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Abstract

As a new promising crosover method, multiple aossovers per coupge (MCPC) deserves geda
atention in evolutionary computing field. Allowing multiple aossovers per coupe on a seleded
pair of parents provided an extra benefit in processng time and similar quality of solutions when
contrasted against the wrnventional single cosover per coude gproadh (SCPC). These results,
were onfirmed when ogtimising classc testing functions and herder (nonlinea, nonseparable)
functions.

Despite these benefits, due to a reinforcement of seledive presaure, MCPC showed in some
cases an unckesirable premature anvergence dfed. In arder to facethis problem, the present
paper attempts to control the number of crossovers, and df spring, all owed to the mating pair in
a self-adaptive manner.

Self-adaptation d parameters is a caitral fedure of evolutionary strategies, ancther class of
evolutionary algorithms, which simultaneously apply evolutionary principles on the seach
spaceof objed variables and onstrategy parameters. In ather words, parameter values are dso
submitted to the evolutionary process This approach can be dso applied to genetic dgorithms.

In the cae of MCPC, the number of crossovers alowed to a seleded coupe is a key parameter
and consequently self-adaptation is achieved by adding to the chromosome structure “labels’
describing the number of crossover all owed to ead individual. Labels, which are bit strings, also
undergo crossover and mutation and consequently evolve together with the individual. During the
stages of the evolution process it is expeded that the dgorithm will return the number of
crossovers for which the arrent popuation exhibits a better behaviour.

Descriptions of different self-adaptation methods used, experiments and some of the results
obtained are shown.
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SELF-ADAPTATION OF PARAMETERSFOR MCPC IN GENETIC ALGORITHMS
1. INTRODUCTION

MCPC as proposed in [1] alows multiple cildren per coude by replicated applicaion o
crosover. In those experiments the number of crossover allowed to a wupe remain fixed
during a single run. The rationale behind this implementation was to isolate MCPC effeds to
obtain a set of preliminary results. Previous experiments showed a quality of results as good as
under SCPC, and sometimes better, when 3and 4 crossovers per coupde were dlowed. Also an
extra benefit in processng time was deteded. Despite these benefits, due to a reinforcement of
seledive presaure, MCPC showed in some caes an undesirable premature convergence dfed.

Self-adaptationis anew field in evolutionary computation which advises to dynamicdly update
parameters of the dgorithm by evolving them as part of the diromosome structure. Previous
work of Speas[2] suggested adaptive goproaches to seled the type of crossover operator to be
applied to eat coude during a genetic dgorithm exeaution. In this paper we propose aself-
adaptive gproac to determine the number of crossovers to be gplied to a seleded coupe
under MCPC. A general clasdfication scheme, the aiteria to implement self-adaptation when
optimizing hard testing functions a description d experiments and results are shown in the
foll owing sedions.

2. PARAMETER CONTROL: A CLASSIFICATION SCHEME

Today a grea interest exists in methods including medhanisms to control parameters used by
evolutionary agorithms during exeaution. Eiben, Hinterding and Michalewicz [3] gave the
foll owing main categories of parameter control:

o Deterministic Parameter Control: Thisisthe cae in which the parameter value is modified
acording with a deterministic rule, withou any fealbadk of the seaching process
performed by the strategy.

» Adapive Parameter Control: In this case some feedbadk information d the seaching
processis used to determine the diredion and magnitude of the change in the parameters.

» Sdf-adaptive Parameter Control: Here the parameters to be adapted are cdified within the
chromosomes and unakrgo genetic operations. The best individuals of the popuation have
better chances of survival and reproduction. Hence it is expeded that better parameter
values be more intensively propagated.

Asthe number of crossoversto be gplied, to a mupde, in MCPC is one of the parameters of the
algorithm that is included as a part of an individual, our present approach appertains to the last
above-mentioned category.

3. SELF-ADAPTIVE PARAMETER CONTROL IMPLEMENTATION

Aswe previoudly said, we atempt to self-adapt the number of crossovers per coupde in MCPC.
Because we ae using a binary representation d chromosomes, the number of crossovers
alowed for an individual is codified in afield at the rightmost positions of the bit string. Let us
cdl it the ncross field. In some experiments we dlowed a maximum of three ad in athers a
maximum of seven crosovers per coupe. So, two o three etra bits were enowgh for that
purpose. More generally the last logz(max_cross+ 1) bits of ead individual are used to find an

expeded ogimum number of crossovers.

In that way we have two searching spaces. one @rrespondng to the objedive function and
other associated to the number of crossoversto apply.

Our attempt is that the individuals preserve the information abou the number of crossovers
originally applied to their parents. In thisway it is expeded that, based onthe survival-of-the-



fittest principle, goodsolutions carry information abou the number of crossover applied to their
ancestors and that this number would be an appropriate one.

According to Speas [2] we used alocd adaptive technique. Once the cmupe was sleded we
ched the mrrespondng number of crossover caried by ead parent and;

 If they match, then we gply the recombination operator a number of times edfied by the
ncross field.

* Otherwise we choose arandam number in the permitted range.

In the seand situation and following the Speas approadh, when decoded numbers of
crosovers are different, we ae violating our attempt to preserve information because the
children do na kee the number of crossover by which them were aeded. If the aosover
point does nat disrupt the ncross field (and this event has low probability of occurrence) then
children retain information from either parent, bu they do nd preserve information abou how
they were aeded.

In order to either retain information abou how an individual was creaed o how their parents
were aeded, we devised two dff erent approaches for experimentation.

* EI: In any situation, exchange of information from parents to children is dore in he

traditional way applying the genetic operators with their correspondng probabiliti es.
Parent’ s chromosomes are mated and unabrgo crosover a cetain nunber of times according
to the spedfied values in ncross field if they match, a to a randam allowed value
otherwise. After recombination, mutationis applied to the dildren.
In the dont match situation, this approadch, preserving parent’s information, enforces
popuation dversity in the parameter searching space becaise most of the time one dild
inherits charaderistics from one of the parent and the other child inherits feaures from the
other parent.
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o E2: If the values pedfied in ncross field do na match then the new randam value for the
number of crosoversis inserted first in the parent’s ncross field, and afterwards crossover
is performed for the number of times gedfied by this randam value. This approach by
preserving individual information creaes more similar individuals in the parameter
seaching space ad increases|ossof genetic diversity.
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4. EXPERIMENTAL TESTS

Experiments E1 and E2, to verify the parameter control medanisms were designed. For thiswe
chose two hard testing functions: Easom’s [5] and Schweffel’s [6] functions (seetable 1). A
modified version d the nonrcanoricd genetic dgorithm (Goldberg [4]) was implemented.

Series of many runs were performed onead function, with randamised initial popuation of size
fixed to 1000individuals, using binary representation, propational seledion, €litism, ore point
crossover and Lt flip mutation. The number of generations was fixed to 500and robabiliti es for
crossover and mutation were fixed to 0.65and 0.05 respedively.

The relatively big popuation size of 1000individuals was chosen in arder to alow a significant
contribution d seleded individuals to the evolution rocesswhen high number of crossovers are
allowed. For example in the cae of six crossovers per coude only 16.5% of the available
individualsin the old popuationwill i ntervene when bulding the new generation.

Notation Description Charadgeristics
Unimodal,
f5: Easom's f5 (X1, X2) = —COS(x1) COS(x2) € 47"+ 0 Lhe gIobe;I”ml nimum
: asasmall area
Function x1, X2l1 5100, 1005 relative to the search
space
Dim. |Highly multimodal,
f7: Schwefel's f7(X)= z - Xi ESin( \xi\) fori=1:n the global minimumis
Function 7 . geometricaly distant
xi 0 [- 500,500] N=15 | from the next best
locd minima

Table 1. Objedive functions

The following variables were chosen for the analysis

Name Description
_ Isthe ratio ﬁjest_vahy eE between the best value and the optimal value.
Qua“ty opt_valu
It gives ameasure for the quality of asolution.
CrAvg Mean number of crossover all owed per seleded coupe.
. Defined as in [1]. Runring time difference It is the percentile of time reduction
Dtime ; . .
when compared with classc aosover (single aossover per couge).
5. RESULTS

Results concerning Quality were similar under E1 and E2, bu different when CrAvg is
considered. Hence the foll owing figures alternatively show Quality results under experiments
El or E2. Resultsin regard to CrAvg are summarised in the same graph for both experiments.

Function f5

We started optimizing 5, and for this unimodal function two hits were used to code the
ncross field , allowing a maximum of three cossovers (six children per coupe).

In figure 1 Quality values for the Easom'’s function, show a dlightly slower convergence of
MCPC when compared with SCPC, but after 80 generations the former results are better. In faa
during the simulation, values of Quality read 1.0 unér MCPC and 0.9998 une SCPC.
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Fig. 1: Quality and CrAvg values for function fs
Regarding CrAvg values, it can be ohserved that they oscill ate between 2.5and 2.84&fter the
few first generations under E1 and between 2.3and 2.6 undr E2.

Here the behaviour of the self adaptive parameter control mechanism is clea: when genetic
diversity in the parameter searching spaceis low then lesser number of crossovers are dl owed
and viceversa. This behaviour favours the esolutionary process

Concerning to Dtime values they were 37,26 and 33,86 under E1 and E2 approaces
respedively.
Function f7

When opimizing f7, we dedded to use two and also three bits to code the ncross field ,
allowing a maximum of three and seven crosovers respedively.
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Fig. 2: Quality and CrAvg values for functionf;

In figure 2 Quadlity values for the Schwefel’s function with two hits for ncross field, show a
dightly faster convergence of MCPC when compared with SCPC, bu both converge to the
optimum reading a Quality value of 1.0.

Regarding CrAvg values, it can be observed that they oscill ate between 2.6and 2.8remaining
stable dter 152 generations under E1, and oscill ate between 2.3and 2.6 unér E2.

Here again the behaviour of the self-adaptive parameter control medhanism is dhown.
Parameter setting is adapted to the popuation dversity in the parameter searching space In this
case this behaviour prevent the evolutionary processof being trapped in alocd optima.

Concerning to Dtime values they were 22.1% and 21.3%6 under E1 and E2 approades
respedively.



Another set of experiments gudied the behaviour of the @ntrol medhanism for the Schwefel’s
functionwith threebits for the ncross field.
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Fig. 3: Quality and CrAvg values for function fs

In figure 3 Quality values for the Schwefel’s function with three bits for ncross field, are
shown. Here we caina clea differences on convergence velocity. At the beginning MCPC
showsto be faster and after that SCPC is faster 110generations bath read the optimum.

Regarding CrAvg values, it can be observed that they oscill ate between 4.5and 5.6 uneér E1,
and between 5.2and 6.3 uner E2.

Here again the behaviour of the self-adaptive parameter control mechanism is down.
Parameter setting is adapted na only to the popuation dversity but to the maximum number of
crosovers alowed. Concerning to Dtime values they were 50% and 48% under E1 and E2
approadhes respedively.

6. CONCLUSIONS

The present paper propaoses an aternative gproad to assgn the number of crossovers all owed
for a seleded coupe. Instead of doing that based onthe coupe fitness as in [8], here we
suggest to use aself-adaptive parameter control approadh. The parameter considered is coded in
ancross field of two o threebitsin the diromosome structure, and further submitted to genetic
operations in the same way as any evolutionary technique does. Within this approach two
seaching processs are caried ou simultaneously: one on the problem (objedive function)
space ad the other on the parameter space In this way it is expeded an adaptive parameter
setting, retaining best settings through the survival of the fittest individuals in the problem
space

Two dfferent strategies were gproadied in arder to overcome loss of information about
offspring or parents credion. As they were cnceved, approach E1 maintains popuation
diversity in the parameter searching spacewhile gproach E2 leadsto alossof diversity.

Being consequent with this stuation the control medianism adapts the number of crossovers
for exploration (under E1) or explotation (under E2) acoordingly. And this behaviour is
preserved for diverse maximum number of crossover all owed.

It is also remarkable that on ead experiment MCPC outperforms SCPC most of the time on
quite diff erent fithesslandscgpes.

Future work will consider more biased methods, tied to the fithessof individuals in the wupe,
to chocose the number of crossoversin the don t-match case.
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