
Reusing Optimal TSP Solutions for
Locally Modified Input Instances?

(Extended Abstract)

Hans-Joachim Böckenhauer1, Luca Forlizzi2, Juraj Hromkovič1,
Joachim Kneis3??, Joachim Kupke1, Guido Proietti2,4, and Peter Widmayer1

1 Department of Computer Science, ETH Zurich, Switzerland,
{hjb,juraj.hromkovic,jkupke,widmayer}@inf.ethz.ch

2 Department of Computer Science, Università di L’Aquila, Italy,
{forlizzi,proietti}@di.univaq.it

3 Department of Computer Science, RWTH Aachen University, Germany,
joachim.kneis@cs.rwth-aachen.de

4 Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR, Roma, Italy

Abstract. Given an instance of an optimization problem together with
an optimal solution, we consider the scenario in which this instance
is modified locally. In graph problems, e. g., a singular edge might be
removed or added, or an edge weight might be varied, etc. For a problem
U and such a local modification operation, let lm-U (local-modification-
U) denote the resulting problem. The question is whether it is possible
to exploit the additional knowledge of an optimal solution to the original
instance or not, i. e., whether lm-U is computationally more tractable
than U . Here, we give non-trivial examples both of problems where this
is and problems where this is not the case. Our main results are these:
1. The local modification to change the cost of a singular edge turns

the traveling salesperson problem (TSP) into a problem lm-TSP
which is as hard as TSP itself, i. e., unless P = NP , there is no
polynomial-time p(n)-approximation algorithm for lm-TSP for any
polynomial p. Moreover, lm-TSP where inputs must satisfy the β-
triangle inequality (lm-∆β-TSP) remains NP-hard for all β > 1

2
.

2. For lm-∆-TSP (i. e., metric lm-TSP), an efficient 1.4-approxima-
tion algorithm is presented. In other words, the additional informa-
tion enables us to do better than if we simply used Christofides’
algorithm for the modified input.

3. Similarly, for all 1 < β < 3.34899, we achieve a better approxima-
tion ratio for lm-∆β-TSP than for ∆β-TSP.

4. Metric TSP with deadlines (time windows), if a single deadline or
the cost of a single edge is modified, exhibits the same lower bounds
on the approximability in these local-modification versions as those
currently known for the original problem.

? This work was partially supported by SNF grant 200021-109252/1, by the research
project GRID.IT, funded by the Italian Ministry of Education, University and
Research, and by the COST 293 (GRAAL) project funded by the European Union.

?? This author was staying at ETH Zurich when this work was done.

252 H.-J. Böckenhauer et al.

1 Introduction

Traditionally, optimization theory has been concerned with the task of finding
good feasible solutions to (practically relevant) input instances, little or nothing
about which is known in advance. Many applications, however, demand good,
sometimes optimal, solutions to a limited set of input instances which reflect
a supposedly-constant environment (imagine, e. g., an existing railway system
or communications network). When this environment does change, maybe only
slightly and maybe only locally, do we have no choice but to recompute some
good feasible solution, effectively forgetting about the old one?

Here, we will analyze local modifications only. In a graph problem, for ex-
ample, the cost of a single edge might change, an edge might be removed or
added, or some other local parameter might be adjusted. Results related to this
work pertain to the question by how much a given instance of an optimization
problem may be varied if it is desired that optimal solutions to the original in-
stance retain their optimality [12, 17, 18, 20, 21]. In contrast with this so-called
“postoptimality analysis,” our approach here is to ask, if we cannot avoid to
lose the optimality of a given solution when an instance is varied arbitrarily,
what can we do to restore the quality of a solution, maybe in an approximative
sense?

Surely, for some problems, knowing an optimal solution to the original in-
stance trivially makes their local-modification variants easy to solve because the
given optimal solution is itself a very good solution to the modified instance.
For example, adding an edge in the instance of a coloring problem will increase
the cost of an optimal solution by at most the amount of one – an excellent
approximation, but certainly not the object of our interest.

Our goal is to present non-trivial examples of problems, some where the
knowledge of an optimal solution to an instance close to the input is helpful
and some where it is not. To this end, we will study TSP, its restricted versions,
and its generalizations such as TSP with deadlines (a special case of TSP with
time windows).

Let ∆-TSP denote metric TSP, and, for all β ≥ 1
2 , let ∆β-TSP denote the

special case of TSP where all instances satisfy the β-triangle inequality

c({x, z}) ≤ β ·
(
c({x, y}) + c({y, z})

)
for all vertices x, y, and z. If 1

2 ≤ β < 1, we call this the strengthened triangle
inequality; and if β > 1, we call it the relaxed triangle inequality.

For an optimization problem U , we denote our local-modification variant of
U by lm-U . For the aforementioned TSP-based problems, we regard it as a local
modification to change the cost of exactly one edge. For TSP with deadlines,
we also regard it as a local modification to shift one deadline by the amount of
at least one time unit.

Our main results are as follows:

(i) It is well-known that TSP is not approximable in polynomial time with
a polynomial approximation ratio (unless P = NP). We show that this

Reusing Optimal TSP Solutions for Locally Modified Input Instances 253

holds for lm-TSP, too. Thus, in terms of a worst-case analysis, lm-TSP
is as hard as TSP, and we do not have anything to gain from knowing an
optimal solution to a close problem instance. By parameterizing TSP with
respect to the β-triangle inequality [1, 2, 3, 4, 5] and by introducing the
concept of stability of approximation [15, 5], it was shown that TSP is not
as hard as it may look like in the light of worst-case analyses. For any β > 1

2 ,
we have a constant polynomial-time approximation ratio, depending on β
only. Böckenhauer and Seibert [8] proved that ∆β-TSP is APX-hard for
every β > 1

2 (note that for β = 1
2 , the problem becomes trivially solvable

in polynomial time). Here, we prove that lm-∆β-TSP is NP-hard for every
β > 1

2 . This implies in particular that lm-∆-TSP, too, is NP-hard. We
conjecture that this problem is also APX-hard, which, so far, we have been
unable to prove and thus leave as an open research problem.

(ii) For many years, Christofides’ algorithm [9] with its approximation ratio
of 1.5 has been the best known approximation algorithm for attacking
∆-TSP. It remains a grand challenge to improve on Christofides’ algorithm.
We will show that, intriguingly enough, lm-∆-TSP admits an efficient 1.4-
approximation algorithm. This result can be generalized to lm-∆β-TSP,
and the resulting approximation guarantee beats all previously-known ap-
proximation algorithms for ∆β-TSP for all 1 < β < 3.34899, which includes
the practically most relevant TSP instances.

(iii) TSP with time windows is one of the fundamental problems in operations
research [10]. Usually, only heuristic algorithms are used to attack it al-
though the question how hard it is w. r. t. approximability has only been
resolved in [6, 7], where even an Ω(n) lower bound on the polynomial-time
approximability of ∆-TSP with time windows was shown, in contrast to the
constant approximability of ∆-TSP. This lower bound already holds for the
special case of this problem where all time windows are immediately open,
a special case of the problem which we will call TSP with deadlines, or ∆-
DlTSP for short. Here, we consider local-modification versions of ∆-TSP
with deadlines. We show that already if we only allow a single deadline to
be changed, and only by an amount of one time unit, the resulting problem,
lm-∆-DlTSP, has the same lower bound of Ω(n) on the approximation
ratio as ∆-DlTSP. Let us underscore the importance of this negative re-
sult: Not only does TSP with deadlines remain an intractable problem in
its lm version, but the extra knowledge of an optimal solution to a related
instance does not even help a single bit. Likewise, we will establish the lower
bound of (2− ε), for any ε > 0, for lm-∆-DlTSP with a constant number
of deadlines, the same as is known for ∆-DlTSP with a constant number
of deadlines [6, 7]. These results can also be obtained if, again, we modify
the cost of an edge rather than a deadline.

So, on the one hand, additional information about an optimal solution to a
related input instance may be useful to some extent, and on the other hand, the
local-modification problem variant may remain exactly as hard as the original
problem. Yet, the final aim of our paper is to call forth the investigation of

254 H.-J. Böckenhauer et al.

the hardness of local-modification optimization problems in order to develop
approaches to handle situations where multiple (and, potentially, dynamically
determined) local modifications may arise.

The paper is subdivided into two main sections. In Section 2, we will analyze
TSP with local modifications and present hardness results as well as approxi-
mation algorithms for the metric and near-metric case. Section 3 is devoted to
inapproximability results for the local-modification version of TSP with dead-
lines.

2 Results for TSP

In this section, we will analyze the local-modification version of TSP. In Subsec-
tion 2.1, we will present our hardness results. In Subsection 2.2, we will present
a 1.4-approximation algorithm for the local-modification metric TSP, and Sub-
section 2.3 is devoted to approximability results for the case of the relaxed
triangle inequality.

We start off with a formal definition of TSP and its local-modification
variants.

Definition 1. Let G = (V,E, c) be a weighted complete graph, and let β ≥ 1
2

be a real value. We say that G obeys the ∆β-inequality iff for all vertices x, y,
z ∈ V , we have

c({x, z}) ≤ β ·
(
c({x, y}) + c({y, z})

)
. (∆β)

By TSP, we denote the following optimization problem. For a given weighted
complete graph G = (V,E, c), find a minimum cost Hamiltonian cycle, i. e., a
tour on all vertices of cost

OTG := min

{ ∑
e∈C′

c(e)

∣∣∣∣∣ (V,C ′) is a Hamiltonian cycle

}
.

Restricting, for some value of β, the set of admissible input instances to
those which obey the ∆β-inequality yields the problem ∆β-TSP. Besides, de-
fine ∆-TSP := ∆1-TSP.

Definition 2. Let U ∈ {TSP,∆-TSP,∆β-TSP}. The problem lm-U is defined
as follows.
Input:

– two complete weighted graphs GO = (V,E, cO), GN = (V,E, cN) such that GO

and GN are both admissible inputs for U and such that cO and cN coincide,
except for one edge;

– a Hamiltonian cycle (V,C) such that
∑

e∈C

cO(e) = OTGO
.

Problem: Find a Hamiltonian cycle (V,C) that minimizes
∑

e∈C

cN (e).

Reusing Optimal TSP Solutions for Locally Modified Input Instances 255

2.1 Hardness Results

Before presenting approximation algorithms for lm-∆-TSP, we start by proving
some hardness results.

First, we will show that lm-TSP is as hard to approximate as“normal” (i. e.,
unaltered) TSP.

Theorem 1. There is no polynomial-time p(n)-approximation algorithm for
lm-TSP for any polynomial p (unless P = NP).

Proof idea. We will give a reduction from the Hamiltonian cycle problem (HC):
Given an undirected, unweighted graph G, decide whether G contains a Hamil-
tonian cycle or not. Let G = (V,E) be an input instance for HC where
V = {v1, . . . , vn}.

In order to construct an input instance (GO, GN , C) for lm-TSP, we employ
a graph construction due to Papadimitriou and Steiglitz [19], who used the
same construction in order to give examples of TSP instances which are hard
for local search strategies: For each vertex vi, we construct a so-called diamond
graph Di as shown in Figure 1 (a). These diamonds are connected as shown in
Figure 1 (b).

The edge costs in GO are set as follows. Let M := n · 2n + 1. All diamond
edges shown in Figure 1 (a) and the connections from Ei to Wi+1 and from En

to W1 as shown in Figure 1 (b) are assigned a cost of 1 each. Edges {Ni, Sj}
are assigned a cost of 1 whenever {vi, vj} ∈ E and a cost of M otherwise. All
other edges receive a cost of M each. In GN , the cost of the edge {En,W1} is
changed from 1 to M . The given optimal Hamiltonian cycle C is the one shown
in Figure 1 (b). This optimal solution for GO has a cost of 8n.

It is easy to see that if there is a Hamiltonian cycle H ′ in G, a corresponding
Hamiltonian cycle H in G can traverse all diamonds from Ni via Wi via Ei to
Si. Hence, cN (H) = 8n. All Hamiltonian cycles in GN that do not correspond
(in this way) to Hamiltonian cycles in G cost at least M + 8n − 1. Thus, the
approximation ratio of any non-optimal solution is at least as bad as 1 + 2n−3.
For a more detailed description of diamond graph constructions, also see, for
example, [16]. �

Si

EiWi

Ni

(a)

S1

E1

W1

N1

S2

E2

W2

N2

Sn

En

Wn

Nn

(b)

Fig. 1. The diamond construction in the proof of Theorem 1.

256 H.-J. Böckenhauer et al.

Now, we will show that lm-∆-TSP remains a hard problem for any β > 1
2 .

Theorem 2. lm-∆β-TSP is NP-hard for any β > 1
2 .

Proof. We will use a reduction from the restricted Hamiltonian cycle problem
(RHC). The objective in RHC is, given an unweighted, undirected graph G and a
Hamiltonian path P in G which cannot be trivially extended to a Hamiltonian
cycle by joining its end-points, to decide whether a Hamiltonian cycle in G
exists. This problem is well-known to be NP-complete (see, for example, [16]).

The reduction uses an idea analogous to the standard reduction from the
Hamiltonian cycle problem to TSP: Let (G, P) be an instance of RHC where
G = (V,E), V = {v1, . . . , vn}, and P = (v1, . . . , vn). From this, we construct an
instance (GO, GN , C) of lm-∆β-TSP as follows: Let GO = (V, Ẽ, cO) and GN =
(V, Ẽ, cN) where (V, Ẽ) is a complete graph, cO(e) = 1 for all e ∈ E∪{{vn, v1}}
and cO(e) = 2β otherwise, and cN ({vn, v1}) = 2β. Let C = (v1, v2, . . . , vn, v1).
Clearly, this reduction can be done in polynomial time, and it is easy to see
that there is a Hamiltonian cycle in G iff there is a Hamiltonian cycle of cost n
in GN . �

2.2 The Metric Case

In what follows, we will show that lm-∆-TSP admits a 7
5 -approximation, which

beats the näıve approach of using Christofides’ algorithm (which would yield a
3
2 -approximation), whereby the input cycle (V,C) would be ignored altogether.

Theorem 3. There is a 1.4-approximation algorithm for lm-∆-TSP.

In order to prove Theorem 3, we will need the following few lemmas. Our
crucial observation is that in a metric graph, all of the neighboring edges of
short edges can only be modified by small amounts.

Lemma 1. Let G1 = (V,E, c1) and G2 = (V,E, c2) be metric graphs such that
c1 and c2 coincide, except for one edge e ∈ E. Then, every edge adjacent to e
has a cost of at least 1

2 |c1(e)− c2(e)|.

Proof. We set {a, a′} := {c1(e), c2(e)} such that a′ > a and δ := a′ − a. Let
f ∈ E be any edge adjacent to e, and for any such f , let f ′ ∈ E be the one edge
that is adjacent to both e and f . Then, by the triangle inequality, we have:

a′ ≤ c(f) + c(f ′) c(f ′) ≤ c(f) + a

and hence a′ − a ≤ 2c(f). �

We will have to distinguish two cases. Either, an edge becomes more expen-
sive, or it becomes less expensive. In either case, our strategy is to compare the
input solution (to the old problem instance) with an approximate solution (to
the new problem instance).

Let us start with the latter case.

Reusing Optimal TSP Solutions for Locally Modified Input Instances 257

Lemma 2. Let (GO, GN , C) be an admissible input for lm-∆-TSP such that
δ := cO(e)− cN (e) > 0 for the edge e. If δ

OTGN
≤ 2

5 , it is a 7
5 -approximation to

output the feasible solution C := C for lm-∆-TSP.

Proof.

cN (C)
OTGN

≤ cO(C)
OTGN

=
OTGO

OTGN

≤ OTGN
+ δ

OTGN

= 1 +
δ

OTGN

≤ 1 +
2
5

=
7
5

�

Lemma 3. Let (GO, GN , C) be an admissible input for lm-∆-TSP such that
δ := cO(e)− cN (e) > 0 for the edge e. If δ

OTGN
≥ 2

5 , there is a 7
5 -approximation

for lm-∆-TSP.

Proof. We may assume that optimal TSP tours in GN use the edge e. For if they
did not, C would already constitute an optimal solution. Fix one such optimal
tour COPT in GN . In COPT , e is adjacent to two edges f and f ′. Let v be the
vertex incident with f , but not with e, and let v′ be the vertex incident with
f ′, but not with e. By P , denote the path from v to v′ in COPT that does not
involve e.

Consider the following algorithm: For every pair f̃ , f̃ ′ of disjoint edges, both
of which are adjacent to e, compute an approximate solution to the TSP path
problem on the subgraph of GN induced by the vertex set V \ e (i. e., without
two vertices) with start vertex ṽ and end vertex ṽ′ where {ṽ} = f̃ \ e and
{ṽ′} = f̃ ′ \ e. It is known [13, 14] that this can be done with an approximation
guarantee of 5

3 . Each of these paths is augmented by f̃ , e, and f̃ ′ so as to yield
a TSP tour. The algorithm concludes by outputting the least expensive of all
of these tours.

Note that since all pairs f̃ , f̃ ′ are taken into account, one of the considered
tours uses exactly those edges f̃ = f , f̃ ′ = f ′ that COPT uses. This is why the
algorithm outputs a tour of cost at most

c(f) + c(f ′) + cN (e) +
5
3
c(P) =

(
OTGN

− c(P)
)

+
5
3
c(P) = OTGN

+
2
3
c(P)

(where c is short-hand notation for cN wherever cO and cN coincide) and thus
achieves an approximation guarantee of

1 +
2
3
· c(P)
OTGN

.

Since by Lemma 1, min{c(f), c(f ′)} ≥ δ
2 for i ∈ {1, 2}, we have OTGN

−c(P) ≥ δ
and hence:

c(P)
OTGN

≤ 1− δ

OTGN

≤ 3
5

.

So, we obtain an overall approximation guarantee of 1 + 2
5 = 7

5 . �

258 H.-J. Böckenhauer et al.

Corollary 1. There is a 7
5 -approximation algorithm for the subproblem of

lm-∆-TSP where edges may only become less expensive.

Proof. Compute, as laid out in Lemma 3, an approximate solution to lm-∆-TSP
and compare it with the input solution C. Output the less expensive of the
two solutions. Depending on whether the value of δ

OTGN
(where δ := cO(e) −

cN (e) > 0) is less or greater than 2
5 (which we cannot necessarily tell), one of

the considered two feasible solutions is a 7
5 -approximation. �

We will now turn to the case where an edge becomes more expensive. We
can state a lemma akin to Lemma 2, but notice that by reusing a formerly
optimal solution, we incur a certain extra cost.

Lemma 4. Let (GO, GN , C) be an admissible input for lm-∆-TSP such that
δ := cN (e)− cO(e) > 0 for the edge e. If δ

OTGN
≤ 2

5 , it is a 7
5 -approximation to

output the feasible solution C := C for lm-∆-TSP.

Proof.

cN (C)
OTGN

≤ cO(C) + δ

OTGN

=
OTGO

+ δ

OTGN

≤ OTGN
+ δ

OTGN

= 1 +
δ

OTGN

≤ 1 +
2
5

=
7
5

�

When computing an approximate solution, things become slightly different
from what they used to be like in Lemma 3: We may assume that e used to be
a part of C and that a new solution should no longer use it. Instead, it will use
two edges f and f ′ such that f and f ′ are non-disjoint and both incident with
the same vertex of e. This pair may be chosen at either end-point of e, a choice
which is completely arbitrary.

We conjecture that, if an improvement of the approximation guarantee is
possible, this is precisely the point where to start at.

Lemma 5. Let (GO, GN , C) be an admissible input for lm-∆-TSP such that
δ := cN (e)− cO(e) > 0 for the edge e. If δ

OTGN
≥ 2

5 , there is a 7
5 -approximation

for lm-∆-TSP.

Proof. We may assume that optimal TSP tours in GN do not use the edge e.
For if they did, C would already constitute an optimal solution. Fix one such
optimal tour COPT , and fix one vertex w incident with e. In COPT , w is incident
with two edges f and f ′. Let v be the vertex incident with f , but not with e,
and let v′ be the vertex incident with f ′, but not with e. By P , denote the path
from v to v′ in COPT that does not involve w.

Consider the following algorithm: For every pair f̃ , f̃ ′ of edges incident with
w, compute an approximate solution to the TSP path problem on the subgraph
of G2 induced by the vertex set V \ {w} with start vertex ṽ and end vertex ṽ′

where {ṽ} = f̃ \ e and {ṽ′} = f̃ ′ \ e. It is known [13, 14] that this can be done

Reusing Optimal TSP Solutions for Locally Modified Input Instances 259

with an approximation guarantee of 5
3 . Each of these paths is augmented by f̃

and f̃ ′ so as to yield a TSP tour. The algorithm concludes by outputting the
least expensive of all of these tours.

Note that since all pairs f̃ , f̃ ′ are taken into account, one of the considered
tours uses exactly those edges f̃ = f , f̃ ′ = f ′ that COPT uses. This is why the
algorithm outputs a tour of cost at most

c(f) + c(f ′) +
5
3
c(P) =

(
OTGN

− c(P)
)

+
5
3
c(P) = OTGN

+
2
3
c(P) ,

just as in the proof of Lemma 3. �

Using the same arguments as in the proof of Corollary 1, the preceding
lemma yields the following corollary.

Corollary 2. There is a 7
5 -approximation algorithm for the subproblem of

lm-∆-TSP where edges may only become more expensive. �

2.3 The Near-Metric Case

The algorithm outlined in Lemma 3 can be generalized to graphs which are not
necessarily metric, but only near-metric, i. e., where the metricity constraint is
relaxed by a factor of β. Since it will pay off later, let us pay extra attention
to the fact that input instances for all the problems from Definition 2 contain
two distinct graphs, potentially obeying relaxed triangle inequalities according
to different values of β.

Notice that the parameter β need not be greater for the graph with the
costlier edge. Under some circumstances, it might even decrease when we mod-
ify the cost of a single edge. In the following generalization of Lemma 1, the
convention is therefore that c1 is the cost function of the less expensive graph, c2

that of the more expensive one, and both ci obey the ∆βi
-inequality, i ∈ {1, 2}.

Lemma 6. Let G1 = (V,E, c1) and G2 = (V,E, c2) be graphs such that ci obeys
the ∆βi

-inequality for i ∈ {1, 2} and some values β1, β2 ≥ 1 and such that c1

and c2 coincide, except for one edge e ∈ E. By convention, let c1(e) ≤ c2(e).
Then, every edge adjacent to e has a cost of at least c2(e)−β1β2c1(e)

β1β2+β2
.

Proof. Analogous to Lemma 1. �

Note that for relatively small changes, the value c2(e)− β1β2c1(e) may well
be non-positive, rendering Lemma 6 trivial in such a case.

The algorithm from Lemmas 3 and 4 should be adjusted to accommodate
for the relaxation of the triangle inequality. More precisely, in order to find a
Hamiltonian path between a given pair of vertices in a β-metric graph, we will
employ the algorithm by Forlizzi et al. [11], a variation of the path-matching
Christofides algorithm (PMCA, see [5]) for the path version of near-metric TSP,
which yields an approximation guarantee of 5

3β2. This gives us Algorithm 1.

260 H.-J. Böckenhauer et al.

Algorithm 1
Input: An instance (GO, GN , C) of lm-∆β-TSP where GO = (V, E, cO) and GN =

(V, E, cN).

1. Let e ∈ E be the edge where cO(e) 6= cN (e).
Let E be the set of all unordered pairs {f, f ′} ⊆ E where f 6= f ′ are edges adjacent
to e such that if cO(e) < cN (e): f ∩ f ′ ∩ e is a singleton; and

if cO(e) > cN (e): f ∩ f ′ = ∅.
2. For all {f, f ′} ∈ E , compute a Hamiltonian path between the two vertices from

(f ∪f ′)\e on the graph G\(e∩(f ∪f ′)), using the PMCA path variant by Forlizzi
et al. [11]. Augment this path by edges f , f ′, and, if cO(e) > cN (e), edge e to
obtain the cycle C{f,f ′}.

3. Let C be the least expensive of the cycles in the set {C}∪ {C{f,f ′} | {f, f ′} ∈ E}.

Output: The Hamiltonian cycle C.

Lemma 7. Algorithm 1 achieves an approximation guarantee of

βLβH ·
15β2

L + 5βL − 6
10β2

L + 3βLβH + 3βH − 6
(1)

for input graph pairs (GO, GN) such that GO obeys the ∆βO
-inequality and GN

obeys the ∆βN
-inequality and where βL := min{βO, βN} and βH := max{βO, βN}.

Proof. Adhering to the convention of Lemma 6, set {c1, c2} = {cO, cN} such
that c1(e) ≤ c2(e) for all edges e ∈ E. In other words, we have c2 = cN if an
edge becomes more expensive and c1 = cN otherwise.

We may assume that optimal TSP tours in GN = (V,E, cN) use the edge e
iff cN = c1; otherwise, C is an optimal solution, and we are done. Fix one such
optimal tour COPT in GN , and let {f, f ′} ∈ E be such that COPT uses both f
and f ′. By P , denote the path that results from COPT by removing edges f ,
f ′, and, potentially, e. Set

α :=
C(P)
OTGN

and let, for brevity, ϑ := βLβH ·
15β2

L + 5βL − 6
10β2

L + 3βLβH + 3βH − 6

denote the approximation guarantee claimed in (1). In terms of α, Algorithm 1
always achieves an approximation guarantee of

1− α︸ ︷︷ ︸
edges f , f ′, (potentially) e are chosen optimally

+
5
3
β2

L α︸ ︷︷ ︸
P will be approximated

,

even if we did not have C at our disposal. (Note that the strategy to approximate
P may rely on the ∆βL inequality, i. e., the less relaxed one of the two because
this strategy removes the edge e from the graph.) Hence, unless

Reusing Optimal TSP Solutions for Locally Modified Input Instances 261

α >
ϑ− 1

5
3β2

L − 1
, (2)

we are done. Let use therefore assume that (2) holds. By Lemma 6, we have

min{c(f), c(f ′)} ≥ c2(e)− β1β2c1(e)
β1β2 + β2

≥ c2(e)− βLβHc1(e)
βLβH + βH

and hence

1− α ≥ 2 · (c2(e)− βLβHc1(e))
OTGN

· (βLβH + βH)
.

Putting this together with (2), we know that

ϑ− 1
5
3β2

L − 1
≤ 1− 2 · (c2(e)− βLβHc1(e))

OTGN
· (βLβH + βH)

,

which yields

c2(e)− βLβHc1(e)
OTGN

≤ βLβH + βH

2
− (ϑ− 1) · (βLβH + βH)

10
3 β2

L − 2
.

By adding (βLβH − 1) c1(e)
OTGN

to both sides, we are given:

c2(e)− c1(e)
OTGN

≤ βLβH + βH

2
− (ϑ− 1) · (βLβH + βH)

10
3 β2

L − 2
+ (βLβH − 1) · c1(e)

OTGN︸ ︷︷ ︸
≤1and thus, substituting the value (1) for ϑ,

c2(e)− c1(e)
OTGN

≤ 3
2
βLβH +

1
2
βH − 1− (ϑ− 1) · (βLβH + βH)

10
3 β2

L − 2

=
3
2
βLβH +

1
2
βH − 1−

(βLβH · 15β2
L +5βL−6

10β2
L +3βLβH+3βH−6

− 1)(βLβH + βH)
10
3 β2

L − 2

(tedious calculations) = · · · = βLβH ·
15β2

L + 5βL − 6
10β2

L + 3βLβH + 3βH − 6
− 1 = ϑ− 1 .

Since, by the same reasoning as that of Lemmas 2 and 4, reusing the input
optimal solution C inflicts a deviation from the new optimum by at most c2(e)−
c1(e) ≤ (ϑ− 1) ·OTGN

, Algorithm 1 is a ϑ-approximation algorithm. �

Hence, whenever the β values of GO and GN coincide, we have Theorem 4.

Theorem 4. There is a (polynomial-time) β2 · 15β2 + 5β − 6
13β2 + 3β − 6

-approximation
algorithm for lm-∆β-TSP.

262 H.-J. Böckenhauer et al.

4β

3
2
β2

β2 + β

Algorithm 1

β∗

Cor. 3

1 1.5 2 2.5 3 3.5
1

3

5

7

9

11

13

Parameter β

Approximation
guarantee

Fig. 2. Approximation guarantees of various algorithms, depending on β

Interestingly, Algorithm 1 achieves a better approximation guarantee not
just than PMCA [5], but also than Bender’s and Chekuri’s 4β-approximation
algorithm [3] for the most practically relevant values of β. The turning point is
about at β∗ ≈ 3.34899. More to the point, Andreae’s (β2+β)-approximation [1],
which performs better than 4β only when β < 3, always performs worse than
Algorithm 1 in the interval β ∈ (1, β∗). These observations are illustrated in
Figure 2.

Another practical special case is that where βL = 1, i. e., where we start with
a metric graph, but changing the cost of an edge will violate the ∆-inequality.

Corollary 3. lm-∆β-TSP, restricted to those inputs where GO is metric, ad-
mits a 7β

2+3β -approximation. �

3 Deadline TSP

In this section, we will analyze the approximability of local-modification variants
of TSP with deadlines. To begin with, let us define this problem formally.

Definition 3. Let G = (V,E) be a complete graph weighted by c : E → N
+.

We call (s,D, d) a deadline set for G if s ∈ V,D ⊆ V \ {s} and d : D → N
+.

A vertex v ∈ D is called deadline vertex. A path (v0, v1, . . . , vn) satisfies the
deadlines iff s = v0 and, for all vi ∈ D, we have

∑i
j=1 c({vj−1, vj}) ≤ d(vi).

A cycle (v0, v1, . . . , vn, v0) satisfies the deadlines iff it contains a path (v0,
v1, . . ., vn) satisfying the deadlines.

Definition 4. The problem ∆β-DlTSP is defined as follows: For a given com-
plete graph G = (V,E) with edge weights c : E → N

+ satisfying the ∆β-

Reusing Optimal TSP Solutions for Locally Modified Input Instances 263

inequality, deadlines (s,D, d) for G, and a Hamiltonian cycle satisfying the
deadlines1, find a minimum-weight Hamiltonian cycle satisfying all deadlines.

If |D| is a constant k, the resulting subproblem is k-∆β-DlTSP. We set
∆-DlTSP := ∆1-DlTSP and k-∆-DlTSP := k-∆1-DlTSP for all k.

In the case of TSP with deadlines, we will regard it as a local modification
to change a single deadline although the lm operation from the previous section
would let us obtain exactly the same results. The connection between these two
lm operations will be presented in detail in the journal version of this paper.

Definition 5. The optimization problem lm-DlTSP is defined as:
Input: A complete weighted graph G = (V,E, c), deadlines O = (s,D, dO) for
G with a minimal Hamiltonian cycle satisfying the deadlines O, new deadlines
N = (s,D, dN) such that dO and dN differ in exactly one vertex, and a Hamil-
tonian cycle satisfying N .
Problem: Find a minimum-cost Hamiltonian cycle satisfying N .

By lm-k-DlTSP, lm-∆-DlTSP, lm-k-∆-DlTSP, lm-∆β-DlTSP, lm-
k-∆β-DlTSP, we denote the canonical special cases of lm-DlTSP.

For our proofs, we will need some reductions from the following problem,
which can easily be shown to be NP-hard analogously to the proof of the NP-
hardness of the restricted Hamiltonian cycle problem, as presented, e.g., in [16].

Definition 6. For a given graph G = (V,E), s, t ∈ V and a given Hamilto-
nian path P from s to t, the problem RHP is to decide whether G contains a
Hamiltonian path starting in s, but ending in some vertex v 6= t.

3.1 Bounded Number of Deadline Vertices

We start with the case where only few deadline vertices occur. Note that k-∆-
DlTSP can be approximated within a ratio of 2.5 [6, 7]. Furthermore, a lower
bound of 2− ε on the approximability, for every ε > 0, can be proved [6, 7]. We
will show that this lower bound also holds for lm-k-∆-DlTSP.

Theorem 5. Let ε > 0. There is no polynomial-time (2− ε)-approximation al-
gorithm for the subproblem of lm-k-∆-DlTSP where one deadline is increased
by ξ time units, ξ ≥ 1, unless P = NP .

Proof. By means of a reduction, we will show that such an approximation algo-
rithm could be used to solve RHP. Let ε > 0.

Let (G′, P) be an input instance for RHP where G′ = (V ′, E′), |V ′| = n+1,
s′, t′ ∈ V ′, and P is a Hamiltonian path from s′ to t′. Pick a γ > 5n+3

2ε (which
implies 4γ+n−1

2γ+3n+1 > 2− ε).

1 Requiring a feasible Hamiltonian cycle as part of the input ensures that the problem
is in NPO. Otherwise, it would even be a hard problem to find a feasible solution.
For details, see [6, 7].

264 H.-J. Böckenhauer et al.

γ

2n
γ − 1

1

γ

γ

s

D2 = 2γ + n + 1 D1 = γ + n

G′s′

v

t′

Fig. 3. Increasing a deadline. All vertices v′ ∈ V ′ \ {s′, t′} are connected like v.

We construct a complete weighted graph G = (V,E, c) as part of an input
for lm-k-∆-DlTSP as shown in Figure 3: We set V := V ′∪̇{s,D1, D2}, and,
for any edge e between two vertices v1, v2 ∈ V ′, let c(e) = 1 if e ∈ E′ and
c(e) = 2 otherwise. All edges depicted in Figure 3 have the indicated costs
while non-depicted edges obtain maximal possible costs.

For these deadlines, one optimal solution C is the cycle s,D1, D2, t
′, . . . , s′, s,

which uses the Hamiltonian path P from s′ to t′ in G′. It costs exactly γ − 1 +
γ + γ + n + γ = 4γ + n− 1. All other feasible solutions visit some vertices in V ′

between s and D1, but cost at least the amount of 1 more.
Now, we increase d(D1) by ξ. If G′ contains a Hamiltonian path P from

s′ to some vertex v 6= t′, a new optimal solution is s, P,D1, D2, s, and it costs
γ + n + 1 + γ + 2n = 2γ + 3n + 1. If G′ does not contain such a path, it is not
possible to visit all vertices in V ′ before reaching D1 and D2. As c({t′, D1}) ≥ 2,
we cannot follow the given Hamiltonian path P because this would violate the
deadline d(D2). Similar arguments hold for every other possibility. Hence, C
remains an optimal solution in this case. Thus, we could use any approximation
algorithm with an approximation guarantee better than

4γ + n− 1
2γ + 3n + 1

> 2− ε

to solve RHP. This is why approximating this subproblem of lm-k-∆-DlTSP
within 2− ε is NP-hard for all k ≥ 2. �

Theorem 6. Let ε > 0. There is no polynomial-time (2− ε)-approximation al-
gorithm for the subproblem of lm-k-∆-DlTSP where one deadline is decreased
by ξ time units, ξ ≥ 1, unless P = NP .

Proof. Let ε > 0. Like in the preceding proof, we will use a reduction from
RHP.

Let (G′, P) be an input instance for RHP where G′ = (V ′, E′), |V ′| = n+1,
s′, t′ ∈ V ′, and P is a Hamiltonian path from s′ to t′. Pick some γ such that

4γ
2γ+8n > 2− ε.

We construct a complete weighted graph G = (V,E, c) as part of an input
for lm-k-∆-DlTSP as shown in Figure 4: We set V := V ′∪̇{s,D1, D2, D3, D4},
and, for any edge e between two vertices v1, v2 ∈ V ′, let c(e) = 1 if e ∈ E′ and

Reusing Optimal TSP Solutions for Locally Modified Input Instances 265

s

D1 = 2n

D2 = 2n

D3 = γ + 5n

D4 = 2γ + 5n

n

n
n

γ − 1

γ
γ + 1

γ

2n

3n

G′

v

t′

s′

γ

Fig. 4. Decreasing a deadline. All vertices v′ ∈ V ′ \ {s′, t′} are connected like v.

c(e) = 2 otherwise. All edges depicted in Figure 4 have the indicated costs while
non-depicted edges obtain maximal possible costs.

The initial deadlines are depicted in Figure 4. In this setting, an optimal
solution is the cycle s,D2, D1, t

′, . . . , s′, D3, D4, s, which contains the Hamilto-
nian path from s′ to t′. This path costs 2n + γ − 1 on its way to G′, spends n
on the path from t′ to s′, and reaches s at time 2γ + 8n− 1.

Now, we decrease the deadline d(D1) by ξ, whereby the old optimal solution
becomes infeasible. Any new solution must visit D1 before D2. If we try to reuse
the Hamiltonian path from t′ to s′, we have to spend 2n + γ + 1 on the way to
t′. Therefore, we cannot reach D3 if we follow the complete Hamiltonian path.
Furthermore, we cannot visit any vertex v ∈ V ′ between visiting D3 and D4

because D3 is not reached before 4n + γ, going back to V ′ would cost another
2n, and the cheapest path from V ′ to D4 costs more than γ. This is why any
solution using a Hamiltonian path between s′ and t′ violates one of the deadlines
d(D3), d(D4).

If G′ contains a Hamiltonian path P from s′ to some v 6= t′, the new optimal
solution contains this path in reverse on its way to D3. The path s,D1, D2, P, D3

visits all vertices in V ′ between v and s′ and reaches D3 at time γ+5n. Therefore,
this new optimal solution costs 2γ + 8n.

If G′ does not contain such a Hamiltonian path, the optimal solution cannot
visit all vertices in V ′ before reaching D3 or even D4, and consequently, it is
more expensive than 4γ. Thus, we could use an approximation algorithm with
an approximation guarantee better than

4γ

2γ + 8n
> 2− ε

to solve RHP. Hence, approximating this subproblem of lm-k-∆-DlTSP
within 2− ε is NP-hard. �

3.2 Unbounded Number of Deadline Vertices

When the number of deadline vertices is unbounded, we can show a linear
lower bound on the approximability of lm-∆-DlTSP. Our reduction from RHP
involves two steps. A first construction will guarantee that an optimal path
becomes shorter by a constant factor if a Hamiltonian path exists in the RHP

266 H.-J. Böckenhauer et al.

instance. A second construction inflates this advantage. Tours which start at
time X, different from those that start between times X + g and X + ζg, may
spend some extra time to visit a group of vertices which, unless visited early,
will cause belated tours to run k times zigzag across a huge distance γ.

The following lemma describes the construction in detail. See Figure 5 for
an overview.

Lemma 8. Let X, g, k, γ, ζ ∈ N such that k is even, ζ ≥ 1 and γ ≥ g. Let G′ =
(V ′, E′) be a graph with deadline set (s,D′, d′) such that any Hamiltonian path
in G′ respecting the deadlines ends in the same vertex t. Then, we can construct
a complete graph G ⊃ G′ and deadlines (s,D, d) such that D ⊃ D′, d|D′ = d′

and any path that reaches t in time X can be extended to a Hamiltonian cycle
which costs at most

X + (k + 2ζ − 4)g + 2γ ,

while any path that reaches t after X +g, but before X +ζg can only be extended
to a Hamiltonian cycle which costs at least

X +
(

k − 3
2

+ ζ

)
g + kγ .

Proof. We construct G = (V,E) with V = V ′ ∪ {E1, . . . Ek} and edge costs as
depicted in Figure 5, where b := g(ζ− 1

2). To all other edges, we assign maximal
possible costs. Note that the edge {t, E1} costs exactly the same as the path
Ek−1, Ek−3, . . . , E1.

We set the deadlines

s

t

G′

E3

Ek−3

Ek−1

E2

E4

E6

Ek−2

Ek

(k−5
2 + ζ)g

b

b

g

g

g

g

g

γ

γ

γ

γ

γ

γ

γ

γ

γ

E1

s

t

G′

E3

Ek−3

Ek−1

E2

E4

E6

Ek−2

Ek

(k−5
2 + ζ)g

b

b

g

g

g

g

g

γ

γ

γ

γ

γ

γ

γ

γ

γ

d(E1) = X + ζg + (k−5
2 + ζ)g

Fig. 5. The zigzag construction for the proof of Lemma 8. The left-hand side shows
the optimal path if t is reached at time X. The right-hand side shows the optimal
solution if t is reached after X + g. We set b := g(ζ − 1

2
) and d(Di+1) := d(Di) + γ.

Reusing Optimal TSP Solutions for Locally Modified Input Instances 267

d(E1) := X + ζg +
(

k − 5
2

+ ζ

)
g and

d(Ei+1) := d(Ei) + γ for all i ∈ {1, . . . , k − 1} .

If a path reaches t after X+g, it must proceed immediately to E1. Note that
it cannot use any other edge since it would have to use an edge of an additional
cost of at least b = g(ζ − 1

2) > g(ζ − 1), then. Together with even the shortest
path to E1, this would violate this deadline. But then, it is forced to follow
the sequence E2, E3, . . . , Ek to reach every deadline since even if we visited E3

before E2, we would incur an extra cost of b, and this would violate the deadline
of E2. Hence, the Hamiltonian cycle costs at least X + g + (k−5

2 + ζ)g + kγ.
A path that visits t before X can visit Ek−1, Ek−3, . . . , E3 before E1 because

this path to E1 costs at most

X + b + (
k

2
− 2)g + b = X + ζg +

(
k − 6

2
+ ζ

)
g ≤ d(E1) .

Closing the cycle to s, we obtain a cost of at most

X + ζg +
(

k − 6
2

+ ζ

)
g +

(
k

2
− 1

)
g + 2γ = X + (k + 2ζ − 4)g + 2γ .

�

We will now employ Lemma 8 to prove the desired lower bound.

Theorem 7. Let ε > 0. There is no polynomial-time
((

1
2 − ε

)
· |V |

)
-approxi-

mation algorithm for the subproblem of lm-∆-DlTSP where one deadline is
increased by ξ ≥ 1, unless P = NP .

G′
t v

s

2n

2n

2n

n

2n

4n

2n

n

n

nn + 1n + 1

dN (D1) = 3n − 1 + ξ

G′
t v

s

2n

2n

2n

n

2n

4n

2n

n

n

nn + 1n + 1

dO(D1) = 3n − 1 dO(D2) = 4n

dO(D3) = 6n

dO(D4) = 8n

dO(D5) = 10n

dO(D6) = 14n

Fig. 6. Increasing a deadline: If the deadline for the vertex D1 is increased, using a
Hamiltonian path from s to v leads to a new optimal solution.

268 H.-J. Böckenhauer et al.

Proof. By means of a reduction, we will show that such an approximation algo-
rithm could be used to solve RHP.

Let (G′, P) be an input instance for RHP, where G′ = (V ′, E′), |V ′| = n+1,
s, t ∈ V ′, and P is a Hamiltonian path from s to t. We construct a complete
weighted graph G = (V,E, c) as part of an input for the lm-∆-DlTSP as shown
in Figure 6: We set V = V ′ ∪ {D1, . . . , D6} and, for any edge e between two
vertices v1, v2 ∈ V ′, c(e) = 1, if e ∈ E′, and c(e) = 2 otherwise. To the other
edges, assign costs as depicted in Figure 6, and maximal possible costs to the
non-depicted edges, and set the deadlines dO(Di) according to Figure 6.

Pick some suitable 0 < δ < 1 and 0 < α < 1 such that α
2+δ ≥

1
2 − ε. We use

the zigzag construction defined in Lemma 8 with parameters X = 10n, g = 2n,
ζ = 2, k ≥ (n + 7) α

1−α , and γ ≥ 2kn+10n
δ to obtain the graph GO of our input

instance. This guarantees 2kn + 10n ≤ δγ and k ≥ α(k + n + 6).
The given optimal Hamiltonian tour C in GO starts in s, uses the given

Hamiltonian path in G′ to t, and afterwards follows the sequence D1, D2, D3,
D4, D5, D6. Hence, it reaches D6 in time 13n. Following the zigzag construction,
this leads to a cost of at least 10n +

(
k−3
2 + ζ

)
g + kγ. In GN , we change the

deadline for D1 to dN (D1) = 3n − 1 + ξ for some ξ ≥ 1. C remains a feasible
solution. If G′ contains a Hamiltonian path from s to some vertex v 6= t, an
optimal solution uses this path and follows the sequence D2, D1, D3, D5, D4, D6.
This solution reaches D6 in time 10n. By Lemma 8, this cycle costs 10n + (k +
2ζ − 4)g + 2γ.

If G′ does not contain any Hamiltonian path to such a vertex v, C remains
the optimal solution in the case where ξ = 1. If ξ ≥ 2, an optimal solution
follows P to t and afterwards uses the sequence D2, D1, D3, D4, D5, D6. This
solution reaches D6 in time 12n + 1 > X + g. By Lemma 8, we obtain a cost of
10n + (k−3

2 + ζ)g + kγ. This leads to a ratio of at least

10n + (k−3
2 − 2)2n + kγ

10n + (k + 4− 4)2n + 2γ
>

kγ

2kn + 10n + 2γ

>
kγ

(2 + δ)γ
=

k

(2 + δ)
≥ α

2 + δ
(k + n + 7) ≥ (

1
2
− ε)|V | .

Hence, a polynomial-time (1
2−ε)|V |-approximation algorithm could be used

to solve RHP. �

Theorem 8. Let ε > 0. There is no polynomial-time
((

1
2 − ε

)
|V |

)
-approxi-

mation algorithm for the subproblem of lm-∆-DlTSP where one deadline is
decreased by ξ ≥ 1 unless P = NP .

Proof idea. The proof can be done in a way similar to the proof of Theorem 7.
The relevant construction is illustrated in Figure 7. Details will be given in a
journal version of this paper. �

Corollary 4. Let ε > 0. There is no polynomial-time
(
(1
2 − ε)|V |

)
-approxima-

tion algorithm for lm-∆-DlTSP unless P = NP . �

Reusing Optimal TSP Solutions for Locally Modified Input Instances 269

G′
s

t v

n

n
n

n

2n

n nn + 1n + 1

n

n − 1n

dN (D2) = 3n − ξ

G′
s

t v

n

n
n

n

2n

n nn + 1n + 1

n

n − 1n

dO(D1) = 4n dO(D2) = 3n

dO(D3) = 5n dO(D4) = 7n

dO(D5) = 6n

dO(D6) = 9n

Fig. 7. Decreasing a deadline: If the deadline for the vertex D2 is decreased, the old
optimal solution (depicted on the left-hand side) becomes infeasible. If G′ contains a
Hamiltonian path from s to v, we obtain the depicted new optimal solution. If no such
Hamiltonian path exists, the new optimal solution must follow D2, D1, D3, D5, D4, D6.

4 Conclusion

In this work, we have introduced and successfully applied the concept of reusing
optimal solutions when input instances are locally modified. In the case of metric
TSP, we are able to improve on the previously-known upper bound of 1.5, as
achieved by Christofides’ algorithm (applied to the new instance, ignoring the
given optimal solution), with non-trivial extensions to the near-metric case.
As for TSP with deadlines, which is remarkably hard [6], we have been able to
reestablish almost all known lower bounds on the approximability of its variants
in the setting of local modifications.

As an open problem, we state the question how hard it is to approximate
lm-k-∆β-DlTSP. Another open problem is whether the NP-hard lm-∆-TSP
is also APX-hard.

References

1. T. Andreae: On the traveling salesman problem restricted to inputs satisfying a
relaxed triangle inequality. Networks 38, 2001, pp. 59–67.

2. T. Andreae, H.-J. Bandelt: Performance guarantees for approximation algorithms
depending on parameterized triangle inequalities. SIAM Journal on Discrete
Mathematics 8, 1995, pp. 1–16.

3. M. Bender, C. Chekuri: Performance guarantees for TSP with a parameterized
triangle inequality. Information Processing Letters 73, 2000, pp. 17–21.

270 H.-J. Böckenhauer et al.

4. H.-J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert, W. Unger: Approxi-
mation algorithms for TSP with sharpened triangle inequality. Information Pro-
cessing Letters 75, 2000, pp. 133–138.

5. H.-J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert, W. Unger: Towards the
notion of stability of approximation for hard optimization tasks and the traveling
salesman problem. Theoretical Computer Science 285, 2002, pp. 3–24.

6. H.-J. Böckenhauer, J. Hromkovič, J. Kneis, J. Kupke: On the parameterized
approximability of TSP with deadlines. Theory of Computing Systems, to appear.

7. H.-J. Böckenhauer, J. Hromkovič, J. Kneis, J. Kupke: On the approximation
hardness of some generalizations of TSP. Proc. SWAT 2006, to appear.

8. H.-J. Böckenhauer, S. Seibert: Improved lower bounds on the approximability
of the traveling salesman problem. RAIRO Theoretical Informatics and Applica-
tions 34, 2000, pp. 213–255.

9. N. Christofides: Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical Report 388, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, 1976.

10. J.-F. Cordeau, G. Desaulniers, J. Desrosiers, M. M. Solomon, F. Soumis: VRP
with time windows. In: P. Toth, D. Vigo (eds.): The Vehicle Routing Problem,
SIAM 2001, pp. 157–193.

11. L. Forlizzi, J. Hromkovič, G. Proietti, S. Seibert: On the stability of approxi-
mation for Hamiltonian path problems. Algorithmic Operations Research 1(1),
2006, pp. 31–45.

12. H. Greenberg: An annotated bibliography for post-solution analysis in mixed
integer and combinatorial optimization. In: D. L. Woodruff (ed.): Advances in
Computational and Stochastic Optimization, Logic Programming, and Heuristic
Search, Kluwer Academic Publishers, 1998, pp. 97–148.

13. N. Guttmann-Beck, R. Hassin, S. Khuller, B. Raghavachari: Approximation algo-
rithms with bounded performance guarantees for the clustered traveling salesman
problem. Algorithmica 28, 2000, pp. 422–437.

14. J. A. Hoogeveen: Analysis of Christofides’ heuristic: Some paths are more difficult
than cycles. Operations Research Letters 10, 1978, pp. 178–193.

15. J. Hromkovič: Stability of approximation algorithms for hard optimization prob-
lems. Proc. SOFSEM’99, Springer LNCS 1725, 1999, pp. 29–47.

16. J. Hromkovič: Algorithmics for Hard Problems. Introduction to Combinatorial
Optimization, Randomization, Approximation, and Heuristics. Springer 2003.

17. M. Libura: Sensitivity analysis for minimum Hamiltonian path and traveling
salesman problems. Discrete Applied Mathematics 30, 1991, pp. 197–211.

18. M. Libura, E. S. van der Poort, G. Sierksma, J. A. A. van der Veen: Stability
aspects of the traveling salesman problem based on k-best solutions. Discrete
Applied Mathematics 87, 1998, pp. 159–185.

19. Ch. Papadimitriou, K. Steiglitz: Some examples of difficult traveling salesman
problems. Operations Research 26, 1978, pp. 434–443.

20. Y. N. Sotskov, V. K. Leontev, E. N. Gordeev: Some concepts of stability analysis
in combinatorial optimization. Discrete Appl. Math. 58, 1995, pp. 169–190.

21. S. Van Hoesel, A. Wagelmans: On the complexity of postoptimality analysis of
0/1 programs. Discrete Applied Mathematics 91, 1999, pp. 251–263.

