

edu.LMC and Other LMC Simulation
Approaches: Contributions to Computer
Architecture Education Using the LMC

Paradigm

Isabel Pedrosa1, António José Mendes2 and Mário Zenha Rela2

1 Instituto Politécnico de Coimbra, Instituto Superior de Contabilidade e
Administração de Coimbra, Quinta Agrícola, Coimbra, Portugal

ipedrosa@iscac.pt,
WWW home page: http://www.iscac.pt/~ipedrosa/index.htm

2 Universidade de Coimbra, Departamento de Engenharia Informática,
Pollo II, Pinhal de Marrocos, Coimbra, Portugal, {toze,mzrela}@dei.uc.pt,

WWW home page: http://www.dei.uc.pt/~toze
WWW home page: http://www.dei.uc.pt/~mzrela

Abstract. The LMC paradigm is not a recent approach to teaching computer
architecture: it has been presented, tested and used since 1965, first by its
authors, Madnick and Donovan, and their MIT students, and since then in
many other universities around the world. The main purpose of the LMC
paradigm is to explain, using a very simple model, the main components of a
real computer system, and to learn how to program using a simple decimal-
encoded instruction set. Using new LMC simulators (based on the LMC
paradigm) developed since then, students can nowadays take advantage of
simulation processes (e.g., to simulate a program’s step-by-step execution).
We evaluated six different LMC simulators, picked the “best practices”
associated with each one, and developed a new simulator especially focused
on management and informatics undergraduate student requirements. This
new simulator, edu.LMC, has been tested in a computer architecture course.

1 Introduction

A large collection of simulators for computer architecture students is available
nowadays. Web pages [4] and [5] configure repositories of many of those
educational resources. However, most of the referenced simulators are not
pedagogically adequate, considering the learning context of management and

2 Isabel Pedrosa, António José Mendes and Mário Zenha Rela

informatics (M&I) undergraduate students. These students have no more than basic
skills in computer architecture. One of the simulators that can be interesting in an
M&I learning context is the Little Man Computer, LMC, based on the LMC
Paradigm, introduced in 1965 by Stuart Madnick and John Donnovan. LMC
simulators are “simple instruction level” simulators and “very simple single
accumulator based architecture with a small number of instructions, suitable for a
first course in computer science” [6]. The LMC paradigm introduces, through a very
simple approach, a model to represent the components of a real computer system,
very similar to von Neumann’s model. Students can write their own programs using
a simple instruction set, and the programs can be tested using an LMC simulator.
 In computer architecture courses with M&I undergraduate students at ISCAC14,
we have used the LMC paradigm and an LMC simulator to test LMC programs.
LMC simulators allow “students to learn the fundamentals of computer
organization/architecture by visually observing and interacting with animated data
flow within a particular or real machine” and by “using animated resources” [6].
 Several LMC simulators were tested: Son-of-LMC and three other directly derived
simulators – FoSoLMC, AoFoSoLMC and LMC Clone, Interactive Web-based
Simulation and LMC Editor/Assembler/Simulator v1.2.

1.1 The LMC paradigm

As a conceptual approach, the LMC paradigm represents easily understood concepts
and features providing a very simple way of understanding the functional areas of a
real computer system: ALU (Arithmetic and Logical Unit), Control Unit, Memory,
Program Counter and Input/Output Areas. The LMC main area is a mailroom whose
fundamental components are: 100 mailboxes numbered with 2 digits from 00 to 99
(that represent memory in a real system and they are used to store decimal coded
numbers corresponding to program instruction, values input by user and operation
results), a calculator (representing an ALU to store, temporarily, input values or
output results and do simple arithmetic additions and subtractions), an instruction
location counter (program counter, which identifies the instruction being executed at
a specific moment), input and output baskets (I/O, recipients to communicate with
outside of the mailroom) and a Little Man (control unit, which memorizes
instructions and mailbox data and supervises the program execution).

1.2 Methodology

We have tested six LMC simulators concerning their editor, assembler, execution
and printing areas, manipulation on input/output and their adequacy in M&I
undergraduate computer architecture courses. The decision of choosing those six
simulators was based on the fact that they were described in many computer
architecture education papers and also due to being effectively used in similar
learning contexts. After concluding the LMC simulator analysis, we collected their
“best practices” and joined them together in a new LMC simulator, edu.LMC, for
special use with M&I undergraduate computer architecture students.

14 ISCAC – Coimbra Institute of Accounting and Administration

edu.LMC and other LMC simulation approaches 3

2 LMC simulators

During our research we tested several LMC Simulators: Son-of-LMC (available on
http://elearning.algonquincollege.com/coursemat/pincka/dat2343/lectures.f03/14LM
C-Simulator.htm) and three other directly derived simulators – FoSoLMC,
AoFoSoLMC and LMC Clone; Interactive Web-based Simulation (homepage at
http://www.itk.ilstu.edu/faculty/javila/lmc/) and LMC Editor/Assembler/Simulator
v1.2 (online at http://www.d.umn.edu/~gshute/cs3011/LMC.html). Table 1
represents a synthesis of that analysis especially considering the most interesting
functionalities but also some points that could be improved to create an LMC
simulator more focused on pedagogical issues for M&I students.

Table 6. Synthesis of the six LMC simulator analyses.

LMC
Simulator

Description Advantages Disadvantages

Son of LMC
[1]

The basis of other
simulators:
FoSoLMC,
AoFoSoLMC e LMC
Clone.

Follows strictly the concepts of
the LMC paradigm.

3 digit decimal-
encoded
instructions; no
mnemonics.

Interactive
web-based
LMC
Simulator[1],
[2]

This approach has
been tested with
computer
architecture students.

3 areas: Source Program,
Opcode, LMC and Program
Status Field; mnemonics can
be used; it supports 3 different
addressing modes.

No example files;
No help file.

LMC Editor/
Assembler/
Simulator v1.2

This approach seems
to be very effective
for M&I students.

Program example files; LMC
application window divided
into Editor, Assembler and
Computer Areas.

Installing process
not very friendly
for students with
no Java skills.

3 edu.LMC Simulator

Collecting all the test results done, we developed a new LMC simulator – edu.LMC,
which is available for download at www.iscac.pt/~ipedrosa/LMC/edu_lmc.htm. It
consists of a Win32 application, created specifically for students with very basic
skills in computer architecture, mostly not majors in computer science or computer
engineering. This is a special purpose simulator, with a clear pedagogical focus,
tested and used during computer architecture classes for our M&I course. edu.LMC
uses instruction mnemonics based on the LMC paradigm, allows instruction
commentaries and verifies each instruction before the simulation starts. Students can
create, run, debug, print and save programs. This simulator includes example files
and a help area describing each instruction. It was our purpose to create a simulator
that represents a close approach to the LMC paradigm, including all functionalities
and features that are difficult to find together in other simulators. Additionally,
edu.LMC is simple to use as our main target users are M&I undergraduate students.

4 Isabel Pedrosa, António José Mendes and Mário Zenha Rela

3.1 The application

The application window, shown in Figure 1, is divided into 4 main areas:
- Editor: program writing using mnemonics. It’s possible to write directly

instructions or to open program text files (if they respect the defined structure
shown in Figure 2) with a .lmc extension. Programs are verified syntactically as
we write each instruction and the operation code (opcode) is generated. The
Load operation puts Opcodes in Mailboxes. edu.LMC saves programs, presents
the current program name, creates new programs, prints the program and all
comments and verifies all syntax errors or inputs that can not be supported.

Figure 1. The edu.LMC application window

00 IN; input value (IN1)
01 STO 10; Store input value on mailbox 10

Figure 2. The edu.LMC input text files.

- Mailboxes: mailboxes and its three decimal coded contents. The first are taken
for program instructions, the last ones for values stored by programs.

- Execution: other functional LMC component contents such as calculator,
counter (for instruction location counter), last instruction done (important if
there are jumps), instruction name, operation mode, flags, I/O boxes and an
option to view output display (if output sequence are important).

- Execution Control: four modes for executing LMC programs - Run (direct
execute from 00 instruction until HALT), Trace (Step by Step), Next I/O
(execution stops only for I/O values) and Halt (stops the programs anytime).

Edu.LMC aggregates many functionalities: create, open, comment, save, verify,
execute and print programs. Besides that, it includes examples classified by level of
difficulty, a complete help area with executable examples of each instruction. Users
can also view the saved “Execution Log” file, receive detailed information about
program tracing and check or change the Mnemonics Conversion Table.

Editor Area
Mailboxes Area Execution Area

Execution
Control

Area

Editor Area
Mailboxes Area Execution Area

Execution
Control

Area

edu.LMC and other LMC simulation approaches 5

3.2 edu.LMC core functionalities

- Execution Log: Usually students find it difficult to understand the way
variable values change. It’s possible to activate the “Log Execution” option
and generate a text file with information about program execution.

- Program Tracing Information: This is another way of tracing program
execution. If the execution mode is Trace, a dialog box with information
about each instruction is presented, as well as the next one to be executed.

- Mnemonic Conversion Table: A significant number of LMC simulators
use different instruction codes. This table gives a user the chance to
configure those codes or to restore default values.

- Print Report: The user can save his programs and/or print them. The Print
Report content is very similar to the Editor Window.

4 Conclusions and future work

We have tested six LMC simulators in order to find an adequate simulator for our
undergraduate M&I students. Our conclusion was that those simulators included
numerous features that are difficult to find together in one simulator. Therefore, we
decided to design edu.LMC, a new LMC simulator, simple and user-friendly, and
especially focused toward our target students. edu.LMC can be improved by adding
functionalities concerning address modes, more examples, a feature to implement
array concepts and also an efficient way to represent the fetch-execute cycle.

References

1 Yurcik, W., OsBorne, H., “A Crowd of Little Man Computers: Visual Computer
Simulator Teaching Tools”, Proceedings of the 2001 Winter Simulation Conference,
2001.

2 Little Man Computer, Illinois State University: School of Information Technology,
USA, http://www.itk.ilstu.edu/faculty/javila/lmc/ [online], created on 1998, last
modified: 2000-05-01, accessed on 10-07-2005.

3 Yurcik, W., Vila, J., Brumbaugh, L., “An Interactive Web-Based Simulation of a
General Computer Architecture”, IEEE International Conference on Engineering and
Computer Education (ICEDE 2000) San Paulo, Brazil, August, 2000.

4 CAALE - The Computer Architecture and Assembly Language Education Homepage,
http://www.sosresearch.org/caale/ [online], last modified: 12-09-2005, accessed on 12-
01-2006.

5 WWW Computer Architecture Page – Simulators, http://www.cs.wisc.edu/
~arch/www/tools.html [online], last modified: 04-01-2006, accessed on 10-01-2006

6 Cassel, L., Holliday, M., Kumar, D., Impagliazzo, J., Bolding, K., Pearson, M., Davies,
J., Wolffe, G., Yurcik, W., Distributed Expertise for Teaching Computer Organization
& Architecture, ACM SIGCSE Bulletin, Vol. 33, n.er 2, June 2001, pp. 111-126.

6 Isabel Pedrosa, António José Mendes and Mário Zenha Rela

