
Synthesis of a Specific Processor from a High Level
Programming Language (Ada) Description

Jean-Pierre Deschamps and Marcelo Tosini

Universidad Nacional del Centro de la Provincia de Buenos Aires
Instituto de Sistemas - San Martín, 65 - 7000 Tandil - Argentina

E-mail: mtosini@exa.unicen.edu.ar

Summary: Ada 95 is proposed as an alternative solution for describing digital embedded
systems. Two examples are presented. The first one is a Program-state Machine; its
translation to an Ada program is based on the use of concurrent tasks, entry calls, protected
objects and asynchronous transfer of control (ATC). The second one is a specific processor
connected to a serial channel and to a system bus.

Key words: Embedded systems, Hardware/Software codesign, Hardware/Software
cosimulation, Specific processors, Hardware description languages, Real time systems, Ada.

1.  INTRODUCTION

The starting point of the development of an embedded system is a functional description. The
final result is a set of interconnected components. Some of them are standard processors
(Microprocessors, Digital Signal Processors) or Application Specific Instruction-Set Processors
that execute a specific program; others are specific circuits (Application Specific Integrated
Circuits, Field Programmable Gate Arrays) or commodity circuits (memories, device
controllers). The translation of the initial description to a physical system roughly consists in
(1) decomposing the system into a set of tasks that share global variables and interchange data
through communication channels, (2) allocating processors (Microprocessor, DSP, ASIP,
ASIC, FPGA) to the tasks, buses to the communication channels, memories to the global
variables, (3) generating the application programs and synthesizing the specific circuits.
In order to synthesize a new integrated circuit (ASIC, FPGA) the traditional method starts from
a specification in a hardware description language, generally VHDL or Verilog. After, high
level synthesis and logic synthesis programs are used in order to obtain a net list of the circuit.
Nevertheless, according to some authors (see for example R.K. Gupta and S.Y. Liao, 1997) an
embedded system is easier to describe (at the beginning of the development work) if a high
level programming language is used. The chosen language should allow to describe (1)
concurrent tasks as well as the communication between them and (2) different behaviors with
transitions between them defined by some external events (see for example D. Gajski et al.,
1994). Another important point is the possibility to describe and simulate both the system and
its environment.
Within the frame of the Asictan project1, Ada 95 was chosen as the initial specification
language. Some reasons of using Ada are the following ones: (1) it has the above-mentioned
characteristics (this point will be emphasized in the section 2 of this paper); (2) it is a
standardized programming language and there exists a lot of development tools for generating
and executing Ada programs; (3) VHDL inherited many of the Ada features: this point is
important for the tasks to which specially designed processors (ASIC, FPGA) are allocated.

The proposed synthesis method is made up of the following steps:

(1) The initial description is an Ada program that defines the tasks that the system under
development must perform as well as its environment. By compiling and executing this
description on the host workstation the initial specification can be validated. An open question
is whether to use all the Ada 95 constructs or to restrict oneself to a subset of the language.
Presently the initial description is supposed to be made up of
• a set of non-hierarchical tasks,
• a set of protected objects that can be called up by any task,
• a main procedure in charge of the activation and linking of the tasks;
 it is the so-called Single Ada Model (J.-P. Deschamps, 1998b). The tasks communicate through
global variables, protected objects and messages (rendez-vous). Nevertheless these rather
strong restrictions will be released in the future. Any way, as in any real time system, it is
                                                          
1The Asictan project is funded by the UNCPBA University (Tandil, Argentina) and by the Argentine
Secretary of University Policies (SPU).



desirable to avoid the use of recursive or reentrant procedure calls.
 
 (2) The second step is the system partitioning. It consists in solving the tree above-mentioned
allocation problems:
• some subsets of tasks may be executed by already existing processors (microprocessors,

DSP, ASIP); other subsets of tasks should be executed by new specially designed (specific)
processors (ASIC, FPGA);

• some subsets of global variables and protected objects may be implemented by standard
shared resources (random access memories, queues, interface circuits); other subsets should
be integrated within application specific circuits;

• buses, and possibly bus arbiters, must be allocated to the communication channels between
tasks (messages) and between tasks and shared resources.

 These allocation problems still form an important field of research. Their solution can be based
on mathematical methods (graph theory, linear programming) or on simulation. Several
allocation algorithms are described in G. De Micheli, 1994, D. Gajski et al., 1994, R.K. Gupta,
1995.
 
 (3) The next step is the programming of the programmable processors (microprocessors, DSP,
ASIP) and the synthesis of the specific circuits (specific processors, non-standard shared
resources). As regards the specific processors the synthesis is divided into several substeps:
• The description of the corresponding tasks (an Ada program) is translated to an intermediate

form (an assembly-like program). Actually it is another Ada program based on procedures
and type definitions stored in two packages that constitute the Ada/Lep language definition
(M. Tosini y J.-P. Deschamps, 1998). The communication channels are still modeled by
means of global variables, protected object calls and message passing.

• The Ada/Lep program is converted into an equivalent microprogram (a VHDL-like
program). Once again it is an Ada program based on the two above-mentioned packages.
The communication protocols must have been previously defined.

• The VHDL-like description can be translated to a true VHDL description that could serve as
an entry point for some logic synthesis program. Nevertheless another possibility is the
direct synthesis of the data path, the microprogram sequence controller and the
microinstruction decoder, and the generation of the microprogram memory contents.

The main goal of this paper is the description, through a simple but complete example, of this
specific processor synthesis method. Observe that, thanks to the use of the same language (Ada)
at the three description levels (initial specification, assembly-like program, VHDL-like
program), the whole system and its environment can be simulated with three different models
of the specific processor. In other words, the hardware/software cosimulation is performed by
using a common language (Ada) for the description of both the programmable and the specific
processors.

In the section 2 of this paper the claim that Ada 95 is a suitable language for describing
embedded systems is justified by describing the translation of a Program-state machine
specification to an Ada program. In the following sections a complete example of a specific
processor synthesis is presented: section 3 states the problem; the first description level (initial
specification) is described in section 4; section 5 is a short introduction to the Ada/Lep
language; the second description level (assembly-like program) is described in section 6, and
the third one (VHDL-like program) in section 7. A complete description of Ada 95 can be
found in J. Barnes, 1996.

2.  ADA DESCRIPTION AND SYNTHESIS OF A PROGRAM STATE MACHINE

One of the models used for describing embedded systems is the Program-state Machine (F.
Vahid et al., 1991, D. Gajski et al., 1994). An example is given in figure 1. It is a 7-state
machine (A, B, ... , G). Four of them are leaf  states: D corresponds to a data acquisition and
timer setting program; F and G correspond to two concurrent data processing programs; C
corresponds to a monitoring program. The system works as follows: when the system starts the
control is transferred to the state A; the states B and C included in A are  active, as well as the
state D included in B; the execution of the programs associated with the leaf states D and C
starts. For the moment the external condition quit is supposed to be false. When the execution
of the program associated with D terminates the control is transferred to the state E; as a
consequence both states F and G are now active and the corresponding program execution



starts. When the execution of both programs terminates and when the condition timer is true the
control is transferred back to D. If the condition quit becomes true, the running program(s)
associated with D, or with F and G, are interrupted; the state B finishes and consequently the
program associated with the state C is interrupted.

In order to describe and simulate the machine, an Ada task is associated with every state. Each
of them includes the declaration of an entry start and of a global boolean variable end_task. As
an example, the task F of figure 1, associated with a leaf state,  is declared and defined as
follows:

task F is entry start; end F;
end_F: boolean := false;
task body F is
begin loop

accept start;
<program associated with F>
end_F := true;

end loop; end F;

For describing composite states, one or several entry calls must be performed. As an example,
the concurrent composite state E is described by the following task (the quit condition is
supposed to be false)

task body E is
begin loop

accept start;
F.start; G.start;
loop

if end_F and end_G then end_F := false; end_G := false; end_E := true; exit; end if;
end loop;

end loop; end E;

and the sequential composite state B by the following one

task body B is
begin

accept start;
D.start;
loop

if exception_D or exception_E then end_B := true; exit; end if;
end loop;

end B;

(the condition exception_D(E) becomes true if the external event quit happens during the
execution of D(E)).

A

B C

D

E

F G

qu

quit
timer

FIGURE 1: Program state
                  machine



A protected object, the type of which is interruption, is associated with every task that could be
interrupted, either explicitly when some event happens - it is the case of the tasks D and E when
the condition quit becomes true - or implicitly when other taks are interrupted - it is the case of
the task C when the task B finishes:

protected type interruption is
procedure set_flag; procedure clear_flag; entry wait_flag;
private flag: boolean := false;
end interruption;
interruption_D, interruption_E, interruption_C: interruption;

As an example, the state D is described as follows:

exception_D: boolean := false;
task body D is
begin loop

accept start;
interruption_D.clear_flag;
select interruption_D.wait_flag;

exception_D := true;
then abort

<program associated with D; it includes the sentence “ timer := false;”>
end_D := true;

end select;
end loop; end D;

Observe that the interruption mechanism is based on the Asynchronous Transfer of Control
(ATC) construction. It is similar to the do ... watching construction of the Esterel language (F.
Boussinot and R. De Simone, 1991).

The linking of the tasks is under the control of the main program:

procedure figure_1 is
begin

A.start;
loop

if end_A then exit; elsif end_D then end_D := false; E.start;
elsif end_E and timer then end_E := false; D.start; end if;

end loop;
end figure_1;

An additional task control simulates the system environment, that is to say, it generates the
timer and quit conditions. For example:

task body control is
begin

delay 2.0; timer := true; delay 2.0; timer := true; delay 0.25;
quit := true; interruption_D.set_flag; interruption_E.set_flag; delay 2.0;

end control;

A complete description of the Program-state machine of figure 1 is given in J.-P. Deschamps,
1998a.

Observe that the tasks that are associated with non-leaf states only serve to control part of the
linking of the tasks; they do not process data. A simple transformation (expansion) allows to
eliminate them. The new description contains
• a set of tasks that actually process data,
• a main procedure that control the linking of the tasks.
It is the so-called Single Ada Model (J.-P. Deschamps, 1998b). As an example, the machine of
figure 1 could be described as follows:

task body C is
begin



accept start;
<monitoring program>

end C;
task body D is
begin loop

accept start;
<data acquistion and timer setting program>
end_D := true;

end loop; end D;
task body F is ... <data processing 1> ... end_F;
task body G is ... <data processing 2> ... end_G;
procedure figure_1 is
begin

D.start; C.start;
loop

if quit then abort C; abort D; abort F; abort G; exit;
elsif end_D then end_D := false; F.start; G.start;
elsif end_F and end_G and timer then end_F := false; end_G := false; D.start; end if;

end loop;
end figure_1;

(in this example it is not necessary to use the ATC construct: when the event quit happens all
the running programs are aborted).

The synchronization and communication between tasks can be performed by using global
variables, protected objects and messages. As an example, suppose that the task F of figure 1
communicates with the tasks D and C through a protected object main_memory

protected type memory is
procedure write (address: in address_type; data: in data_type);
procedure read (address: in address_type; data: out data_type);
private ... end memory;
main_memory: memory;

and that the tasks F and G communicate between themselves through messages G_to_F and
F_to_G. The structure of the task F could be the following one (G is supposed to be a
coprocessor of F):

task body F is x1, x2: address_type; y1, y2, y3, y4: data_type; ...
begin loop

accept start;
-- F gets the value of y1 that has been previously stored at address x1 by D
main_memory.read (x1, y1);
<F processes y1 and generates y2>
-- F sends y2 to G
G.F_to_G (y2);
-- F receives y3 from G
accept G_to_F (data: in data_type) do y3 := data; end G_to_F;
<F processes y3 and generates y4>
-- F stores the value of y4 at address x2; further on it will be read by C
main_memory.write (x2, y4);
end_F := true;

end loop; end_F;

In this example, the three above-mentioned allocation problems are stated as follows:
• allocate processors to the task C, D, F and G;
• allocate a shared resource (a memory) to the protected object main_memory;
• allocate buses to the communication channels: C to main_memory, main_memory to F, F to

G, G to F, F to main_memory, main_memory to C.

A possible implementation is given in J.-P. Deschamps, 1998b. The circuit architecture is
shown in figure 2: one different processor is allocated to every task and a single bus is allocated
to the various communication channels.



3. DEFINITION OF A SPECIFIC PROCESSOR

A second example will now be presented. It consists in synthesizing a specific processor that
computes the greatest common divisor of two 16-bit natural numbers. It is part of a system the
structure of which is shown in figure 3: the operands are captured by a remote circuit that
communicates with the processor through a serial channel; the result is sent to a display
controller through the system data bus. The operations are performed in the following way:
• the data acquisition circuit periodically transmits the operands x and y to the processor;
• every time that it receives new operands x and y, the processor calculates z = gcd(x, y) and

sends the result z to the display controller;
• whenever the display controller receives a new value of z, it publishes it.
The greatest common divisor calculation is based on a reiterative use of the following
properties:

if x>y then gcd(x, y) = gcd(x-y, y); if x<y then gcd (x, y) = gcd(x, y-x); if x=y then gcd(x, y) = x.

display
controller

processor

status and control

data

data
acquisition

serial
channel

FIGURE 3: Structure of the system
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4.  INITIAL SPECIFICATION

In order to simulate the processor and its environment it is necessary to have a model of the
data acquisition circuit, the serial channel, the processor itself and the display controller.

4.1  Model of the serial channel

The functional model of the serial channel is made up of two packages uart and line. The first
one describes the protected type interface_IO; it allows to instantiate objects accessible through
four procedure calls
• write: it writes a byte into the transmitter register register_T belonging to the private part of

the object;
• read: it reads a byte from the receiver register register_R belonging to the private part of the

object;
• state_T: it returns a boolean value that describes the state of the transmitter register (true: it

is empty; false: it contains a byte that still must be transmitted);
• state_R: it returns a boolean value that describes the state of the receiver register (true: it

contains a byte that can be read; false: it is empty),
and through two entry calls
• get_out: if the transmitter register contains a byte, it is transmitted through the transmit line

TxD; as a result, the transmitter register gets empty;
• put_in: if the receiver register is empty, a new byte is received from the receive line RxD; as

a result, the receiver register contains a byte:

subtype byte is integer range 0 .. 255;
protected type interface_IO is
procedure write (data: in byte); procedure read (data: out byte);
procedure state_T (state: out boolean); procedure state_R (state: out boolean);
entry get_out (data: out byte); entry put_in (data: in byte);
private ... end interface_IO;

The complete serial channel is made up of two interface_IO-type objects uart_A and uart_B
and of two tasks A_to_B and B_to_A that simulate the transmit/receive mechanism (figure 4).
As an example, if the uart_A transmitter register contains a byte (this condition is the barrier of
the get_out entry call of uart_A) then the task A_to_B gets the byte out of the register; after, if
the uart_B receiver register is empty (this condition is the barrier of the put_in entry call of
uart_B), the task A_to_B puts the byte into the register:

task body A_to_B is
data: byte;
begin loop

uart_A.get_out (data);
delay 0.5;
uart_B.put_in (data);

end loop; end A_to_B;

4.2  Model of the data acquisition circuit
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FIGURE 4: Serial
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The task acquisition gets the operands x and y every 10 seconds from the keyboard of the host
workstation, splits them up into two bytes (x = (x1, x0), y = (y1, y0)) and sends them to the
processor through the serial channel:

subtype oper is integer range 0 .. 65535;
task body acquisition is
x, y: oper; x1, x0, y1, y0: byte;
CR: character; state: boolean := false;
begin loop

put ("x = "); get (x); get (CR); put ("y = "); get (y); get (CR);
x1 := x / 256; x0 := x - (256 * x1); y1 := y / 256; y0 := y - (256 * y1);
-- transmit x1 to the serial channel
uart_A.state_T (state); while not (state) loop uart_A.state_T (state); end loop;
uart_A.write (x1);
<same operations for x0, y1, y0>
delay 10.0;

end loop; end acquisition;

4.3  Model of the processor

The corresponding task gets the operands x = (x1, x0) and y = (y1, y0) from the serial channel,
calculates z = gcd(x, y) and transmits the result to the display controller by means of a message
result:

task body processor is
x, y, z: oper; x1, x0, y1, y0: byte; state: boolean := false;
begin loop

-- receive x1 from the serial channel
uart_B.state_R (state); while not (state) loop uart_B.state_R (state); end loop;
uart_B.read (x1);
<same operations for x0, y1, y0>
x := x0 + (256 * x1); y := y0 + (256 * y1);
while x /= y loop if x >= y then x := x - y; else y := y - x; end if; end loop; z := x;
display.result (z);

end loop; end processor;

4.4  Model of the display controller

This task accepts the message generated by the processor and displays the result z on the host
workstation monitor:

task body display is
z: oper;
begin loop

accept result (a: in oper) do z := a; end result;
put ("gcd (x, y) = "); put (z); New_Line;

end loop; end display;

The complete functional model is described in J.-P. Deschamps, 1997. It has been compiled
and executed (Gnat compiler, New York university), and proved to be an accurate initial
specification of the system.

5.  THE ADA/LEP LANGUAGE

The first step of the processor synthesis consists in translating its initial specification to an
assembly-like program. For that purpose the language Ada/Lep was defined - the name comes
from the spanish translation of Ada used as a Processor Specification Language (M. Tosini and
J.-P. Deschamps, 1998). Actually, it is just a way of programming in Ada in an assembly
language style. It uses two predefined packages: types and alu. The package types defines a
series of useful types: bit, register, io_port, etc. The parameterized package alu serves to define
the data path structure of hypothetical processors as well as their instruction sets. As an
example, the following package instantiation generates a 5-bit-wide data path including a 5-bit



register R1, a 10-bit register R2 and an 8-bit register R3; the debug_info flag is put to true in
order to enable the debugging facilities included in the alu package:

package my_alu is new alu (word_width => 5, debug_info => true); use my_alu;
R1: register (one); R2: register (two); R3: register (0 .. 7);

A set of procedures are defined within the alu package; they correspond to the arithmetic-and-
logic and input-output instructions of the hypothetical processors. For example:

DO_IN (a: out register; b: in io_port);
DO_OUT (a: out io_port; b: in register);
DO_ADD (a: out register; b: in register; c: in register);
DO_MUL (a: out register; b: in register; c: in register);
DO_DIV (a: out register; b: in register; c: in register; k: in integer);
etc.

With these procedures it is possible to write assembly-like instructions. For example:

DO_IN (R1, PORT2); R1 <= PORT2
DO_ADD (R1, R2, R3); R1 <= R2 + R3
DO_DIV (R1, R2, R3, 3); R1 <= R2/R3 * 23

The jumps and branches are programmed with the GOTO and IF boolean_expression GOTO
instructions of Ada. Some predefined boolean variables (flags) are included within the alu
package: inp_1_sign, inp_1_zero, inp_1_odd, inp_1_even, inp_2_sign, inp_2_zero, inp_2_odd,
inp_2_even, out_sign, out_zero, out_odd, out_even, carry, overflow. They all refer to the
operands (inp_1, inp_2) and to the result (out) of the latest executed arithmetic-and-logic
instruction.

The subroutines calls are programmed with the procedure calls of Ada. For example:

procedure square_root (a: out register; b: in register) is begin ... end square_root;
square_root (R1, R2);

The protected objects must be called through io_port-type or bit-type variables. For example,
suppose that the protected type memory has been defined

protected type memory is
procedure memory_access (address: in io_port; data: in out io_port; read_write: in bit);
private ... end memory;

and that an object a_memory has been instantiated

a_memory: memory;

then the memory-read and memory-write operations can be programmed as follows:

a_memory (address_bus, data_bus, 0); data_bus <= M (address_bus)
a_memory (address_bus, data_bus, 1); M (address_bus) <= data_bus

where address_bus and data_bus have been declared as io_port-type variables.

6.  ASSEMBLY CODE

From now on all the data handled by the processor must be io_port-type,  register-type or bit-
type variables, so that the serial channel model must be slightly modified:

protected type interface_IO is
procedure write (data: in io_port); procedure read (data: out io_port);
procedure state_TR (state: out io_port);
entry get_out (data: out io_port); entry put_in (data: in io_port);
private ... end interface_IO;



the state of the transmitter register is given by state(0) and the state of the receiver register by
state(1).

At this point of the synthesis process some decisions must be taken concerning the processor
architecture:

• An 8-bit wide data path will be used:
 

package processor_alu is new alu (8, true); use processor_alu;

• The processor is connected to the serial channel through an 8-bit bus serial_bus and to the
display controller through a 16-bit bus data_bus:

serial_bus: io_port (one); data_bus: io_port (two);

Within the Ada/Lep program the following variables will be used:
• four 16-bit variables that store the operands (xx, yy), the final result (zz) and an intermediate

result (accumulator);
• five 8-bit variables that store the operand bytes (xx1, xx0, yy1, yy0) and the serial channel

status register contents (state).

The Ada/Lep description of the processor is the following one:

task body processor is
serial_bus: io_port (one); data_bus: io_port (two);
accumulator, xx, yy: register (two);
xx1, xx0, yy1, yy0, state: register (one);
begin
-- read xx1, xx0, yy1, yy0 from the serial channel
<<label_1>> uart_B.state_TR (serial_bus);
        DO_IN (state, serial_bus);
        IF state(1) = 0 THEN GOTO label_1; END IF;
        uart_B.read (serial_bus);
        DO_IN (xx1, serial_bus);

<same operations for xx0, yy1, yy0>
-- concatenate xx1 with xx0 and yy1 with yy0
        DO_CONCAT (xx, xx1, xx0);
        DO_CONCAT (yy, yy1, yy0);
-- calculate the result zz
<<label_5>> DO_SUB (accumulator, xx, yy);
        IF out_zero THEN GOTO label_7; END IF;
        IF carry THEN GOTO label_6; END IF;
        DO_SUB (xx, xx, yy);
        GOTO label_5;
<<label_6>> DO_SUB (yy, yy, xx);
        GOTO label_5;
<<label_7>> DO_OUT (data_bus, xx);
-- transmit the result zz to the display controller
        display.result (data_bus);
        GOTO label_1;
end processor;

In order to simulate the whole system it is necessary to slightly modify the tasks acquisition and
display (io_port-type  or register-type variables instead of integer-type variables). The
complete model is described in J.-P. Deschamps, 1997.

7.  VHDL CODE

First, the processor data path architecture is defined. The following conclusions are drawn from
the Ada/Lep program analysis:
• The data path must contain one 8-bit input port serial_bus and one 16-bit output port

data_bus. An 8-bit latch inp_latch is allocated to the input port and a 16-bit latch out_latch
to the output port.



• The arithmetic-and-logic unit must be able to execute the following operations:
-  subtraction with initial carry equal to 0 (first part of DO_SUB);
- subtraction with initial carry generated by the previous instruction execution (second
part of DO_SUB);

It must generate two flags, carry and out_zero, the values of which depend on the previous
instruction result (DO_SUB (accumulator, xx, yy)).

• The registers are allocated to the program variables in the following way:
R0 => state; R1 => xx1, zz1; R2 => xx0, zz0; R3 => yy1; R4 => yy0.

It is not necessary to allocate a register to the variable accumulator that is never used as an
operand (the DO_SUB (accumulator, xx, yy) instruction only serves to update the flag
values).

After, the communication protocols must be defined. The communication with the serial
channel is shown in figure 5. It uses a single control variable serial_sel (0: status register
selection; 1: receiver register selection). The communication with the display controller is
shown in figure 6. It uses two control variables Req_mon (request signal) and mon_Grant
(acknowledge signal).

Once again the serial channel model must be slightly modified in order to implement the chosen
communication protocol:

protected type interface_IO is
procedure write (data: in io_port); procedure read (sel: in bit; data: out io_port);
entry get_out (data: out io_port); entry put_in (data: in io_port);
private ... end interface_IO;

The VHDL-like description is the following one:

data_bus: io_port (0 .. 15); Req_mon: bit; mon_Grant: bit;
task body processor is
serial_bus: io_port (0 .. 7); serial_sel, cy, ze: bit;
inp_latch, R0, R1, R2, R3, R4, prov: register (0 .. 7); out_latch: register (0 .. 15);
subtype number is integer range 0 .. 40; cp: number;
procedure subtract (a: out register; b, c: in register) is
<this procedure calculates a = b - c - cy, and updates cy and ze>
end subtract;
begin

cp := 0; Req_mon := 0;
loop case cp is

-- read R1 = xx1, R2 = xx0, R3 = yy1, R4 = yy0 from the serial channel
when 0 => serial_sel := 0; uart_B.read(serial_sel, serial_bus);
        for i in 0 .. 7 loop inp_latch(i) := serial_bus(i); end loop; cp := cp+1;
when 1 => R0 := inp_latch; cp := cp+1;
when 2 => if R0(1) = 0 then cp := 0; else cp := cp+1; end if;
when 3 => serial_sel := 1; uart_B.read(serial_sel, serial_bus);
        for i in 0 .. 7 loop inp_latch(i) := serial_bus(i); end loop;  cp := cp+1;
when 4 => R1 := inp_latch; cp := cp+1;
<same operations for R2, R3, R4>
-- calculate the result R1 = zz1, R2 = zz0
when 20 => cy := 0; ze := 1; cp := cp+1;
when 21 => subtract (prov, R2, R4); cp := cp+1;
when 22 => subtract (prov, R1, R3); cp := cp+1;
when 23 => if ze = 1 then cp := 32; else cp := cp+1; end if;
when 24 => if cy = 1 then cp := 28; else cp := cp+1; end if;
when 25 => subtract (R2, R2, R4); cp := cp+1;
when 26 => subtract (R1, R1, R3); cp := cp+1;
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when 27 => cp := 20;
when 28 => cy := 0; cp := cp+1;
when 29 => subtract (R4, R4, R2); cp := cp+1;
when 30 => subtract (R3, R3, R1); cp := cp+1;
when 31 => cp := 20;
-- transmit the result to the display controller
when 32 => for i in 0 .. 7 loop out_latch(i) := R1(i); end loop; cp := cp+1;
when 33 => for i in 0 .. 7 loop out_latch(i+8) := R2(i); end loop; cp := cp+1;
when 34 => Req_mon := 1; cp := cp+1;
when 35 => if mon_Grant = 0 then cp := 35; else cp := cp+1; end if;
when 36 => for i in 0 .. 15 loop data_bus(i) := out_latch(i); end loop; cp := cp+1;
when 37 => Req_mon := 0; cp := cp+1;
when 38 => if mon_Grant = 1 then cp := 38; else cp := cp+1; end if;
when 39 => data_bus :=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); cp := cp+1;
when 40 => cp := 0;

end case; end loop; end processor;

In order to simulate the whole system it is necessary to modify the tasks acquisition
(communication with the modified serial channel model) and display (communication protocol
implementation). The complete model is described in J.-P. Deschamps, 1997.

It remains to synthesize the circuit, that is to generate its nets list for some ASIC or FPGA
technology. This can be done in (at least) two ways. A first method consists in generating the
circuit description directly from the Ada/VHDL-like program. The circuit is made up of a data
path and a microprogrammed control unit. The circuit generation work mainly consists in
• decomposing the data path and the control units in blocks such as: the input and output

ports, the arithmetic-and-logic unit(s), the register bank(s), the microprogram memory, the
microprogram sequencer, the microoperation decoder;

• choosing a synchronization scheme;
• choosing a microinstruction format;
• synthesizing part of the blocks; for instance: the ports, the arithmetic-and-logic unit, the

microprogram sequencer, the microoperation decoder; for that purpose a library of
parameterized VHDL models and a logic synthesis program should be used;

• generating the microprogram memory contents;
• compiling the remaining blocks; for instance: the register bank (dual port RAM compiler),

the microprogram memory (ROM compiler).

Another method would consist in (1) translating the Ada/VHDL-like description to a true
VHDL program and (2) synthesizing the VHDL description. The translation to a VHDL
description is relatively easy. It mainly consists in
• adding a synchronization scheme;
• adapting the Ada/VHDL-like program to the VHDL syntax and semantics rules.

In the case of the current example the chosen synchronization scheme is the following one: all
the internal variables, that is inp_latch, R0 to R4, out_latch, cy, ze, and cp, are updated on the
falling edge of a synchronization signal clk. For that purpose two signals x and x_in, and a
guarded assignment

x <= guarded x_in;

are associated with every internal variable x; the guard condition is the falling edge of clk. The
VHDL code is the following one:

entity mcd_mic is
port (serial_bus: in qit_vector(0 to 7); serial_sel:out qit;  data_bus: out qit_vector(0 to 15);
Req_mon: out qit; mon_Grant: in qit; reset, clk: in qit); end mcd_mic;
architecture ada of mcd_mic is
signal inp_latch, inp_latch_in, R0, R0_in, R1, R1_in, R2, R2_in, R3, R3_in, R4, R4_in: qit_vector(0
to 7);
signal out_latch, out_latch_in: qit_vector(0 to 15); signal cy, cy_in, ze, ze_in: qit;
subtype number is integer range 0 to 40; signal cp, cp_in: number;
signal prov: qit_vector(0 to 7);



procedure subtract (signal a: out qit_vector(0 to 7); b, c: in qit_vector(0 to 7); signal cy_in, ze_in:
out qit;
signal cy, ze: in qit) is .... end subtract;
begin

block_label: block (clk = '0' and not clk'stable)
begin
inp_latch <= guarded inp_latch_in; R0 <= guarded R0_in; R1 <= guarded R1_in;
R2 <= guarded R2_in; R3 <= guarded R3_in; R4 <= guarded R4_in;
out_latch <= guarded out_latch_in; cy <= guarded cy_in; ze <= guarded ze_in;
cp <= guarded cp_in when reset = '0' else 0;

end block block_label;
process (serial_bus, mon_Grant, cp)

begin case cp is
when 0 => serial_sel <= '0'; inp_latch_in <= serial_bus;  data_bus <= "zzzzzzzzzzzzzzzz";

Req_mon <= '0'; cp_in <= cp+1;
when 1 => R0_in <= inp_latch; cp_in <= cp+1;
when 2 => if R0(1) = '0' then cp_in <= 0; else cp_in <= cp+1; end if;
when 3 => serial_sel <= '1'; inp_latch_in <= serial_bus;  cp_in <= cp+1;
when 4 => R1_in <= inp_latch; cp_in <= cp+1;
....
when 20 => cy_in <= '0'; ze_in <= '1'; cp_in <= cp+1;
when 21 => subtract (prov, R2, R4, cy_in, ze_in, cy, ze); cp_in <= cp+1;
when 22 => subtract (prov, R1, R3, cy_in, ze_in, cy, ze); cp_in <= cp+1;
when 23 => if ze = '1' then cp_in <= 32; else cp_in <= cp+1; end if;
when 24 => if cy = '1' then cp_in <= 28; else cp_in <= cp+1; end if;
when 25 => subtract (R2_in, R2, R4, cy_in, ze_in, cy, ze); cp_in <= cp+1;
when 26 => subtract (R1_in, R1, R3, cy_in, ze_in, cy, ze); cp_in <= cp+1;
when 27 => cp_in <= 20;
when 28 => cy_in <= '0'; cp_in <= cp+1;
when 29 => subtract (R4_in, R4, R2, cy_in, ze_in, cy, ze); cp_in <= cp+1;
when 30 => subtract (R3_in, R3, R1, cy_in, ze_in, cy, ze); cp_in <= cp+1;
when 31 => cp_in <= 20;
when 32 => for i in 0 to 7 loop out_latch_in(i) <= R1(i); end loop; cp_in <= cp+1;
when 33 => for i in 0 to 7 loop out_latch_in(i+8) <= R2(i); end loop; cp_in <= cp+1;
when 34 => Req_mon <= '1'; cp_in <= cp+1;
when 35 => if mon_Grant = '0' then cp_in <= 35; else cp_in <= cp+1; end if;
when 36 => for i in 0 to 15 loop data_bus(i) <= out_latch(i); end loop; cp_in <= cp+1;
when 37 => Req_mon <= '0'; cp_in <= cp+1;
when 38 => if mon_Grant = '1' then cp_in <= 38; else cp_in <= cp+1; end if;
when 39 => data_bus <= "zzzzzzzzzzzzzzzz"; cp_in <= cp+1;
when 40 => cp_in <= 0;

end case; end process; end ada;

8.  CONCLUSIONS

The main conclusion of this work is that Ada is a convenient language for specifying digital
embedded systems. Two examples were presented:
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• The first one is a Program-state Machine. The translation to an Ada program is rather simple
thanks to the use of concurrent tasks, entry calls, protected objects and asynchronous
transfer of control. The advantage of using Ada, instead of a special purpose language, is the
availability of a lot of development tools for generating and executing Ada programs.
Furthermore, the initial specification of the tasks that will eventually be implemented in a
standard processor is a program that can be compiled for that processor.

• The second example is a specific processor connected to an 8-bit serial channel and to a 16-
bit system bus. Three description styles were used: initial specification, assembly-like
program, VHDL-like description. They correspond to three steps of a classical top-down
design methodology. Furthermore the ability of Ada to describe interface and peripheral
circuits was demonstrated. An advantage of Ada is its similarity with VHDL: the translation
of the VHDL-like description to a true VHDL program is straightforward.

Within the frame of the Asictan project, the main research activities are the following ones:
• Incorporation of performance estimation facilities (metrics) within the Ada models, in order

to give the designer the ability to compare different system partitions and resource
allocations and bindings.

• Selection and generation of high level synthesis tools allowing to directly translate an
Ada/VHDL-like description to a circuit architecture.

• Prototyping of specific processors. A fast prototyping tool is under development, based on
the following strategy: an Ada program, that describes the whole system (except the specific
processor) and its environment, is executed on the host workstation; this program
communicates with an FPGA-based prototype of the specific processor through an input-
output board.

• Development of an Ada retargetable compiler (see for example C. Liem, 1997) that allows to
translate an Ada program (with some restrictions) to either an assembly program for some
standard processors or to a program using  some subset of the complete Ada/Lep instruction
set.
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