
Improving Network Generalization through Selection ofExamplesLeonardo Franco and Sergio A. CannasFacultad de Matem�atica, Astronom��a y F��sica. Universidad Nacional de C�ordoba.Ciudad Universitaria. (5000). C�ordoba. Argentina.email: ffranco,cannasg@�s.uncor.eduKeywords: Neural Networks, Machine Learning, Generalization.AbstractIn this work, we study how the selection of examples a�ects the learning proce-dure in a neural network and its relationship with the complexity of the functionunder study and its architecture.We focus on three di�erent problems: parity, addition of two numbers and bit-shifting implemented on feed-forward Neural Networks.For the parity problem, one of the most used problems for testing learning algo-rithms, we obtain the result that only the use of the whole set of examples assuresglobal learning. For the others two functions we show that generalization can beconsiderably improved with a particular selection of examples instead of a randomone.



Improving Network Generalization through Selection ofExamplesIntroductionFeed-Forward Neural Networks have been extensively used to solve many kindsof di�erent problems, being applied in a wide range of areas covering subjects such asPrediction of temporal series, Structure prediction of proteins, Speech recognition,etc. [3,4]One of the fundamental properties making these networks useful is its capacityof learning from examples. Through synaptic modi�cations algorithms, the networkis capable of obtaining a new structure of internal connections, appropiated to solvea determined task.At present, the general underlying theory of the whole learning process is verypoorly understood existing very few general results, especially in the subject con-cerning generalization.In this work, we study how the selection of examples a�ects the learning proce-dure, leading to an improvement in the generalization ability in most of the cases.We also give some insights about the relationship between the complexity of thefunction and its architecture, related to the generalization ability.We study three di�erent problems: addition of two numbers, bit-shifting and par-ity implemented on feed-forward Neural Networks, starting from small architecturesand then evolving to greater sizes.Since all the problems are non-linearly separable, they are all optimal in depth,having only one hidden layer. The parity network used is taken from [6] and theothers two architectures are taken from [1,2].1 The Sum problemWe study the generalization properties of a network constructed to compute theaddition between two binaries operands each of N bits, which gives a result of thesame length N. The architecture is optimal in depth, i.e. it has only one hidden layer[1]. It is composed by 2N binary neurons in the input layer corresponding to the twonumbers of N-bits to add, N hidden neurons and N binary neurons in the output.To simplify the analysis and to allow comparisons with every function that has atleast one output neuron, we study only one output bit, the one having the mostsigni�cant value. The generalization to the case of N output bits is straightforward,since every output neuron behaves indenpendently. The resulting network has twohidden neurons, one of them fully connected to the input layer, while the other isconnected to every input neuron but those corresponding to the most signi�cantbits. Fully connection also exists between the hidden layer and the output neuron.Finally, the two most signi�cant input bits are also directly connected to the output.Further simpli�cation of the problem can be obtained by considering shared synapsis.That means, we impose the constraint that synapsis connecting one hidden neuron



n n nn nn
A B CEDS e1d1a0 Td TeTs
a1 b1c1 c2b2

OutputFigure 1: Network Structure to compute the most signi�cant output bit of the Sumfunction of two 3-bit numbers. The synapses corresponding to input bits with samesigni�cant value have been symmetrized in such a way that the six input bits canbe replaced by three input bits taking the values f0,1,2g.with two input bits with the same signi�cant value are always equal. With thisconstraint every pair of input neurons corresponding to the same signi�cant bit canbe replaced by a single ternary neuron, which take the values f0,1,2g. Hence, our�nal architecture contains an input layer of N ternary neurons. We start studyingthe case of adding two numbers of 3-bit length and the we generalize the results tothe case of addition of N-bits numbers. A description of the network architecturefor N=3 is depicted in �gure 1.The output bit S receives direct inputs from the 2 hidden neurons D;E = 0; 1and from the input neuron A computing the following function:S = �fa0A+ d1�[a1A+ b1B + c1C � Td] + e1�[b2B + c2C � Te]� Tsg (1)where A;B;C = 0; 1; 2; �(x) is the Heaviside step function and T� (� = d; e; s)are the thresholds parameters.The values of synapse a0 and those of the thresholds Td; Te are restricted to begreater than zero to reduce the possible internal representations to only one.Requiring that the network computes the full set of 27 addition examples leadto the following necessary and su�cient conditions:Td > a1 � Td2 (2)



a1 + 2b1 � Td > 2b1 + 2c1 (3)a1 + b1 + 2c1 � Td > a1 + b1 + c1 (4)2b2 � Te > 2c2 (5)b2 + 2c2 � Te > b2 + c2 (6)e1 � Ts > 0 (7)a0 � Ts > 2a0 + d1 (8)2a0 + d1 + e1 � Ts > a0 + d1 + e1 (9)We will show that, if the network just computes a particular set of 12 examples,then the above conditions are satis�ed. Therefore, the correct learning of such exam-ples ensures full generalization with less than half of the total number of examples.We will denote the examples by writing between square brackets the three inputvalues and the correct output separated by a colon.� From the example [000 : 0] we obtain the right part of Eq. (7).� From the examples [100 : 1] and [200 : 0] we obtain:d1 < �a0 (10)and the ful�llment of Eqs. (2) and (8)� From the example [020 : 1] we obtain:d1�[2b1 � Td] + e1�[2b2 � Te] > Tswhich together with Ts > 0 and Eq. (10) implies the left part of Eq.(7) andthe left part of Eq.[5].� From the example [120 : 0] we obtain the left part of Eq.(3) together with theright part of Eq.(9).� From the examples [111 : 1] and [112 : 0] we obtain Eq.[4] and also that c1 > 0� From the examples [011 : 0], [012 : 1] and [002 : 0] we obtain Eq.[6] togetherwith the right part of Eq.[5].� From the example [222 : 1] we obtain the left part of Eq. [9].� Finally, from the example [022 : 1] we obtain the right part of Eq. (3) andconsequently the ful�llment of the complete set of Eqs. (2-9).For the most general case of an input of N bits, we can see that, for any bit weincrease the input in size, it is enough to add four examples to obtain generalization.For example, for the case of N=4 we take the twelve examples corresponding to the3-bit case but now converted to the new problem by adding a zero in the new right-most input place. For example, the input pattern [112:0] in the 3-bit problem nowwould be the input pattern [1120:0]. It is also necessary to add 4 new examples, twopairs of examples having di�erent output when we modify the new right-most input



~ ~ ~ ~ ~����������������
I1 I2 I3 S1 S0
STa Tb TcTA B C

Figure 2: Network Structure to compute the left-most output bit of a bit shiftingoperation.bit. For the case of N=4 these two pairs are the examples f[0111:0] [0112:1];[1111:1][1112:0]g. The same procedure is repeated as we increase the number of input bits.Thus, we obtain an upper bound for the minimal set of examples equal to 4N .Hence, for N output neurons such bound becomes 2N(N + 1)2 Bit ShiftingThe bit-shifting function is a basic operation in computers circuits and also wasused in modelling vision devices (see Ref.[2] and references therein). The networkstructure we considered here was derived in Ref.[2]. Since it has only one hiddenlayer it is optimal in depth. The input layer has the N input bits to shift pluslog2(N + 1) indicating bits given the places to shift. There are N binary neurons inthe hidden layer, every one connected to one input neuron and to all the indicatingneurons. The problem has an output of N bits but, to simplify the study, we analyzejust one output bit. We start the analysis with the particular case of having 3 inputbits with its corresponding two indicating bits, to later generalize the results for thecase of N input bits.For the case of 3 input bits, the structure of the network is shown in �gure 2,where the output neuron S computes the following function:S = �[Ja�(a1I1 + a2S1 + a3S0 � Ta) + Jb�(b1I2 + b2S1 + b3S0 � Tb)++ Jc�(c1I3 + c2S1 + c3S0 � Tc) � T ] (11)I1; I2; I3 = 0; 1 being the input bits; S0; S1 = 0; 1 are the two indicating bits,Ja; Jb; Jc are the synapses between the three hidden neurons A;B;C and the output



S, and ai; bi; ci are the synapses between the respectively hidden neurons (A,B,C)and the input and indicating bits.As in the preceeding section, we impose the constraint that the thresholds of thehidden neurons Ta; Tb; Tc to be always positive. In order to simplify the generaliza-tion to the N input bits case we also impose that the synapsis Ja; Jb and Jc has tobe greater than the threshold of the output neuron T . These constraints makes nosubstantial changes to the results.Requiring that this network computes e�ciently the full set of 32 examples leadto the following necesary and su�cient conditions:T > 0 (12)a1 � Ta > a1 + a3 (13)a1 + a2 < Ta (14)b1 < Tb (15)b1 + b3 � Tb > b3 (16)b1 + b2 + b3 < Tb (17)c1 < Tc (18)c1 + c2 � Tc > c2 (19)c1 + c2 + c3 < Tc (20)We denote the examples by writing between square brackets the three inputvalues plus the two indicating bits and the correct output separated by a colon.As in the previous section, it is easy to verify that the correct learning of theten examples: f[000� 00 : 0]; [100� 00 : 1]; [100� 01 : 0]; [100� 10 : 0]; [010� 01 :1]; [010� 11 : 0]; [010� 00 : 0]; [001� 00 : 1]; [001� 10 : 1]; [001� 11 : 1]g ensures thecorrect computation of the full set of examples. For instance, from [000� 00 : 0] wederive T > 0 (Eq. 10); from [100� 00 : 1] we obtain the left-side of Eq.(11), and soon. Extending this result to the case of having N bits involves all the examples thathave only one Input bit ON and all its possibles combinations of indicating bits, plusthe patterns with all the input bits OFF and its combinations with the indicatingbits. This procedure gives that for N input bits is enough (N + 1)2 examples toobtain generalization.3 The Parity ProblemThe parity function is one of the most used problems for testing learning algo-rithms because its simple de�nition and its great complexity given by the fact thatthe most similar patterns (those di�ering by a single bit) have di�erent outputs. Theparity function has only one output neuron that indicates when it is ON that anodd number of the N input bits are ON, while it is OFF if this number is even. Thesimplest architecture known to compute this function using linear threshold units(l.t.u.) and having no direct input-output connections consists of a network withone hidden layer with N units, fully connected to the N input neurons (See Ref.[5]).



~ ~ ~ ~ ~ ~����������������������������Ta Tb Tc Td Te TfT P
I1 I2 I3 I4 I5 I6A B C D E FFigure 3: Network Structure to compute the 6-bit Parity function.As we have done in the previous sections we �rst analyze a particular case with6 input neurons (see Fig.3) and then we generalize the result to N bits.We start explaining the functioning of the network in terms of the synapsesvalues. The functioning is mainly determined by the behaviour of the six hiddenneurons. Half plus one of these neurons 4 are ON if the input pattern has an oddnumber of input bits equal to one; otherwise, only half of them are ON.This is achieved by the following conditions:1. The hidden neuron A, has to be ON when one or more input bits are ON,otherwise A has to be OFF.2. The hidden neuron B, has to be OFF when two or more input bits are ON,otherwise B has to be ON.3. The hidden neuron C, has to be ON when three or more input bits are ON ,otherwise C has to be OFF.4. The hidden neuron D, has to be OFF when four or more input bits are ON,otherwise D has to be ON.5. The hidden neuron E, has to be ON when �ve or more input bits are ON,otherwise E has to be OFF.6. The hidden neuron F, has to be OFF when the six input bits are ON, otherwiseF has to be ON.7. Finally, the output neuron P, has to be ON when four or more hidden neuronsare ON, otherwise P has to be OFF.Denoting by P = 0; 1 the output value, we have that:P = �(a� " 6Xi=1(aiIi � Ta)#+ b� " 6Xi=1(biIi � Tb)# + c� " 6Xi=1(ciIi � Tc)#+



+d� " 6Xi=1(diIi � Td)#+ e� " 6Xi=1(eiIi � Te)# + f� " 6Xi=1(fiIi � Tf )#� T) (21)where Ii = 0; 1(i= 1; : : : ; 6) denote the state of the input neurons.From the conditions (1-7) we obtain the following set of inequalities:From condition 1 we obtain that:ai � Ta 8i (22)From condition 2 we obtain that:bi + bj < Tb 8 i; j (23)From condition 3 we obtain that:ci + cj + ck � Tc 8 i; j; k (24)From condition 4 we obtain that:di + dj + dk + dl < Td 8 i; j; k; l (25)From condition 5 we obtain that:ei + ej + ek + el + em � Te 8 i; j; k; l;m (26)From condition 6 we obtain that:fi + fj + fk + fl + fm + fn < Tf 8 i; j; k; l;m;n (27)From condition 7 we obtain that:w + x+ y + z � T (28)where w,x,y,z are di�erent and could be any of the synapses (a; b; c; d; e; f).Fixing the values of the thresholds Ta; Tb; Tc; Td; Te; Tf , Eqs. (22-28) lead to aset of 26�1 independent inequalities for the synapsis parameters faig; fbig; : : : ; ffig.On the other hand, the total number of examples is 26. Therefore, only imposingthe correct learning of the full set of examples except the most simple one [000000 :1], which determines the sign of the output threshold, ensures the ful�llment ofinequalities (22-28). Hence, we cannot guarantee generalization with any particularsubset of examples.Finally, the generalization of this result to a fully connected network with Ninputs and N hidden neurons is straightforward, because in this case we have 2Nexamples and 2N � 1 inequalities of the type of Eqs. (22-28).



Addition Bit-Shifting ParityNumber of Synapsis 2N + 4 N(2 + log2(N + 1)) N2 +NTotal Numberof Examples 3N 2N (N + 1) 2NExamples Needed forGeneralization 4N (N + 1)2 2N � 1Table 1: Features of the networks used to compute the Addition of two Numbers,Bit-Shifting and the N-bit Parity functions.ConclusionsWe analyzed neural network architectures that exactly solve three di�erent prob-lems: addition, bit shifting and parity. All these architectures have in common onehidden layer and only one output neuron.We showed how several properties for networks with an arbitrary number ofinputs N can be simply obtained by generalizing the analysis of the small networkequations. In this way, several properties can be exactly obtained for N arbitrary.They are compared in Table 1.For the addition and bit shifting problems we showed that generalization can begreatly improved with a particular selection of examples, compared with a randomone. We also found how an upper bound for the minimal number of examples neededfor full generalization scales with N.In the case of the parity problem we showed that the most frequently usedarchitecture (i.e., the full connected one with N hidden neurons) may be completelyinadequate for studying generalization, since there is no subset of examples thatguarantees it. This property may be considered a pathological one resulting fromthe use of a very simple architecture (only one hidden layer) in a very complexproblem. Probably this pathology may disappear in networks with more complexarchitectures.Finally, a comparison of the di�erent properties shown in table 1 for the threecases suggests that the minimum number of examples needed for full generalizationmay serve as a criterion for de�ning the complexity of a problem.AcknowledgmentsThis work was partially supported by the following agencies: CONICET (Ar-gentina), CONICOR (C�ordoba, Argentina) and Secretar��a de Ciencia y T�ecnica dela Universidad Nacional de C�ordoba (Argentina).



References1. Cannas, S.A. 1995. Arithmetic Perceptrons, Neural Computation 7 (1) 173-181.2. Franco, L. and Cannas, S.A. 1998. Solving arithmetic problems using feed-forward neural networks, Neurocomputing 18, 61-79.3. Haykin, S. 1994. Neural Networks: A comprehensive foundation. McMillan.4. Hertz, J., Krogh, A., and R. Palmer. 1991.Introduction to the Theory of NeuralComputation, Addison Wesley, Santa fe Institute.5. Impagliazzo, R., Paturi R., and Saks, M.E. 1997. Size-Depth Trade-o�s forThreshold Circuits. SIAM Journal on Computing 26 (3), 693-707.6. Rumelhart, D.E., McClelland, J.L. 1986. Parallel Distributed Processing, MITPress, Cambridge, MA.


