

Methodologies for Developing Information
Systems: A Historical Perspective

David Avison1 and Guy Fitzgerald2
1 David Avison, ESSEC Business School, Department of Information
Systems and Decision Sciences (SID), 95021 Cergy-Pontoise, France.

avison@essec.fr, WWW home page:
http://domservices.essec.fr/domsite/cv.nsf/WebCv/David+Avison

2 Brunel University, Department of Information Systems, Computing and
Mathematics, Uxbridge, UB8 3PH, UK. guy.fitzgerald@brunel.ac.uk

WWW home page: http://www.brunel.ac.uk/~csstggf

Abstract. For the past 30 years and more, Information Systems Development
(ISD) has been at the heart of the study and practice of Information Systems
(IS). This paper examines the history of ISD methodologies and looks at some
of the trends and issues concerning ISD, and shows how these have been
reflected in methodologies and how organizations use (or do not use) them.
Discussion of the present state of the field is followed by a discussion of
possible future directions.

1 Introduction

In this paper we celebrate the 30th anniversary of IFIP Technical Committee 8,
which through its working groups (especially, but not limited to, WG 8.1 and WG
8.2) has put ISD amongst its major work and contribution. We also reflect on the
coincidental publication of the 4th edition of [1], a book which has a history of
merely 18 years. These reflections enable us to build on and bring up to date our
short Communications of the ACM paper [2] to examine the history of
methodologies for ISD as well as reviewing the current position and suggesting
some pointers to the future.

Systems development activities have been around for as long as computers but
although the development of technology has been phenomenal, the development of a
generally-accepted systematic approach or approaches to utilize that technology
effectively has been slower and this may have been to some extent a limiting factor
on the speed of progress in the use of the technology. In some other practical
domains there is a ‘one correct way of doing something’ – why has this not been the
same for ISD?

2 David Avison and Guy Fitzgerald

This paper examines some of the trends and issues related to ISD over time. We
identify four eras: pre-methodology, early methodology, methodology and post-
methodology. This could be perceived as a ‘maturity model for ISD’ as some
organizations may be in different stages in the same countries, whereas different
countries may be in general in front of or behind others. Thus it is risky, if
appropriate at all, to put actual dates on the ‘eras’ as they are more stages of ISD
practice. Nevertheless we do suggest approximate decades in which each was at the
fore in North America, Europe and Australia. The current era has been one of the
most difficult to deal with as it is not at all clear how it will pan out. Unlike for
previous eras, we do not have the benefit of hindsight. However, it would appear
that the period is perhaps surprisingly one of much greater stability - methodologies
are not being invented (or reinvented) as before, many methodologies discussed in
previous eras do not now have much following in practice and there is some
consolidation in the field. Where development is not outsourced in some way, there
is emphasis on approaches which aim at developing a product with greater speed
and flexibility.

2 Pre-Methodology Era

Early computer applications, up to around the time TC8 was established, were
implemented without an explicit ISD methodology. We thus characterise this as the
pre-methodology era. In these early days, the emphasis of computer applications
development was on programming. The needs of the users were rarely well
established with the consequence that the design was frequently inappropriate to the
application needs. The focus of effort was on getting something working and
overcoming the limitations of the technology, such as making an application run in
restricted amounts of memory. A particular problem was that the developers were
technically trained but rarely good communicators. The dominant ‘methodology’
was rule-of-thumb and based on experience. This typically led to poor control and
management of projects. For example, estimating the date on which the system
would be operational was difficult, and applications were frequently delivered late
and above budget. Programmers were usually overworked, and spent a large
proportion of their time correcting and enhancing the few applications that were
operational. These problems led to a growing appreciation of the desirability for
standards and a more disciplined approach to the development of IS in
organisations. Thus the first ISD methodologies were established. Although this era
was common in many large European and North American organizations of the
‘60s, the characteristics can be seen in some companies developing applications on
PCs nowadays.

3 Early Methodology Era

As a reaction to the failings of the pre-methodology era:
1. There was a growing appreciation of that part of the development of the system

that concerns analysis and design and therefore of the potential role of the
systems analyst.

Methodologies for Developing IS: An Historical Perspective 3

2. There was a realisation that as organisations were growing in size and
complexity, it was desirable to move away from one-off solutions to a particular
problem and towards more integrated IS.

3. There was an appreciation of the desirability of an accepted methodology for the
development of IS.
These reflections led to the evolution of the Systems Development Life Cycle

(SDLC) or waterfall model as the approach to develop IS. This was an early
methodology, although at the time it was not yet known as such. It included phases,
procedures, tasks, rules, techniques, guidelines, documentation, training programs
and tools. The waterfall model consisted of a number of stages of development that
were expected to be followed sequentially. These stages typically consisted of
feasibility study, systems investigation, analysis, design, and implementation,
followed by review and maintenance, and this was the approach widely used in the
1970s and even some of the 1980s, and is still a basis for many methodologies
today.

The SDLC has been well tried and tested and the use of documentation
standards helps to ensure that proposals are complete and that they are
communicated to users and computing staff. The approach also ensures that users
are trained to use the system. There are controls and these, along with the division of
the project into phases of manageable tasks with deliverables, help to avoid missed
cutover dates and disappointments with regard to what is delivered. Unexpectedly
high costs and lower benefits are also less likely. It enables a well-formed and
standard training scheme to be given to analysts, thus ensuring continuity of
standards and systems.

However, there are serious limitations to the approach along with limitations in
the way it is used. Some potential criticisms are: Failure to meet the needs of
management (due to the concentration on single applications at the operational level
of the organization); Unambitious systems design (due to the emphasis on
‘computerizing’ the existing system); Instability (due to the modelling of processes
which are unstable because businesses and their environments change frequently);
Inflexibility (due to the output-driven orientation of the design processes which
makes changes in design costly); User dissatisfaction (due to problems with the
documentation and the inability for users to ‘see’ the system before it is
operational); Problems with documentation (due to its computer rather than user
orientation and the fact that it is rarely kept up-to-date); Application backlog (due to
the maintenance workload as attempts are made to change the system in order to
reflect user needs); and the Assumption of ‘green field’ development (due to the
tradition of a new IS ‘computerizing’ manual systems, an assumption inappropriate
as IS now largely replace or integrate with legacy systems).

4 Methodology Era

As a response to one or more of the above limitations or criticisms of the SDLC, a
number of different approaches to IS development emerged and what we term ‘the
methodology era’ began. Methodologies can be classified into a number of
movements. The first are those methodologies designed to improve upon the

4 David Avison and Guy Fitzgerald

traditional waterfall model. A second movement is the proposal of new
methodologies that are somewhat different to the traditional waterfall model (and
from each other).

Since the 1970s, there have been a number of developments in techniques and
tools and many of these have been incorporated in the methodologies exemplifying
the modern version of the waterfall model. The various CRIS conferences of IFIP
WG8.1 were important here (see, for example [3], published following the third of
these conferences and provided an excellent overview of earlier ISD and the early
shoots of more sophisticated approaches). Techniques incorporated include entity-
relationship modelling, normalisation, data flow diagramming, structured English,
action diagrams, structure diagrams and entity life cycles. Tools include project
management software, data dictionary software, systems repositories, drawing tools
and, the most sophisticated, computer-assisted software (or systems) engineering
(CASE) tools (now broadened in scope and more frequently referred to as toolsets).
The incorporation of these developments addresses some of the criticisms discussed
in section 3. The blended methodologies Merise [4], SSADM [5] and Yourdon
Systems Method [6] could be said to be updated versions of the waterfall model.
The later method engineering movement (see for example [7], a collaboration of
IFIP WG 8.1 and WG 8.2) developed the practice of blending methods and
techniques further. Although these improvements have brought the basic model
more up to date, many users have argued that the inflexibility of the life cycle
remains and inhibits most effective use of computer IS.

It is possible to classify alternative approaches that developed during the 1980s
and beyond within a number of broad themes including: systems, strategic,
participative, prototyping, structured, and data. Each of these broad themes gave rise
to one or more specific methodologies.

General systems theory attempts to understand the nature of systems, which are
large and complex. Organisations are open systems, and the relationship between the
organisation and its environment is important. By simplifying a complex situation,
we may be reductionist, and thereby distort our understanding of the overall system.
The most well-known approach in the IS arena to address this issue is Checkland’s
soft systems methodology (SSM) [8]. It includes techniques, such as rich pictures,
which help the users understand the organisational situation and therefore point to
areas for organisational improvement through the use of IS.

Strategic approaches stress the pre-planning involved in developing IS and the
need for an overall strategy. This involves top management in the analysis of the
objectives of their organisation. These approaches counteract the possibility of
developing IS in a piecemeal fashion. IBM’s Business Systems Planning is an early
example of this approach and business process re-engineering [9] is part of this
overall movement.

In participative approaches, the role of all users is stressed, and the role of the
technologist may be subsumed by other stakeholders of the information system. If
the users are involved in the analysis, design and implementation of IS relevant to
their own work, particularly if this takes the form of genuine decision-making, these
users are likely to give the new IS their full commitment when it is implemented,
and thereby increase the likelihood of its success. ETHICS [10] stresses the
participative nature of ISD, following the socio-technical movement and the work of
the Tavistock Institute and embodies a sustainable ethical position.

A prototype is an approximation of a type that exhibits the essential features of

Methodologies for Developing IS: An Historical Perspective 5

the final version of that type. By implementing a prototype first, the analyst can
show the users inputs, intermediary stages, and outputs from the system. These are
not diagrammatic approximations, which tend to be looked at as abstract things, or
technically-oriented documentation, which may not be understood by the user, but
the actual data on computer paper or on terminal or workstation screens. Toolsets of
various kinds can all enable prototyping. These have become more and more
powerful over the last few years. Rapid Application Development [11] is an
example of an approach that embodies prototyping.

Structured methodologies are based on functional decomposition, that is, the
breaking down of a complex problem into manageable units in a disciplined way.
These approaches tend to stress techniques, such as decision trees, decision tables,
data flow diagrams, data structure diagrams, and structured English, and tools such
as systems repositories.

Whereas structured analysis and design emphasises processes, data analysis
concentrates on understanding and documenting data. It involves the collection,
validation and classification of the entities, attributes and relationships that exist in
the area investigated. Even if applications change, the data already collected may
still be relevant to the new or revised systems and therefore need not be collected
and validated again. Information Engineering [12], for example, has a data approach
as its centre.

In the 1990s there was what might be perceived as a second wave of
methodologies. Object-oriented ISD became another ‘silver bullet’ [13] and has
certainly made a large impact on practice. Yourdon [14] exposition argues that the
approach is more natural than data or process-based alternatives, and the approach
unifies the ISD process. It also facilitates the realistic re-use of software code. Coad
and Yourdon [15] suggest a number of other motivations and benefits for object-
oriented analysis, including: the ability to tackle more challenging problem situations
because of the understanding that the approach brings to the problem situation; the
improvement of analyst-user relationships, because it is not computer-oriented; the
improvement in the consistency of results, because it models all aspects of the
problem in the same way; and the ability to represent factors for change in the model
so leading to a more resilient model. To some extent, therefore, it has replaced the
singular process and data emphases on ISD.

Incremental or evolutionary development (often including prototyping) has also
been a feature of 1990s development. Incremental development has the
characteristic of building upon, and enhancing, the previous versions rather than
developing a new system each time. Incremental development aims to reduce the
length of time that it takes to develop a system and it addresses the problem of
changing requirements as a result of learning during the process of development
(‘timebox’ development, see [11]). The system to be developed is divided up into a
number of components that can be developed separately. This incremental approach
is a feature of DSDM [16]. Recently developing applications from components from
different sources has gained popularity [17] as has obtaining open source software
components (reflected in [18,19]).

Some methodologies have been devised for specific types of application. These
specific-purpose methodologies include Welti [20] for developing ERP applications;
CommonKADS [21] for knowledge management applications; Process Innovation

6 David Avison and Guy Fitzgerald

[22] for business process reengineering applications, Renaissance [23] supporting
the reverse engineering of legacy systems and WISDM [24] for web development.

We characterise the above as the methodology era because of the apparent
proliferation of different types of methodologies, and their increasing maturity. The
work of IFIP WG 8.2 has tended to emphasize the human and organizational aspects
of ISD (see for example [18,25]).

Many users of methodologies have found the waterfall model and the alternative
methodologies outlined above unsatisfactory. Most methodologies are designed for
situations, which follow a stated, or more usually, an unstated ‘ideal type’. However,
situations are all different and there is no such thing as an ‘ideal type’ even though
situations differ depending on, for example, their complexity and structuredness,
type and rate of change in the organisation, the numbers of users affected, their
skills, and those of the analysts. Further, most methodology users expect to follow a
step-by-step, top-down approach to ISD where they carry out a series of iterations
through to project implementation. In reality, in any one project, this is rarely the
case, as some phases might be omitted, others carried out in a different sequence,
and yet others developed further than espoused by the methodology authors.
Similarly, particular techniques and tools may be used differently or not used at all
in different circumstances.

There have been a number of responses to this challenge. One response is to
suggest a contingency approach to ISD (as against a prescriptive approach), where a
structure is presented but stages, phases, tools, techniques, and so on, are expected
to be used or not (or used and adapted), depending on the situation. Those
characteristics which will affect the choice of a particular combination of
techniques, tools and methods for a particular situation could include the type of
project, whether it is an operations-level system or a management information
system, the size of the project, the importance of the project, the projected life of the
project, the characteristics of the problem domain, the available skills and so on.
Multiview [26] is such a contingency framework.

Many attempts have been made to compare and contrast this diversity of
methodologies. Olle [27] provides one example emanating from IFIP WG 8.1.
Avison and Fitzgerald [1] compare methodologies on the basis of philosophy
(paradigm, objectives, domain and target); model; techniques and tools; scope;
outputs; and practice (background, user base, players, and product). In relation to the
number of methodologies in existence, some estimates suggested that there were
over 1,000 brand name methodologies world-wide, although we are rather skeptical
of such a high figure, there is no doubt that methodologies had proliferated, although
many of these were similar and differentiated only for marketing purposes.
However, the characterization of this as the methodology era does not mean that
every organization was using a methodology for systems development. Indeed,
some were not using a methodology at all but most, it seems, were using some kind
of in-house developed or tailored methodology, typically based upon or heavily
influenced by a commercial methodology product.

Methodologies for Developing IS: An Historical Perspective 7

5 Post-Methodology Era

We identify the current situation as the post-methodology era, in the sense that we
now perceive methodologies as having moved beyond the pure methodology era.
Now it seems that although some organisations still use a methodology of some kind
there is enough of a re-appraisal of the beneficial assumptions of methodologies,
even a backlash against methodologies, together with a range and diversity of non-
methodological approaches, to justify the identification of an era of reflection.

Methodologies were often seen as a panacea to the problems of traditional
development approaches, and they were often chosen and adopted for the wrong
reasons. Some organisations simply wanted a better project control mechanism,
others a better way of involving users, still others wanted to inject some rigour or
discipline into the process. For many of these organisations, the adoption of a
methodology has not always worked or been the total success its advocates
expected. Indeed, it was very unlikely that methodologies would ever achieve the
more overblown claims made by some vendors and consultants. Some organisations
have found their chosen methodology not to be successful or appropriate for them
and have adopted a different one. For some this second option has been more useful,
but others have found the new one not to be successful either. This has led some
people to the rejection of methodologies in general. In the authors’ experience this is
not an isolated reaction, and there is something that might be described as a backlash
against formalised ISD methodologies.

This does not mean that methodologies have not been successful. It means that
they have not solved all the problems that they were supposed to. Many
organisations are using methodologies effectively and successfully and conclude
that, although not perfect, they are an improvement on what they were doing
previously, and that they could not handle their current systems development load
without them.

Yet in the post-methodology era, there are many reasons why organizations are
questioning the need to adopt any sort of methodology, as follows: Productivity: The
first general criticism of methodologies is that they fail to deliver the suggested
productivity benefits; Complexity: Methodologies have been criticized for being over
complex; ‘Gilding the lily’: Others argue that methodologies develop any
requirements to the ultimate degree, often over and above what is legitimately
needed.; Skills: Methodologies require significant skills in their use and processes;
Tools: The tools that methodologies advocate are difficult to use, expensive and do
not generate enough benefits; Not contingent: Methodologies are not contingent
upon the particularities of the project; One-dimensional approach: Methodologies
usually adopt only one approach to the development of projects, which does not
always address the underlying issues or problems; Inflexible: Methodologies may be
inflexible and may not allow changes to requirements during development; Invalid
or impractical assumptions: Most methodologies make a number of simplifying yet
potentially invalid assumptions, such as a stable external and competitive
environment; Goal displacement: This refers to the unthinking use of a methodology
and to a focus on following the procedures to the exclusion of the real needs of the
project being developed. De Grace and Stahl [28] have termed this ‘goal
displacement’ and Wastell [29] talks about the ‘fetish of technique’, which inhibits
creative thinking; Problems of building understanding into methods: Introna and

8 David Avison and Guy Fitzgerald

Whitley [30] argue that some methodologies assume that understanding can be built
into the method process. They call this ‘method-ism’ and believe it is misplaced;
Insufficient focus on social and contextual issues: The growth of scientifically based
highly functional methodologies has led some commentators to suggest that we are
now suffering from an overemphasis on the narrow, technical development issues
and that not enough emphasis is given to the social and organizational aspects of
systems development [31]; Difficulties in adopting a methodology: Some
organizations have found it hard to adopt methodologies in practice, partly due to the
resistance of users to change; No improvements: Finally in this list, and perhaps the
acid test, is the conclusion of some that the use of methodologies has not resulted in
better systems, for whatever reasons. This is obviously difficult to prove, but
nevertheless the perception of some is that ‘we have tried it and it didn’t help and it
may have actively hindered’. The work of IFIP WG 8.6 on the diffusion of
technology has much to teach us here.

We thus find that for some, the great hopes in the 1980s and 1990s, that
methodologies would solve most of the problems of ISD have not come to pass.
Strictly speaking, however, a distinction should be made in the above criticisms of
methodologies between an inadequate methodology itself and the poor application
and use of a methodology. Sometimes a methodology vendor will argue that the
methodology is not being correctly or sympathetically implemented by an
organization. Whilst this may be true to some extent, it is not an argument that seems
to hold much sway with methodology users. They argue that the important point is
that they have experienced disappointments in their use of methodologies.

One reaction to this is to reject the methodology approach altogether. A survey
conducted in the UK [32] found that 57% of the sample were claiming to be using a
methodology for systems development, but of these, only 11% were using a
commercial development methodology unmodified, whereas 30% were using a
commercial methodology adapted for in-house use, and 59% a methodology which
they claimed to be unique to their organization, i.e. one that was internally
developed and not based solely on a commercial methodology.

A variety of reactions to the perceived problems and limitations of
methodologies exist and we now examine some of these. We begin by considering
external development, but if the choice is made to develop internally, then users may
demand that the methodology that they do use needs to be refined and improved
(just as they were in the methodology phase). On the other hand, users may prefer to
adapt the methodology according to the particular needs of each circumstance
following a contingency approach, or even more informally and risky, an ad hoc
approach. In some organizations speed as well as flexibility has become
watchwords, and rapid and agile approaches have gained more adherents and the
tendency towards more user and customer involvement strengthened. Finally we
suggest that we are in a more stable environment than in any time since the early
days of ISD methodologies and the foundation of IFIP TC8, and we see the
immediate future being one of consolidation.

5.1 External Development

Some organisations have decided not to embark on any more major in-house system
development activities but to buy-in all their requirements in the form of packages.
This is regarded as a quick and relatively cheap way of implementing systems for

Methodologies for Developing IS: An Historical Perspective 9

organisations that have fairly standard requirements. A degree of package
modification and integration may be required which may still be undertaken in-
house. Clearly the purchasing of packages has been commonplace for some time,
but the present era is characterised by some organisations preferring package
solutions. Only systems that are strategic or for which a suitable package is not
available would be considered for development in-house. The package market is
becoming increasingly sophisticated and more and more highly tailorable packages
are becoming available. Sometimes open source components can be ‘packaged’ to
form the application.

Enterprise resource planning (ERP) systems have become particularly popular
with large corporations since the mid ‘90s. The key for these organisations is
ensuring that the correct trade-off is made between a ‘vanilla’ version of a standard
package, which might mean changing some elements of the way the business
currently operates, and a package that can be modified or tailored to reflect the way
they wish to operate.

For others, the continuing problems of systems development and the backlash
against methodologies has resulted in the outsourcing and/or offshoring of systems
development. The client organisation no longer has any great concern about how the
systems are developed. They are more interested in the end results and the
effectiveness of the systems that are delivered. This is different to buying-in
packages or solutions, because normally the management and responsibility for the
provision and development of appropriate systems is given to a vendor. The client
company has to develop skills in selecting the correct vendor, specifying
requirements in detail and writing and negotiating contracts rather than thinking
about system development methodologies.

5.2 Continuing Refinement and Improvement

One reaction to the criticisms that users of methodologies make is for authors and
suppliers to ‘get methodologies right’. For some there is the continuing search for
the methodology holy grail. Methodologies will probably continue to be developed
from time to time and, more likely, existing ones evolve. Most methodologies have
some gaps in them or, if not complete gaps, they have areas that are treated much
less thoroughly than others. For example, rich pictures, cognitive mapping, lateral
thinking, scenario planning, case-based reasoning, and stakeholder analysis
represent some of the techniques that are rarely included in methodologies, but we
see good reasons for their inclusion [1]. Adams and Avison [33] suggest how
analysts may choose between techniques as well as potential dangers in their use.
Similarly, toolsets have developed greatly over the period from simple drawing tools
to very comprehensive toolsets, some designed to support one particular
methodology and others to support ISD as a whole.

In particular, methodologies are now appearing to deal with systems
development for the web. This, it is argued, has some special characteristics, which
make traditional methodologies inappropriate. Baskerville and Pries-Heje [34], for
example, list these as time pressure, vague requirements, prototyping, release
orientation, parallel development, fixed architecture, coding your way out,
negotiable quality, dependence on good people, and the need for structure. The
WISDM methodology [24] also addresses web development. Some of the
methodologies devised for web development use the term ‘agile’ to characterise the

10 David Avison and Guy Fitzgerald

need for flexibility and adaptability in web development which distinguishes them
from traditional approaches (see section 5.4).

5.3 Ad-hoc Development and Contingency

This might be described as a return to the approach of the pre-methodology days in
which no formalized methodology is followed. The approach that is adopted is
whatever the developers understand and feel will work. It is driven by, and relies
heavily on, the skills and experiences of the developers. Truex et al. [35] represents
part of this backlash against conventional methodologies as they talk of
amethodological and emergent ISD. This is perhaps an understandable reaction, but
it runs the risk of repeating the problems encountered prior to the advent of
methodologies.

We see a contingent approach as providing a positive response and see this as
offering a good balance. A contingency approach to ISD presents a structure to help
the developers, but tools and techniques are expected to be used or not (or used and
adapted), depending on the situation. Situations might differ depending on, for
example, the type of project and its objectives, the organization and its environment,
the users and developers and their respective skills. The type of project might also
differ in its purpose, complexity, structuredness, and degree of importance, the
projected life of the project, or its potential impact. The contingency approach is a
reaction to the ‘one methodology for all developments’ approach that some
companies adopted, and is recognition that different characteristics require different
approaches and we see it gaining increasing importance.

5.4 Agile Development

When following agile development, requirements are ‘evolved’ and, as the agile
manifesto’ [36] suggests, the approach emphasizes the involvement of users and
customers in a joint approach to ISD more than processes and tools, working
software over comprehensive documentation, customer collaboration over contract
negotiation and responding to change over following a plan (see also [37]. Working
software is delivered in smaller chunks than traditionally, but in a much shorter time
span. Changing requirements are accepted as the norm and even welcomed. These
principles conform more to today’s ISD needs than many of the ISD methodologies
of the ‘methodology era’, for example reacting to ‘Internet speed development’ [34].
These features are found in extreme programming (XP) and SCRUM as well as ISD
approaches, such as DSDM [38].

5.5 Consolidation

In the previous three previous editions of Avison and Fitzgerald [1] published in
1988, 1995 and 2002, we discussed 9, 12 and 34 themes; 8, 11 and 37 techniques; 7,
6 and 12 tools; and 8, 15 and 32 methodologies respectively. Despite our best
research endeavors, the numbers have not increased in the 2006 edition, indeed there
has been a decline in numbers as some methodologies (and their associated
techniques and tools) fall into disuse. However, this does not necessarily indicate a
fall into disuse of frameworks and methodologies for ISD as a whole, but rather a

Methodologies for Developing IS: An Historical Perspective 11

consolidation process, indeed we see some methodology-era methodologies being
used effectively and successfully as well as agile and contingent approaches to ISD.
This may also suggest greater maturity in the field of IS generally and we see this
consolidation process continuing.

6 Conclusion

This paper has attempted to review, albeit briefly, the history and drivers of ISD
methodologies. We have used our analysis to reflect on and discuss the current
situation, identified as the post-methodology era. This has involved the
identification of various eras of methodologies. Our present era is perhaps best
described as an era of methodology reappraisal, resulting in a variety of reactions.
Although we believe that it is unlikely that any single approach will provide the
solution to all the problems of ISD, we do now see a change. Diversity of
methodologies and multiplication of similar methodologies has been replaced by
some consolidation: ISD has entered a maturing phase of greater stability.

References

1. D.E.Avison and G.Fitzgerald. Information Systems Development: Methodologies,
Techniques and Tools. 4th edition, McGraw-Hill, Maidenhead. (2006).
2. D.E. Avison and G. Fitzgerald. Where now for Development Methodologies?,
Communications of the ACM, (January, 2003).
3. T.W. Olle, H.G. Sol, and A.A.Verrijn-Stuart (eds). Information Systems Design
Methodologies: Improving the Practice, North Holland, Amsterdam (1986).
4. P.T. Quang and C. Chartier-Kastler. Merise in Practice. Macmillan, Basingstoke (1991).
5. M. Eva. SSADM Version 4: A User’s Guide. McGraw-Hill, Maidenhead. (1994).
6. Yourdon Inc. Yourdon Systems Method: Model-Driven Systems Development. Yourdon
Press, Englewood Cliffs (1993).
7. S. Brinkkemper, K. Lyytinen, and R.J. Welke (eds). Method Engineering: Principles of
Method Construction and Tool Support, Kluwer, Boston (1996).
8. P. Checkland and J. Scholes. Soft Systems Methodology in Action. Wiley, Chichester
(1990).
9. M. Hammer and J. Champy. Reengineering the Corporation: A Manifesto for Business
Revolution. Harper Business, New York (1993).
10. E. Mumford. Effective Requirements Analysis and Systems Design: The ETHICS Method.
Macmillan, Basingstoke (1995).
11. J. Martin. Rapid Application Development. Prentice Hall, Englewood Cliffs (1991).
12. J. Martin. Information Engineering. Prentice Hall, Englewood Cliffs (1989).
13. G. Booch. Object Oriented Design with Applications. Benjamin/Cummings, Redwood
City (1991).
14. E. Yourdon. Object-oriented Systems Design, An Integrated Approach. Prentice Hall,
Englewood Cliffs (1994).

12 David Avison and Guy Fitzgerald

15. P. Coad and E. Yourdon. Object Oriented Analysis. Prentice Hall, Englewood Cliffs
(1991).
16. DSDM Manual Version 3 DSDM Consortium, Tesseract, Surrey (1998).
17. V. Sugumaran and V.C. Storey. A semantic-based approach to component retrieval,
Database for Advances in Information Systems, 34, 3 (2003).
18. N.L. Russo, B. Fitzgerald, and J. DeGross (eds) Realigning Research and Practice in
Information Systems development. Kluwer, Boston (2001).
19. J. Feller and B. Fitzgerald. Understanding Open Source Software Development, Addison
Wesley, Harlow (2002).
20. N. Welti. Successful SAP R/3 Implementation, Addison-Wesley, Harlow (1999).
21. G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. Van de Velde,
and B.J. Wielinga. Knowledge Engineering and Management: The Common KADS
Methodology, MIT Press, Cambridge (2000).
22. T.H. Davenport. Process Innovation, Harvard Business School, Boston (1993).
23. I. Warren. The Renaissance of Legacy Systems, Springer-Verlag (1999).
24. R. Vidgen, D.E. Avison, R. Wood, and A.T. Wood-Harper. Developing Web Information
Systems, Butterworth-Heinemann, London (2002).
25. D.E. Avison, J. Kendall, and J. DeGross (eds). Human, Organizational and Social
Dimensions of IS Development. North Holland, Amsterdam (1993).
26. D.E. Avison, A.T. Wood-Harper, R. Vidgen, and R. Wood. Multiview: A Further
Exploration in IS Development, McGraw-Hill, Maidenhead (1996).
27. T.W. Olle. Information Systems Methodologies: A Framework for Understanding,
Addison Wesley, Harlow (1988).
28. P. De Grace and L. Stahl. The Olduvai Imperative: CASE and the State of Software
Engineering Practice. Prentice Hall, Englewood Cliffs (1993).
29. D. Wastell. The Fetish of Technique: methodology as a social defence. Information
Systems Journal, 6, 1 (1996).
30. L. Introna and E. Whitley. Against method-ism: Exploring the limits of method,
Information Technology and People, 10, 1, 31-45 (1997).
31. R. Hirschheim, H.K. Klein, and K. Lyytinen. Exploring the intellectual structures of
information system development: A social action theoretic analysis,
Accounting, Management and Information Technologies, 6, 1/2 (1996)
32. G. Fitzgerald, A. Philippides, and P. Probert. Information Systems Development,
Maintenance and Enhancement: Findings from a UK Study, International Journal of
Information Management, 40 (2), 319-329 (1999).
33. C. Adams and D.E. Avison. Dangers Inherent in the Use of Techniques: Identifying
Framing Influences, Information Technology and People, 16, 2 (2003).
34. R. Baskerville and J. Pries-Heje. Racing the e-bomb: How the Internet is redefining IS
development methodology, in N. L. Russo, et al. (2001)
35. D.Truex, R. Baskerville, and H. Klein. Growing Systems in Emergent Organizations,
Communications of the ACM (42:8), (1999), pp. 117-123.
36. K. Beck et al. Agile Manifesto, available at http://agilemanifesto.org/ (2001).
37. J. Highsmith. Agile Software Development Ecosystems, Addison-Wesley, Harlow (2002).
38. J. Stapleton. DSDM: A Framework for Business Centred Development, Addison-Wesley,
Harlow (2002).

