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Abstract. Let Σ be a ranked set. A categorical Σ-algebra, cΣa for
short, is a small category C equipped with a functor σC : C

n //C, for
each σ ∈ Σn, n ≥ 0. A continuous categorical Σ-algebra is a cΣa which
has an initial object and all colimits of ω-chains, i.e., functors N //C;
each functor σC preserves colimits of ω-chains. (N is the linearly ordered
set of the nonnegative integers considered as a category as usual.)
We prove that for any cΣa C there is an ω-continuous cΣa C

ω, unique
up to equivalence, which forms a “free continuous completion” of C.
We generalize the notion of inequation (and equation) and show the
inequations or equations that hold in C also hold in C

ω. We then find
examples of this completion when
– C is a cΣa of finite Σ-trees
– C is an ordered Σ algebra
– C is a cΣa of finite A-sychronization trees
– C is a cΣa of finite words on A.

1 Introduction

Computer science is necessarily concerned with fixed point equations, and in
finding settings in which fixed point equations may be solved. Such equations
arise in well known ways, for example, in specifying both the syntax and se-
mantics of programming languages. In many examples, the setting is some kind
of ordered algebra A with the properties that A contains a least element ⊥, and
ω-chains, i.e., increasing sequences a0 ≤ a1 ≤ . . . have least upper bounds. In
this setting, the least solution of an equation

x = f(x),

? Partially supported by the National Foundation of Hungary for Scientific Research.



232 S. Bloom and Z. Ésik

when f : A // A preserves least upper bounds of ω-chains may be found as
the least upper bound of

⊥ ≤ f(⊥) ≤ f2(⊥) ≤ . . .

For one such example, if Σ is a ranked alphabet, i.e., a sequence Σn, n ≥ 0,
of pairwise disjoint sets, the collection of finite and infinite Σ-trees may be
equipped with an ordering by adjoining a new label ⊥ to Σ0, and defining s ≤ t

if t may be obtained from s by adjoining some trees to leaves of s labeled ⊥
(see below, or [GTWW77, Gue81] and [BE93] for example).

Similarly, the category of all partial functions X //X is naturally ordered
by set-inclusion of graphs; then, the meaning of a looping construct, such as
the while-do:

(while B? f)(x) =

if (B? x) then (while B? f) (f x)

else x

is the least upper bound of the sequence f0, f1, . . . , of partial functions, where
f0 : X // X is the totally undefined function, and

fn+1(x) = if (B? x) then (fn(f(x)) else x.

However, not all fixed point equations may be solved by means of least upper
bounds. One example that plays an important role in the semantics of parallel
computation is synchronization trees, see [Mil89, Win84]2 or [BE93]. For a
fixed alphabet A, an A-synchronization tree is a finite or countable rooted tree,
in which every edge is labeled by a letter in A; the collection of these trees
forms a category ST A, in which a morphism f : s // t is a function from the
vertices of s to the vertices of t which preserves the root, the edge relation and
the labeling. This category has an initial object ⊥, the rooted tree with no edge,
and is equipped with at least the operations of prefixing and sum. For each
letter a ∈ A, and each synchronization tree t, a : t is the tree obtained from t

by adding a new root, r and an edge labeled a from r to the root of t. When s, t

are synchronization trees, s+ t is the tree obtained from s, t by identifying their
roots, and otherwise, keeping the vertices and edges of each. In this category,
fixed point equations such as

x = (a : x) + x

have solutions, but there is no canonical ordering on the category in which least
solutions exist. However, this category has all colimits of ω-diagrams; the right-
side of fixed point equations determines a continuous endofunctor F : ST A

// ST A. Further, the “initial fixed point” of the functor F is determined up
to isomorphism as a colimit of the ω-diagram

2 In [Win84], two complete partial orders are defined on synchronization trees. How-
ever, the definition depends on the concrete representation of trees and is thus not
fully abstract.
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⊥ ! // F (⊥)
F (!)

// F 2(⊥)
F 2(!)

// . . . .

Thus, ST A is an example of a continuous cΣa defined in the abstract (and
immediately below). There are other examples which we will mention after
stating our main results.

Although there are many kinds of completions in the category-theory litera-
ture, we were not able to find this particular completion, except for the case of
linear orders. In volume 2 of [Ele02], Johnstone describes an “Ind-completion”
of a category, which is certainly related to this one. However, Johnstone does
not study algebraic structures on the category and thus does not consider
(in)equations.

The notion of a cΣa probably occurs to all those familiar with both uni-
versal algebra and category theory, and the outline of an ω-completion result
is probably obvious to many. Perhaps the “right” notion of the truth of an
inequation in a cΣa is not obvious, and the details of the construction have
turned out to be more delicate than expected. We think they merit exposition
in this paper.

In this extended abstract, only a few proofs will be given. A version of this
paper with full proofs may be found at

www.cs.stevens.edu/∼bloom/research/pubs2/ccafull.pdf.

2 Some notation

N is the category whose objects are the nonnegative integers, in which there is
a morphism n // p exactly when n ≤ p. If f : X // Y is either a function
or functor, we write

i f, fi, f(i)

for the value of f on the argument i. The composite of f : x // y and g : y
// z is written fg : x // z, where f, g are functions or functors.

3 The completion and characterization theorems

Let Σ be a ranked alphabet. A categorical Σ-algebra C consists of a small
category C, and, for each letter σ ∈ Σn, a functor σC : Cn //C. A morphism

h : C // C ′

of categorical Σ-algebras is a functor h : C // C ′ such that for each n ≥ 0

and each σ ∈ Σn, Cn σ // C h // D and Cn hn
// Dp σ // D are naturally

isomorphic. A cΣa-morphism h is strict if the functors σ · h and hn · σ are the
same for all σ ∈ Σn.

Recall that a functor h : D // D′ is ω-continuous, or just “continuous”,
for short, if whenever a functor f : N // D has a colimit (νn : fn

// d)n in
D, then (νnh : fnh // dh)n is a colimit of f · h : N // D′.

A cΣa C is (ω-)continuous if
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– C is ω-complete, i.e., C has an initial object ⊥ and all functors N //C have
colimits, and further,

– each functor σC : Cn // C is continuous.

A (strict) morphism of continuous cΣa’s is a continuous functor F : C
// D which preserves initial objects and is a (strict) cΣa morphism.

Remark 1. Categorical Σ-algebras are a generalization of ordered Σ-algebras
and continuous cΣa’s are a generalization of (order) continuous Σ-algebras, see
[Blo76, GTWW77, Gue81] or below.

Let TmΣ(p) denote the collection of Σ-terms on p variables x1, . . . , xp.
Suppose that C is a cΣa. Any term t ∈ TmΣ(p) determines a functor tC : Cp

// C as follows:

– (xi)C : Cp // C is the i-th projection functor (1 ≤ i ≤ p).
– If σ ∈ Σk, 0 ≤ k, (σ(t1, . . . , tk))C is the composite

Cp Ck
〈(t1)C ,...,(tk)C〉

// C
σC

//

A cΣa inequality is an expression

s � t

where s, t are terms in TmΣ(p), for some p ≥ 0. If C is a cΣa, we say C is a
model for s � t, in symbols,

C |= s � t

if there is a natural transformation sC
// tC between the functors sC and tC .

Similarly, we define a cΣa equality to be an expression s ∼= t, where s, t are
as before. We write

C |= s ∼= t

if there is a natural isomorphism sC
// tC .

Our main results are about completions of cΣa’s.

Theorem 1 (Completion theorem). For any cΣa C having an initial object,
there is a continuous cΣa Cω, and a cΣa morphism

η : C // Cω,

with the following properties. If D is a continuous cΣa, and if F : C // D

is any cΣa-morphism which preserves initial objects, then there is a morphism
F ω : Cω // D in the category of continuous cΣa’s, unique up to a natural
isomorphism, such that the functors η · F ω and F are naturally isomorphic.
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It then follows that

– Cω is unique up to categorical equivalence.
– η is a full and faithful functor which is injective on objects, and which pre-

serves initial objects.
– Any cΣa inequality or equality which holds in C, also holds in Cω.

Our characterization of Cω involves the following notion.

Definition 1. Suppose that K is a full subcategory of the category D.

– K is compact in D if for each object c in K, and each object d of D, if
there is a colimiting cone

(τd
i : fi

// d)i (1)

where f : N // K, then any map c // d factors through some τd
i .

– D is compactly generated by K if K is compact in D and for every object
d of D, there is a functor f : N // K and a colimiting cone as in (1) in
which each colimit morphism τd

i : fi
// d is monic.

Using this notion, we describe those situations in which the induced functor
F ω in Theorem 1 is an equivalence.

Theorem 2 (Characterization theorem). Suppose that D is a continuous
cΣa and F : C // D is a cΣa morphism which preserves initial objects. Then
the induced functor F ω : Cω // D is an equivalence iff F is full, faithful, and
D is compactly generated by the image of F .

We will outline the proofs after discussing some examples.

3.1 Ordered Σ-algebras

When Σ is a ranked set, an ordered Σ-algebra consists of a partially ordered
set (A,≤) equipped with a function

σ : An // A

which is order preserving. Such algebras are categorical Σ-algebras, in which
the objects are the elements of A and in which there is a morphism a // b

exactly when a ≤ b. Also, when s, t are in TmΣ(p), an inequation s ≤ t holds
in A exactly when there is a natural transformation s // t.

In [Blo76], varieties of ordered algebras were considered, and it was shown
that each variety V was closed under the free ω-completion of any algebra in
V . Our main theorem is a significant generalization of this result.
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3.2 Σ trees

As formalized in [BET93], a Σ-tree t is a partial function t : N
∗
+

// Σ, with
source the set N

∗
+ of finite sequences of positive integers, and target Σ, with

the following properties.

– The domain of t is a nonempty, prefix-closed subset of N
∗
+.

– If u ∈ N
∗
+ is in the domain of t and if t(u) ∈ Σn, and i is a positive integer,

then ui, the sequence obtained by putting i at the end of the sequence u, is
in the domain of t iff 1 ≤ i ≤ n. Thus, the leaves of t are those sequences u

such that t(u) ∈ Σ0.

We assume there is a distinguished letter ⊥ ∈ Σ0. Then for trees s, t, we define
s ≤ t if t may be obtained from s by attaching some trees to leaves of s labeled
⊥. The collection Σtr of Σ-trees is an ordered Σ-algebra, in which the letter
σ ∈ Σn denotes the “prefixing operation” which applied to the n-tuple of trees
(t1, . . . , tn) produces the tree σ(t1, . . . , tn), with a new root labeled σ, whose
immediate successors are the roots of t1, . . . , tn, respectively. As a function, for
u, v ∈ N

∗
+ and i ∈ N+,

σ(t1, . . . , tn)(u) =

{

σ if u is the empty sequence

ti(v) if u = iv,

where iv is the sequence obtained by putting i on the front of the sequence v.
Σtr is an ordered cΣa, in that there is a morphism s // t, for any trees s, t

iff s ≤ t. It is well known that Σtr is a continuous cΣa.
Let ΣFtr denote the full subcategory of Σtr determined by the finite trees

(those whose domain is finite).

Proposition 1. Σtr is the completion of ΣFtr. 2

Note that if D is any cΣa with an intial object ⊥D, there is a unique cΣa
morphism ΣFtr // D taking ⊥ to ⊥D. Thus,

Corollary 1. Σtr is the initial continuous cΣa in the category of all continuous
cΣa’s in which ⊥ is the initial object: for any such continuous cΣa D there is
a continuous cΣa-morphism Σtr // D, unique up to an isomorphism. 2

3.3 Synchronization trees

We have shown in [BE93] that ST A defined briefly in the introduction is an ω-
continuous categorical ΣA-algebra, where Σ is the signature having a constant
symbol 0, denoting the initial object ⊥, a unary function symbol a for each
a ∈ A, denoting the prefixing operation, and a binary function symbol +,
denoting the coproduct operation described above. See also [Mil89, Win84].

Let FST A denote the full subcategory of ST A determined by the finite
synchronization trees. Note that FST A is also a cΣa, a “categorical subalgebra”
of ST A.
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Proposition 2. ST A is the completion of FST A. 2

Let V be the collection of all cΣa’s D in which 0 is an initial object which
satisfy the following:

x + 0 ∼= x

x + y ∼= y + x

x + (y + z) ∼= (x + y) + z

Then it is not hard to show that the subcategory FST A(mon) of FST A with
the same objects having only monics as morphisms is the initial cΣa in V , in the
following sense: for any cΣa in V there is a cΣa-morphism F : FST A(monics)

// D, unique up to a natural isomorphism.

Corollary 2. FST A(mon)ω is initial in the category of all continuous cΣa’s
in V.

Proof. Let D be a continuous cΣa in V . Then there is a cΣa morphism F :
FST A(mon) // D, since FST A(mon) is initial in D. But then there is a
continuous F ω : FST A(mon)ω // D, unique up to natural isomorphism, by
the completion theorem. 2

3.4 Words

We recall from [Cou78, BE05] that when A is a finite or countable set, a word
over A (called an arrangement in [Cou78]) is a triple u = (Lu,≤u, λu) consist-
ing of a finite or countable linearly ordered set (Lu,≤u) and a labeling function
λ : Lu

// A. A word u is finite if the set Lu is finite. A morphism between
words u = (Lu,≤, λu) and v = (Lv,≤, λv) is an order and label preserving map
h : Lu

// Lv. It is clear that words over A and their morphisms form a cate-
gory that we denote WA. The finite words over A determine a full subcategory
of WA denoted FWA.

The basic operation on words is concatenation u, v 7→ u; v defined as
follows. Without loss of generality we may assume that Lu and Lv are disjoint.
Then the concatenation u · v is the word whose underlying linear order is (Lu ∪
Lv,≤) where x ≤ y for all x ∈ Lu and y ∈ Lv and such that the restriction
of ≤ to Lu agrees with ≤u and the restriction of ≤ to Lv agrees with ≤v. The
labeling function λ is given by

λ(x) =

{

λu(x) if x ∈ Lu

λv(x) if x ∈ Lu.

We extend concatenation to a functor. Given f : u // u′ and g : v // v′,
we define the morphism f · g : u · v // u′ · v′ so that it agrees with f on the
elements of Lu and with g on the elements of Lv.

Let Σ be the signature with a constant symbol a, for each a ∈ A, denoting
the constant functor W0

A
// WA whose value is the singleton word labeled
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a, a symbol 0 in Σ0 denoting the constant functor whose value is the empty
word, and a binary function symbol ; denoting the concatenation functor. The
following fact was essentially shown in [Cou78].

Proposition 3. WA is a continuous cΣa.

In WA, one can solve such equations as x = a; x and x = x; a; x. The initial
solution to the second, is the word [[ a ]]

η
whose underlying order is isomorphic

to the rationals, with every point labeled a. (There doesn’t seem to be an
ordering of WA such that [[ a ]]η is the least upper bound of a sequence of finite
approximations.)

Let FWA be the full subcategory of WA determined by the finite words.

Proposition 4. WA is the completion of FWA.

Let FWA(mon) be the subcategory of FWA with the same objects, having only
the monics as morphisms. Define the category M having as objects all cΣa’s
with an initial object 0 which satisfy the monoid equations

0; x ∼= x

x; 0 ∼= x

x; (y; z) ∼= (x; y); z

It is not hard to show that FWA(mon) is freely generated by A in M in the
sense that for any cΣa D in M, and any function f : A // obj(D), mapping
’letters’ in A to objects in D, there is a functor F : FWA(mon) // D, unique
up to a natural isomorphism, such that F (0) is initial and F (a) = f(a), for
each a ∈ A. Thus,

Corollary 3. FWA(mon)ω is freely generated by A in the category of all con-
tinuous cΣa’s in M. 2

4 Weak maps and compact generation

An endofunctor m : N // N is just a nondecreasing function. We say an
endofunctor is unbounded if for each i ∈ N, i ≤ jm, for some j ∈ N.

When m : N // N is an endofunctor and f : N // C is a chain, we write
mf for the composite

N
m // N

f // C.

Thus, on the object i ∈ N, (mf)i = fim.
When f, g are chains, a weak map α : f // g is a natural transformation

α : f // mg

for some unbounded endofunctor m on N. We define the composite of weak
maps α : f // mαg and β : g // mβh as

α ◦ β := f α // mαg
mαβ // (mαmβ)h.
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Definition 2. For weak maps α : f // mαg and β : f //mβg, define α ' β

by: for all i ≥ 0 there is some j ≥ imα, imβ such that

αi · g(imα, j) = βi · g(imβ, j). (2)

It is clear that ' is an equivalence relation on the weak maps with the same
source and target. Let [α] : f // g denote the '-equivalence class of the weak
map α : f // g. This equivalence relation is compatible with composition.

Proposition 5. If α ' α′ : f // g and β ' β′ : g // h, then α ◦ β ' α′ ◦β′.

2

We will need the following fact about α ' β.

Lemma 1 (Inflation Lemma). Suppose that α : f // mg and that m′ : N

// N is any functor satisfying

k m ≤ km′,

for all k ≥ 0. Define the natural transformation

α′ : f // m′g

by

α′
i := fi

αi // gim
g(im, im′)

// gim′ .

Then

α ' α′.

4.1 Compact generation

Recall Definition 1. Note the similarity of this notion to that of the definition
in [CCL80] of a continuous lattice.

The following lemma indicates where compact generation arises.

Lemma 2. Let C be a full subcategory of D. Suppose that f, f ′ : N // C and
that (τd

i : fi
// d)i and (τd′

i : f ′
i

// d′)i are colimiting cones in D. Then

1. A weak map γ : f // mf ′ determines the map

κ(γ) : d // d′

as the unique morphism d // d′ such that

τd
i · κ(γ) = γi · τ

d′

i m

for all i ≥ 0.
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2. If γ : f // mf ′ and γ : f // mf ′ are weak maps such that γ ' γ ′, then

κ(γ) = κ(γ′).

3. Suppose that D is compactly generated by C and that for i ≥ 0, the mor-
phisms τd

i and τd′

i are monics. Then, for any map

h : d // d′

in D there is a weak map γ : f // mf ′ such that

κ(γ) = h.

4. Suppose that D is compactly generated by C and for i ≥ 0, the morphisms
τd
i and τd′

i are monics. If γ : f // mf ′ and γ : f // mf ′ are weak maps,
and κ(γ) = κ(γ), then

γ ' γ.

Now, we give a condition sufficient to obtain a colimit of a functor G : N

// D.

Lemma 3. We assume the following hypotheses.

– For i ≥ 0, f i : N //D is a functor with colimiting cone (τ i
j : f i

j
//κ(f i))j .

– For each i ≤ j, βi,j : f i // f j is a natural transformation such that βi,i =
1f i and, when i ≤ j ≤ k,

βi,j · βj,k = βi,k.

Thus, G : N // D is a functor, where Gi = κ(f i), and G(i, j) = κ(βi,j), for
all 0 ≤ i ≤ j.

– g : N // D is the diagonal functor, defined by gi = f i
i and, for i ≤ j,

g(i, j) := f i(i, j) · βi,j
j

= β
i,j
i · f j(i, j).

– Let µi(j) = max(i, j), and let δi : f i // µig be the weak map

δi
j :=

{

f i(j, i) j ≤ i

β
i,j
j i < j.

– Suppose that (τ g
i : gi

// κ(g))i is a colimiting cone.

Then, it follows that (κ(δi) : κ(f i) //κ(g))i is a colimiting cone over G, where
κ(δi) is the unique map satisfying the conditions that

τ i
j · κ(δi) = δi

j · τ
g

µi(j)
, (3)

for all j.
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The following Proposition is quite useful.

Proposition 6. Suppose that D is compactly generated by the full subcategory
C. Then:

1. C has initial object iff D has.
2. D has colimits of all ω-diagrams iff each functor N // C has a colimit in

D.
3. A functor F : D //D′ is continuous iff it preserves colimits of all functors

N // C.

Proof. We prove only the second two statements.
Proof of 2. Suppose that each functor N // C has a colimit in D. We

show that if G : N // D is a functor, G has a colimit in D.
For each n ≥ 0, let fn : N // C be a functor such that (τn

i : fn
i

// Gn)i

is a colimiting cone in D.
By Lemma 2, each 0 ≤ i ≤ j, each morphism G(i, j) : Gi

// Gj is deter-
mined by a weak map

βi,j : f i // mi,jf
j .

For ease of notation, let’s assume that all functors mi,j are the identity, so that
for each 0 ≤ i ≤ j, βi,j : f i // f j is a natural transformation.

Define g : N // C by:

gi := f i
i

g(i, j) := f i(i, j) · βi,j
j

= β
i,j
i · f j(i, j).

Since every functor N // C has a colimit in D, let (τ g
i : gi

// d)i be a
colimit in D.

For each i ≥ 0, there is a weak map δi : f i // µig defined by

δi
j :=

{

f i(j, i) j ≤ i

β
i,j
j i < j.

(As above, µi(j) = max(i, j).) Thus, there is a unique map κ(δi) : Gi
// d

such that for all j ≥ 0, (3) holds. In particular, letting j = i,

τ
g
i = δi

i · τ
g
i (4)

= τ i
i · κ(δi).

Claim. (κ(δi) : Gi
//d)i is a colimiting cone. Indeed, any cone (νi : Gi

//e)i

over G determines the cone

(τ i
i · νi : gi

// e)i

over g, and hence, there is a unique map
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ν# : d // e

such that for all i,

τ
g
i · ν# = τ i

i · νi.

We show that for all i ≥ 0,

νi = κ(δi) · ν#. (5)

Indeed, for fixed i, the maps

αj := τ i
j · κ(δi) · ν#

form a cone over f i : N // C, so that there is unique map α# : Gi
// e such

that for all j,

τ i
j · α

# = τ i
j · κ(δi) · ν#.

But νi is one such map. Hence α# = νi.
We now show ν# : g // e is the unique map such that for all i, (5) holds.

Indeed, suppose

νi = κ(δi) · α,

for all i ≥ 0. Then, for each i, j,

τ i
j · νi = τ i

j · κ(δi) · α

= δi
j · τ

g

µi(j)
· α.

But if i = j,

τ i
i · νi = τ

g
i · α,

and ν# is the unique such map. 2

Proof of 3. Suppose that F : D //D′ preserves the colimits of all functors
N //C. We show that F preserves the colimits of all functors N //D. We use
Lemma 3. Indeed, suppose that G : N // D is a functor. Using the notation
of the previous part, we have shown that

(κ(δi) : Gi
// g)i

is a colimit of G, where, for each i ≥ 0, f i : N // C is a functor and

(τ i
j : f i

j
// Gi)j

is a colimit in D, and where g is the diagonal functor, with colimiting cone

(τg
i : gi

// g)i.
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But now, applying F , the assumptions imply that

(τ i
jF : f i

jF
// GiF )j

is a colimiting cone, as is

(τg
i F : giF // gF )i.

It then follows from Lemma 3 that

([κ(δi)F ] : GiF // gF )i

is a colimiting cone in D′. 2

5 Construction of C
ω

We now describe the cΣa Cω as a quotient of the functor category CN.

5.1 Step 1.

We assume C has an initial object (if necessary, we adjoin one freely.)
Let CN be the category whose objects are all functors f : N // C; a

morphism α : f // g is a natural transformation. We usually denote the
components of a natural transformation α : f // g by

αn : fn
// gn,

for n ≥ 0.
We impose the structure of a cΣa on CN by ’lifting’ the functors σ : Cp

// C to N.
For example, if σ ∈ Σ2, and f, g : N // C, σCN(f, g) : N // C is the

functor whose value on n is

σC(fn, gn).

The value on the arrow n ≤ p in N is:

σC(f(n, p), g(n, p)) : σC(fn, gn) // σC(fp, gp).

So, now, for every term s in TmΣ(p), sCN is defined. (We usually will drop
subscripts.) For example, if p = 2, and α : f // f ′ and β : g // g′ are arrows
in CN (i.e., natural transformations),

s(α, β) : s(f, g) // s(f ′, g′)

is the natural transformation with components

(s(α, β))n = s(αn, βn) : s(fn, gn) // s(f ′
n, g′n).
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Definition 3 (η0 defined). Let

η0 : C // CN

be the functor taking the object x in C to the functor η0(x) with η0(x)n = x,
and η0(x)(n, p) = 1x, the identity morphism x // x, for all 0 ≤ n ≤ p. On
the morphism g : x //y in C, the value of η0(g) is the natural transformation
η0(x) // η0(y), each of whose components is g.

Proposition 7. The functor η0 : C //CN is a strict cΣa-morphism, which is
full and faithful, and injective on objects. If ⊥ is an initial object in C, η0(⊥)
is initial in CN. 2

Now for the next step.

5.2 Step 2.

Definition 4. Let Cω be the category whose objects are those of CN in which a
morphism [α] : f // g is an '-equivalence class of a weak map α : f // mg.

We define the canonical embedding of C into Cω.

Definition 5 (η defined). Let η : C // Cω be the functor taking f : x // y

in C to [η0(f)] : η0(x) // η0(y) in Cω.

We would like to impose the structure of a cΣa on Cω . The first problem
is that if σ ∈ TmΣ(2), say, and if α : f // mαg and β : f ′ // mβg′, when
mα 6= mβ , how should we define σ([α], [β]) : σ(f, f ′) // σ(g, g′), since σ(α, β)
may not be weak map! Indeed, for i ∈ N, if imα 6= imβ, we have

σ(α, β)i = σ(αi, βi) : σ(fi, f
′
i) // σ(gimα

, g′imβ
),

which is not a weak map. However, if mα = mβ , this equation does define a
weak map σ(α, β) : σ(f, f ′) // σ(g, g′).

We have a simple alternative, using the Inflation Lemma 1, above.

Lemma 4. Suppose that m, m′ are unbounded endofunctors on N with jm ≤
jm′, for all j ≥ 0. Suppose also that αi : fi

//mgi, βi : fi
//m′gi are natural

transformations such that αi ' βi, for each i = 1, . . . , n. Then if σ ∈ Σn, we
have the natural transformations

σ(α1, . . . , αn) := 〈α1, . . . , αn〉 · σ : σ(f1, . . . , fn) // mσ(g1, . . . , gn)

σ(β1, . . . , βn) := 〈β1, . . . , βn〉 · σ : σ(f1, . . . , fn) // m′σ(g1, . . . , gn).

With these assumptions,

σ(α1, . . . , αn) ' σ(β1, . . . , βn). 2
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Definition 6 (Cω as cΣa). Suppose σ ∈ Σn and n ≥ 0. For any n-tuple
[α1], . . . , [αn], where [αi] is an equivalence class of a weak map αi : fi

// gi,
i = 1, . . . , n, choose some m : N //N and some βi : fi

//mgi, for i = 1, . . . , n

such that

– αi ' βi, for each i;
– βi : fi

// mgi, for each i.

The existence of such βi and m follows by the Inflation Lemma. Now define

σCω ([α1], . . . , [αn]) : σ(f1, . . . , fn) // σ(g1, . . . , gn)

as

[σ(β1, . . . , βn)],

the equivalence class of the weak map σ(β1, . . . , βn). (We write just σ for σCN .)

The fact that σ([α1], . . . , [αn]) is independent of the choice of m follows
Lemma 4.

It should be checked that with this definition, σ is indeed a functor Cω ×
. . . × Cω // Cω. But this is easy. We have thus constructed the cΣa Cω .

We omit the proof of the following fact.

Proposition 8. The functor η is a strict cΣa morphism which preserves the
initial object, and is full, faithful and injective on objects. 2

In the next section we will prove that Cω is an ω-continuous cΣa.

6 C
ω has the required properties

In the previous section we defined the categorical Σ-algebra Cω and the em-
bedding η : C // Cω . In this section, we prove that the construction satisfies
all properties required in Theorem 1.

We will show that Cω is compactly generated by η(C), and then apply
Proposition 6.

Lemma 5. If f : N // C is any functor, then f is the colimit object in Cω of
the diagram

f · η = η(f0)
η(f(0,1))

// η(f1)
η(f(1,2))

// . . .

via the colimit morphisms

[τf
n ] : η(fn) // f

where, for each n, τ f
n has the components

τf
n (i) := f(n, max{i, n}). (6)

Further, each morphism [τ f
n ] is monic.
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Proof. First, we show each morphism τ f
n is monic. Suppose that f, g : N //C

are objects in Cω, and α, β : g // fnη are weak maps such that

[α] · [τf
n ] = [β] · [τf

n ].

By the Inflation Lemma, we may assume that α, β : g // mfn for some un-
bounded endofunctor m : N // N. Thus,

α ◦ τf
n ' β ◦ τf

n

so that for each i there is some j ≥ n + im such that

αi · f(n, j) = βi · f(n, j),

But this implies α ' β, and hence [α] = [β].
It is clear that for n ≤ p, the diagram

η(fn)

f

τf
n

��
??

??
??

??
??

?
η(fn) η(fp)

η(f(n,p))
// η(fp)

f

τf
p

����
��

��
��

��
�

commutes.
Now suppose that g is any object in Cω, ([νi] : η(fi) // g)i is a cocone

over the diagram fη. But defining

ν# : f // g

as the weak map with components

(ν#)i := νi,

we have

νi = τ
f
i · ν#,

for each i. 2

We now consider the factorization property.

Lemma 6 (Cω has the factorization property). Suppose that c is an object
in C, f : N // C is an object in Cω, and [α] : cη // f is a morphism in Cω.
Then [α] factors as

[α] = [gη] · [τf
n ],

for some n ≥ 0, and some morphism g : c // fn in C.
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Proof. If α : cη // mf is any weak map, then, for any i, since (cη)(0, i) = 1c,

αi = c
α0 // f0m

f(0m, im)
// fim.

If g = α0 : f0
// f0m in C, we have

[α] = [g] · [τf
0m]. 2

Proposition 9. Cω is compactly generated by η(C).

Proof. By Lemmas 5 and 6.

Corollary 4. Cω is ω-complete.

Proof. By Proposition 6 and Proposition 9. 2

We now show Cω is a continuous cΣa.

Proposition 10. For each σ ∈ Σ, the functor σCω is continuous.

Proof. For ease of notation, assume that σ ∈ Σ1. We have to show that if
([τ i] : f i //g)i is a colimit of the ω-diagram ∆, then ([σ(τ i)] : σ(f i) //σ(g))i

is a colimit of σ(∆), i.e., the diagram

σ(f0)
[σ(β0)]

// σ(f1)
[σ(β1)]

// σ(f2) // . . .

But this fact follows just as above, since the colimit of this diagram is the
diagonal, which is σ(g).

There is an alternative argument using the fact that for each n ≥ 1, (Cω)n

is compactly generated by Cn. Then, by Proposition 6, we need show only that
σ preserves colimits of functors N // Cn. 2

Proposition 11. If s, t are Σ-terms in TmΣ(p), then C |= s � t iff Cω |= s �
t. 2

We turn now to showing that η : C //Cω has the universal property stated
in Theorem 1.

Suppose that D is an ω-continuous cΣa, and F : C // D is a cΣa-
morphism. We want to define F ω : Cω // D. We use Proposition 6.

For each chain f : N // C be an object of Cω , choose a colimit cone

(λf
i : fiF // κ(fF ))i (7)

in D.
On the object f in Cω , we define fF ω as the colimit object κ(fF ).
Suppose f, g : N // C are objects in Cω and α : f // mαg is any weak

map.
Then α determines the weak map αF : fF // m(gF ), which in turn

determines the map

α# : κ(fF ) // κ(gF )

by the property that for each i ≥ 0,

λ
f
i · α# = αi · λ

g
imα

.
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Lemma 7. If α, β : f // g are weak maps, and if α ' β, then α# = β#.

Proof. Since α ' β =⇒ αF ' βF . 2

Definition 7. We define [α]F ω = α#.

Proposition 12. Suppose that τ f
n : fnη // f is the monic colimit morphism

defined above. Then [τ f
n ]F ω = λf

n.

Proof. By definition, [τ f
n ]F ω is α#, where α = τf

n F . Since fnηF is the constant

chain whose object is fnF , the morphisms τ
fn

i are all the identity map 1fnF :
fnF // fnF . Thus, for any i ≥ 0,

α# = τ
fn

i F · α#

= τf
n (i)F · λf

n+i

= τf
n F (n, n + i) · λf

n+i

= λf
n.

Thus, τf
nF ω = λf

n, showing that F ω preserves colimit cocones of functors fη,
for f : N // C. 2

Corollary 5. F ω is continuous.

Proof. By Proposition 6, part 3. 2

It remains to show F ω is a cΣa-morphism. When σ ∈ Σ2, we want to show
that for any objects f, g ∈ Cω

F ω(σ(f, g)) = σD(F ω(f), F ω(g)),

at least up to isomorphism. The method is to show that each side is the colimit
object of the same ω-diagram in D. We omit the details. 2

7 Conclusion

We have presented a completion theorem for categorical algebras that gener-
alizes the well-known completion of ordered algebras from [Blo76]. We have
shown that the completion Cω is conservative in the sense that it satisfies all
(in)equalities that hold in C. In addition to order completion, we have presented
two main applications: synchronization trees and words, and thus found con-
crete descriptions of free continuous categorical algebras satisfying monoid and
commutative monoid “equations”. We believe that the Completion Theorem
will find several more applications in Computer Science. For one example, the
collection of countable labeled partial orders over an alphabet, sometimes called
pomsets, equipped with the operations of series and parallel composition is a
continuous categorical algebra in a natural way, cf. [Pra86, Ren96, LW00]. We
expect that this algebra is equivalent to the completion of the categorical alge-
bra determined by the finite pomsets. Further natural sources of applications are
event structures (cf. [WN95]), or labeled transition systems with bisimulations,
cf. [Mil89].
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