
holds (see condition 2 in def. A.2), then we say that ((A, h(X))) supports an argument
for h(C). Thus we get an (instanciated) argument structure from a (noninstanciated)
argument schema.

DEF'INITION 2.6 Let ((A,h(X))) be an argument s cherna, and let C = (CI,C2, ... ;Ck) be
a vector of constants in C. We will say that ((A, h(X))) supports an argument for h(C)
iff there exists a set A' ~ A! such that (A', h(C)). We will also write ((A, h(X))) supports
(A', h(C}).6 O

EXAMPLE 2.4 Consider the knowledge base in example 2.1. Then ((Al, -.allowed(X)))
supports an argument for -.allowed(sports-car), but ((Al, -.allowed(X)}) does not support
an argument, for -.allowed(wheelbarrow) (since no argument for -.allowed(wheelbarrow)
using the rules in Al can be built).

There is an interesting correspondence between the relations >--. ti arid >--spee' ex­
In o

pressed through the following preposition

PROPOSITION 2.1 Let ((Al, hI)}, ((A2 , h2)} be two argument schemata, such that ((Al, h l })

>--jnfo ((A2, h2)}. Let Cl and C2 be two vectors of constants, such that (A~, hl(Ct)) and
(A~,h2(C2))) are argument structures supported by by ((A¡,h¡)) and ((A2,h2)), respec­
tively. Then either (A~, h¡(C1)) >--spee (A~, h2(C2)), 01' both argument structures are
unrelated by specificity. O

From this proposition, we see that the >--. f1 relation subsumes the two alternative
In o

conditions (see def. A.5) necessary for considering an argument structure as a defeater.
Thus, an abstract dialectical tree can he built, in which each node (argument schema)
is related to its parent via the >--. f1 relation. After instanciating argument schemata to

In o
particular argument structures, the structure of the tree will be preserved, and a dialec-
tical tree (see def. A.6) will resulto

6Note that defeasible rules in ((A, h),) are nonground, whereas argument structures such as (A', h(C)}
involve ground defeasible rules.

2do. Workshop sobre Aspectos Teóricos deJa Inteligencia Artificial 533

DEFINITION 2.7 Frorn the definitions discussed above, an abstract dii:J,lectical tree 1(A. h)

for an argurnent scherna ((A, h)} comes out to be recursively defined as follows:

o

1. A single node containing an argurnent scherna ({A, h)) with no defeaters is by itself
an abstract dialectical tree for ((A, h)}. This node is also the root oí the tree.

2. Let ((A, h)) be an argurnent scherna with defeaters ({Al) h1 }}, ((A2 , h2)}, ••• ,

((An , hn)}. Then the abstract dialectical tree for 1(A, h) can be obtained by putting
{(A, h)) as the root node of 1(A,h) and by rnaking this node the parent node of the
roots of the abstract dialectical trees 1(Alohl)' 1(A2,h2)' ... , 1(An ,hn)'

EXAMPLE 2.5 Consider the argurnent schernata ({Al, ,allowed(X)}) , ((A2 , allowed(X)}) ,
((A3 , ,vehicle(X))}, ((A4 , allowed(X)}) and ((As, 'for ...emergencies(X)}} in eXaInple 2.1,
~~ ,

Al
A 2

A3
A4

As

=
=

=
=

=

{has_wheels(X) Ahas..motor(X) >- vehic1e(X), vehic1e(X) >- -,allowed(X) }.
{has_wheels(X) Ahas..motor(X) >- vehic1e(X), has..siren(X) >- for..emergencies(X) ,
vehicle(X) A/or ..emergencies(X) >- allowed(X) }
{toy(X) >- -,vehic1e(X) }
{has_wheels(X) Ahas..motor(X) >- vehic/e(X),
vehic/e(X) Alor.park..maintenance(X) >-allowed(X) }
{has..siren(X) Aol l...duty(X) >- -,Ior ..emergencies(X)}

The abstract dialectical tree for ((Al, ,allowed(X))) is shown in figure 1

Next we list an algorithrn, which allows us to get a dialectical tree out of an abstract
dialectical tree.

AIgorithm GetDialecticalTree
Input: abstract dialectical tree 1(A,h(X» and a vector oí constants C.
Output: dialectical tree 1(A',h(C» (ií it exists), where (A', h(C)} lS supported by
((A, h(X)}}
H 1(A, h(X» has a single no de

then
H ((A, h(X)}) supports an argurnent A' for h(C)

then

else
Root of 1(A,h(C) = (A', h(C)}

Let 1(Al,h(X1», 1(A2,h(X2»' ••• , 1(Ak,h(Xk» be the irnrnediate subtrees of 1(A,h(X»'

For every ((Ai , h(Xi)})

Let Pi(Ci) be the counterargurnentation literal in (A', h(C)}.
GetDialecticalTree for every ((Ai , h(Xi))} using vector of constants Ci •

534 2do. Workshop sobre Aspectos Teóricos de la Inteligencia Artificial

2.2 Activating argument schemata

Whenever an argument schema ((A, h(X))) supports an argument structure (A', h(C)), a
necessary condition is that every every literal in the activation set of ((A, h(X)) belongs
to K,p.7

DEFINITION 2.8 Let {(A, h)) be an argument schema, and let S = {Pl,P2" .. ,Pk} be its
associated activation seto Then f({(A, h))) = P11\P21\ . . . I\Pk will be the activation formula
for ((A, h)).

If ((A,h)) supports (A',h(C)), and (A',h(C)) has S = Pl(C1),P2(C2), ... Pk(Ck) as
activation set), then f({A',h(C))) = Pl(C1)I\P2(Ci)I\ ... I\Pk(Ck) denotes the activation
formula for (A, h(C)) O

We can also extend the definition of activation formula for an argument schema, in
order to deal with abstract dialectial trees. Every argument schema in an abstract di­
alectical tree will be actived whenever its activation set belongs to K,p, and neither of its
associated defeaters is active.

DEFINITION 2.9 Let 1(A.h) be an abstract dialectical tree for ((A, h)). The activation
form ula for 1(A. h)' denoted f (1(A. h»)' can be defined recursively as follows:

a) If 1(A. h) has a single node, then f (1(A. h») = ! (((A, h))).

b) Let 1(Al.h1), 1(A2. h2), ••• , 1(An ,hn) he the immediate subtrees of 1(A,h)'
Then f(1(A.h») = !(((A,h))) 1\, (!(1(Al.ht') V !(1(A2,h2») V ... V !(1(An .hn »))

If (A', h(C)) is an argument structure supported by ({A, h)), then the activation formula
for f(1(A'. h(C») is defined analogously. O

EXAMPLE 2.6 Consider example 2.5. Then the activation formula for 1(A1 . .,allowed(X) is
(has_wheels(X) I\has..motor(X) 1\ ..., («has_wheels(X) I\has..motor(X) I\hasJiiren(X» 1\...,(
(has...siren(X) l\off.Ji.uty(X» V (toy(X» » V (toy(X» V (has_wheels(X) I\has..motor(X)
I\for..emergencies(X»)

PROPOSITION 2.2 Let ({A, h)) be an argument schema supporting (A', h(C)}. If
((A', h(C))) is not a justification, then !(1(A',h(C») does not hold. O

However, the converse is not true, since the activation formula do es not account fOl" the
consistency of the arguments involved. The following algorithm al10ws us to determine if
{(A, h(C))) supports a justification (A', h(C)).

AIgorithm Justification
Input: an ahstraGt dialectical tree 1(A.h(X», and a vector of constants C.
Output: TRUE if there exists a justification (A', h(C)) supported by ((A, h(X))).

7Note that this condition is not sufficient for supporting an argument structure, since le U A might
derive 1- (see condition 2 in def. A.2)

2do. Workshop sobre Aspectos Teóricos de la Inteligencia Artificial

If 1(A, h(X» has a single no de
then
If ((A, h(X))) supports an argument A' for C

then Justification = TRUE

else Justification = FALSE

else
Ir ((A, h(X))) supports an argument A' for C

then

535

Let 1(A..l.0(Xü), 1(A2,h(X2», ... , 1(Ak,h(Xk» be the immediate subtrees of 1(A,h(X»'

Let Pi(C¡) be the counterargumentation literal in (A',h(C)).
Justification = ..., (Justification(1(Al,h(Xl»,Ct) V '

Justification(1(A2' h(X2»'C2) V

Justification(1(Ak , h(X¡,»,G;;))
else

Justification = FALSE

The output of this algorithm depends on the structure of the abstract dialectical tree
1(A,h(X»' independently of the current facts in X:;p. In fact, X:;p could be revised (adding
or deleting information), without affecting 1(A, h(X»'

EXAMPLE 2.7 Consider the knowledge base in example 2.1.
has.motor(ambulance), person(gardener), has_wheels(ambulance) }.

Let X:;p= {

Then Justification(1(AJ, ... allowed(X»), gardener) = FALSE, but Justification(1(AJ, .,allowed(X» ,

ambulance) = TRUE. (i.e., there exists no justified belief for not allowing gardener to be
in the park, but ambulance should not be allowed, since it is a vehicle.)

Suppose our intelligent agent A adds has...siren(ambulance) to her ground beliefs,
resulting in a X:;p' = X:;p U {has...siren(ambulance)}. Now Justification(1(Al, ... allowed(X»'

ambulance) = TRUE (ambulance is a vehicle for emergencies, so it should be allowed in the
park.)

3 Conclusions

We introduced the concepts of argument schema and abstract dialectical tree, extending
the definitions which characterize the MTDR framework. This allowed us to speed up
inference, which is a fundamental issue for making argumentative formalisms suitable for
implementing knowledge-based systems oriented to real applications.

The resulting, extended framework leads to significant computational savingswhen
performing defeasible argumentation. An abstract dialectical tree 1éA, h(X» has to be built
just once, and its construction can be amortized by many queries, since it subsumes all
possible dialectical trees for ground instances of h(X). Thus, defeasible argumentation can
be performed independently oí the current ground facts in X:;p. Determining if a given
argument is a justification results in an elegant procedure, which basically demands a

536 2do. Workshop sobre Aspectos Teóricos de la Inteligencia Artificial

consistency checking of the arguments involved in its associated dialectical tree. Morover,
proposition 2.4 allows us to consider {rom a different viewpoint the problem of computing
specificity efficientIy [6], which is a major obstacle in scaling up argumentative systems.
Argument schemata offer a new setting in which to investigate this issue.

We contend that the new definitions and algorithms presented in this paper provide a
powerful conceptual framework, in which devising new strategies for improving argument­
based systems becomes much easier.

A The MTDR framework.

In this appendix, we will briefly describe the main concepts of the MTDR framework. For
a complete description, see [6].

A.l Knowledge representation

The knowledge of an intelligent agent A will be represented using a first-order language
e, plus a binary meta-linguistic relation ":::-", defined on e, between a set of non­
ground literals (antecedent) and a nonground literal (consequent) which share variables.
The members of this meta-linguistic relation will be called defeasible rules. The relation
"O;' :::- (3 " is understood as expressing that "reasons to believe in the antecedent O;'

provide reasons to believe in the consequent (3". We will restrict the first-order language
e to a subset involving only Horn clauses.

The set K will be a consistent subset of e representing the non-defeasible part of A's
knowledge. ~ is a finite set of nonground defeasible rules representing information that
A is prepared to take at less than face value. If A <;:: ~, we will denote as A! the set of
all ground instances of members of A.

The set K can be partitioned into two subsets: KG (general knowledge) and K p

(particular or contingent knowledge). Sentences in K,p will be ground literals (E.g.:
flies(tweety) , penguin(opus)) which do not appear as conseqllents of rules in Ka or
~, since they represent basic input information sensored by A, from which new in­
formation can be inferred. Sentences in Ka will be material implications having
the form ab a2,'" ,ak--+b, e.g. penguin(X)--+bird(X). Defeasible rules have the form
al, a2, ... ,ak:::- b, e.g. bird(X):::- flies(X).

A.2 Inference

In order to make this paper self-contained, we present next definitions A.l through A.8,
which summarize the notion of inference in MTDR (for a complete definition of this
framework, see [6]).

DEFINITION A.l Let r be a subset of K,U~!. A ground literal h is a defeasible consequence
oí r, abbreviated r r- h, if and only if there exists a finite sequence Bt, . .. , Bn such that
Bn = h and for 1 :$ i < n, either Bi E r, or Bi is a direct consequence of the preceding

2do. Workshop sobre Aspectos Te6ricos de la Inteligencia Artificial 537

elements in the sequen ce by virtue of the application of any inference rule of the first­
order theory associated with the language C. Ground instances oí the defeasible rules
are regarded as material implications for the application oí inference rules. We will write
!C U A r-- h distinguishing the set A oí defeasible rules used in the derivation from the set
!C. O

DEFINITION A.2 Given a set !C, a set Ll of defeasible rules, and a ground literal h in the
language e, we say that a subset Aof Lll is an argument structure (or just argument) for
h in the context IC (denoted by (A, h) !C' or just (A, h}) if and only if: 1) !C U A r-- h,
2)!c U A ~ 1.. and 3) ,tiA' e A, !C U A' r-- h. A subargument of (A, h) is an argument
(S, j) such that S ~ A. o

DEFINITION A.3 Given two arguments (Al! hl) and (A2 , h2), we say that (Al, hl) coun-
h

terargues (A 2 , h2), denoted (Al, hl)®--+ (A2 , h2) iff there exists a subargument (A, h) of
(A2 , h2) such that !C U {hl , h2 } f- .1-. The literal h will be called a counterargumentation
literal. O

DEFINITION AA Let V = {a E e : a is a ground literal and !CU~ll- a}, and let (Al! h1)

and (A2 , h2) be two argument structures. We say that Al for hl is strictly more specific
than A 2 for h2 , denoted (Al, hl) >-spec (A2 , h2), if and only if
i) \18 ~ V if!Ca U 8 U Al 1- hl and !Ca U 8 ~ h¡, then !Ca U 8 U A2 t--- h2 •

ii) 38 ~ V such that !Ca U 8 U A21- h2 ,!Ca U 8 ~ h2 and !Ca U 8 U Al ~ hl • O

DEFINITION A.S Given two argument structures (Al) h l) and (A2 , h2), we say that
(Al! h¡) defeats (A2 , hz) at literal h, denoted (Al) h1) ~ ef(A2 , h2 }, if and only if there
exists a subargument (A, h) of (A2 , h2) such that: (Al) hj counterargues (A2 , h2) at the
literal h and
1. (Al, hl) is strictly more specific8 than (A, h), or 2. (Al, hl) is unrelated by specificity
to (A, h).
If (Ah hl) ~ d 1{A2 , h2 }, we will also say th<:,t (A¡, hl) is a defeate¡' for (A 2 , h2). In case
(1) (Al, hl) wiÍl be called a proper defeater, and in case (2) a blocking defeater. O

DEFINITION A.6 A dialectical tree 1(A,h) for an argument (A, h) is recursively defined as
íollows:

o

1. A single node containing an argument structure (A, h) with no defeaters is by itself
a dialectical tree for (A, h). This node is also the root of the tree.

2. Suppose that (A, h) is an argument structure with defeaters (Al! hl), (A2 , h2), ••• ,

(An , hn). We construct the dialectical tree 1(A,h)' by putting (A, h) as the root node
of 1(A, h) and by making this node the parent node of the roots of the dialectical
trees for (Al, hl), (A2 , h2), ••• , (An , hn).

SWe use specificity as comparison criterion, but any other partial order among arguments might be
possible.

538 2do. Wor.kshop sobre Aspectos Teóricos de la Inteligencia Artificial

DEF'INITION A.7 Let 1(A,h) be a dialectical tree for an argument structure (A, h). The
nodes Of1(A,h) can be recursively labeled as undefeated nodes (U-nodes) and defeated nodes
(D-nodes) as follows:

o

1. Leaves of 1(A, h) are U-nodes.

2. Let (B, q) be an inner node of 1(A, h)' Then {B, q) will be an U-node iir every child
of (E, q) is a D-node. (B, q) will be a D-node iir it has at least an U-node as a child.

. DEFINITION A.8 Let (A, h) be an argument structure, and let 1(A,h) be a dialectical tree.
9 We will say that A is a justification for h (or simply (A, h) is a justification) iff the root
node oí 1(A,h) is an U-node. O

References

[1] A. J. Garda, C. I. Chesñevar, and G. R. Simari. Making Argument Systems Com­
putationally Attractive. In A nales de la XIII Conferencia Internacional de la So­
ciedad Chilena para Ciencias de la Computación, Universidad de La Serena, La Serena
(Chile), 1993.

[2] A. Y. Levy. Irrelevance Reasoning in Knowledge Based Systems. PhD thesis, Stanford
University, Departament of Computer Science, Oct. 1993.

[3] R. Loui and J. Norman. Ratíonales and Argument Moves. Technical Report, Wash­
ington University, Dept. oí Computer Science, St.Louis, USA, Oct. 1992.

[4] G. R. Simari, C. I. Chesñevar, and A. J. CarcÍa. Focusing inference in defeasible
argumentation. In A nales de la Conferencia IBERAMIA '94, Asociación Venezolana
para Inteligencia Artificial, Caracas (Venezuela), Oct. 1994.

[5] G. R. Simari, C. 1. Chesñevar, and A. J. GarcÍa. The role oí dialectics in defeasible
argumentation. In Anales de la XIV Conferencia Internacional de la Sociedad Chilena
para Ciencias de la Computación, Universidad de Concepción, Concepción (Chile),
Nov. 1994.

[6] G. R. Simari and R. P. Loui. A Mathematical Treatment of Defeasible Reasoning and
its lmplementation. Artificial Intelligence, 53:125-157, 1992.

9 Actually, dialectical trees should satisfy certain additional requirements for being considered accept­
able dialectical trees (see [5]). These requirements do not affect our discu8sion about argument schemata,
and may be easily introduced into the resulting framework. This issue, however, exceedR the scope of
this paper.

