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ABSTRACT

Provision of population diversity is one of the main goals to avoid premature
convergence in Evolutionary Algorithms (EAS). In this way the risk of being trapped in
local optima is minimised. Eshelman and Shaffer [4] attempted to maintain pgoulation
diversity by using diverse strategies focusing on mating, recombination and
replacanent. One of their approades, cdled incest prevention, avoided mating of pairs
showing simil arities based on the parent’ s hamming distance.

Conventional seledion medhanisms does not consider if the members of the
new population have cmmon ancestors and consequently due to a finite fixed
popuation size, alossof genetic diversity can frequently arise.

This paper shows an extended approach of incest prevention by maintaining information
about ancestors within the diromosome and modifying the selection for reproduction in
order to impede mating of individuals belonging to the same “family”, for a predefined
number of generations.

This novel approach was tested on a set of multimodal functions. Description of
experiments and analyses of improved results are dso shown.

KEYWORDS: Evolutionary agorithms, genetic diversity, premature anvergence,
sel ection mecdhanisms, incest prevention.
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IMPROVING EVOLUTIONARY ALGORITHM S PERFORMANCE BY
EXTENDING INCEST PREVENTION

1. INTRODUCTION

Natura systems provide apowerful source of inspiration for the design of artificial

systems since even modest biological systems are alept at solving complex, red world
problems.
Genetic Algorithms (GAS), aspeda class of Evolutionary Algorithms (EAS), attempt to use the
medanism of natural selection to search a problem space using the Darwinian theory of natural
seledion and population genetics [9]. They were devel oped by John Holland and coworkers [8]
a the University of Michigan in the 1970s and have been studied by aher reseach groups
since. These studies have established the GA as arobust technique effective across a spectrum
of problems even in the presence of difficulties such as noise, multimodality, high-dimension-
aity and discontinuity [3]. GA's have been applied to awide variety of problems from pipeline
engineering [6], VLS circuit layout [1], [2], resource scheduling [12] and machine learning [7].
As down in the following pseudo-code, a GA maintain a population of multiple individuals
(chromosomes) which evolve throughou generations by reproduction of the fittest
individuals. Selection, crossover and mutation are the main operators used for modifying
individual features. So, it is expected that evolved generations provide better and better
individuals (searchersin the problem space).

begin
t=0; /I tisthe generation number
initialize P(t); /' P(t) isthe population at generationt
evaluateindividualsin P(t);
while end condtionis not true do
begin
t:=t+1;
select C(t) from P(t-1); //C(t) stands for the mating pal
recombine and mutate individualsin C(t) building C’ (t);
evaluate individualsin C' (t);
select individuals from C' (t) to replace individualsin P(t-1) to build P(t)
end
end

In the case of multimodal functions the problem space also caled the fitness landscape,
provide multiple suboptimal points. Depending on the type of operators used and their
frequency of application, the cnvergence to these suboptimal points can arise. This effed,
known as premature convergence, is mainly derived from a loss of population dversity
before optimal, or at least satisfadory values, have been fourd.

A posshble strategy to maintain population (genetic) diversity, attempting to avoid premature
convergenceis amating strategy known as incest prevention.

This approach was first used by Eshelman and Schaffer [4] who avoided mating of those
pairs dowing similarities. As a bit string representation was used for their experiments
simil arities were determined onthe parent’s hamming distance

The present work proposes an extended, representation-independent-approach o incest
prevention. This goal is achieved by maintaining information about ancestors within the
chromosome structure and modifying the selection for reproduction. In this way mating of
individuals belonging to the same “family” is avoided for a predefined number of
generations.

This novel approach was tested ona set of multimodal functions. We aoncentrate here on
description of experiments and analyses of improved results on two of those functions.



2. GENERAL DESCRIPTION OF EXTENDED INCEST PREVENTION (EIP)

In EIP the concept of incest is highly related to the concept of mating members of the same
family and to prevent it this approac allows recombination o individuals without common
ancestors only.

To build the new popuationin EIP, individuas are randomly chaosen from the previous one
acording to the conventiona fithess propational seledion, but they are alowed to
crossover if no common ancestors are detected in ealier generations. In this way exchange
of smilar genetic material is reduced and pqoulation diversity is maintained up to some
convenient degree. Persistent high population dversity has also a detrimental effed: to slow
down the search process.

To make this paint clearer we have to note that by allowing crossover only on some non
relative individuals, we modify the dfect of the selection mechanism on the population.
Moreover, selection is the only operator of an EA where the fithess of an individual affects
the evolution process In such a process two important, strongly related, isues exist:
popuation diversity and selective presaure enforced by the mechanism. They are the sides of
the same win: exploration of the searching spaceversus exploitation of information gathered
so far. Selection plays an important role here because strong selective pressure can lead to
premature corvergence and weak selective pressure can make the search ineffedive [9].
Focussing on this equilibrium problem significant research has been dane [10], [5].

In this work we aldress the isgue by fixing the number of generations to determine the ancestry
relationship between indviduals.

The following pseudo-code delineates a procedure to prevent incest between members of the
same or consecutive generations (brother-sister and parent-off spring).

procedure parent selection
begin
for 1to sizepop
select indiv-1 C(t)
select indiv-2 C(t)
while ((parent(indiv-1)=parent(indiv-2)) OR
(indiv-1=parent(indiv-2)) OR
(indiv-2=parent(indiv-1)))
select indiv-2 C(t)
end while
recombine and mutate individualsin C(t) building C’ (t);
end for
end

3. EXPERIMENTS DESCRIPTION

The eperiments consisted in contrasting results obtained from EIP and a simple, but non
canonical, genetic dgarithm (SGA). Both approaches worked on the optimization d three
testing functions f1, f2 and 3, described below. For our experiments, series of 20 runs each with
randamised initial population of size fixed to 80 individual s were performed on each function,
using proportional selection, binary coded representation, €litism, one paint crossover and bit
flip mutation. The number of generations was variable and probabilities for crossover and
mutation were fixed to 0.65 and 0.001 for f1 and f2 and 0.50 and 0.005 for f3, respectively. In
order to isolate the mnvergence effect of EIP, the kind of sdedion medanism, genetic
operators and parameter settings chosen were those aommonly used in gptimising with asimple
GA.

For this report, we toose ntrasting results on three multimoda functions of varying
difficulty:



f1: Michaewickz's multimoda function

f (x1) = 2.0+ x16in (1077 [X1)
-10<x12.0
estimated maximum value : 3.850274

f2: Michalewickz' s highly multimodal function

f (X1, Xz2) =21.5+ X [$IN (477 [ K1) + X2 [EiN (2077 [X:) |, for ;
-3.0< X1g12.1, 4.1< X255.8
estimated maximum value :38.850292

f3: Branins's Rcos Function
[ 51 . O o O
fa(XuX2) =K - 27 DKez + > OXy - 6[]+100H- Ly Foos( X1) +10,
+(X1,Xz) B(Z (] 2+ H . (85[)%@@( 1)

Xi = -5:10, X2 = 0:15;
nminimumglobd veue: 0.397887

As an indication of the performance of the algorithms the following relevant performance
variables were chosen:

Ebest = ((opt_val - best value)/opt_val)100
It is the percentile aror of the best found individuad when compared with the known, o
estimated, gotimum value opt_val. It gives us a measure of how far are we from that opt_val.

Epop = ((opt_val- pop mean fithess)/opt_val)100
It is the percentile aror of the population mean fitness when compared with opt_val. It tell us
how far the mean fitnessisfrom that opt_val.

Gbest: Identifies the generation where the best value (retained by elitism) was found.

4. RESULTS

As atermination criterion, oneach function a variable number of generation between alower
boundof 300and an upper bound of 1000was determined when the difference of population

mean fitness between two conseautive generations: £ = fr(t + 1) — fr() waslessthan 10

A genera overview for EIP values contrasted with the corresponding SGA values, follows.
Although the optimum was reached in many runs of each series, to contrast the performance of
the dgarithms only statistical data is reported. Mean values and corresponding variance for the
above mentioned performance variables were studied. This was done for al functions and
experiments.

Function f1

Ebest results were analysed for SGA and two EIP variants: EIP2G and EIP3G, which prevent
incest during two or three consecutive generations respedively. In the following tables Lperfvar,



O perivar, olu perfvar Stands for the mean, standard deviation and coefficient of deviation d the
corresponding performance variable (perfvar)
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Fig. 1 Ebest valuesthroughou the experiments for SGA, EIP2G and EIP3G onfl.
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Fig. 2 Percentile of Ebest values below and above 0.5% throughout
the experimentsfor SGA, EIP2G and EIP3G onfl.

HEBEST OEBEST O /UEeBesT
SGA 2,17438421 4,1829588 1.923744
EIP2G 0,41339136 1,03931327 2.514111
EIP3G 0,24635909 0,57028618 2.314857

Table 1. Mean and standard deviation values for Ebest throughou
the experiments for SGA, EIP2G and EIP3G onfl.

Figures 1 and 2, and table 1 show that the EIP approach clearly outperforms SGA on
function f1 optimisation: the number of optimal hits through the series is greater (fig. 1). It
also can be perceived that, preventing incest during three @nseautive generations is better
than doing it on two generations only. Also it is important to remark that Ebest values are
better and remain enough centralized around the mean in any EIP variant when they are
contrasted againgt the SGA.



Analysis of Epop foll ows.
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Fig. 3 Epopvaluesthroughou the experimentsfor SGA, EIP2G and EIP3G onfl.
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Fig. 4 Percentile of Epopvalues below and above 1.5% throughou
the experimentsfor SGA, EIP2G and EIP3G onf1l.

Hepop Oepop O/Uepop

SGA 2,6557993 4,4210455 1.664676
EIP2G 1,3914906 2,0325115 1.460672
EIP3G 0,9162802 2,0163942 2.2006375

Table 2. Mean and standard deviation values for Epop throughout
the experiments for SGA, EIP2G and EIP3G onfl.

Figures 3 and 4, and table 2 show that in the final stages, when the agorithm cornverges,
popuation remains closer to the optimum value when either EIP approacd is used. It al'so can
be observed that, EIP3G is better than EIP2G. Epopvalues are a so better and remain enough
centrali zed around the mean in any EIP variant when they are mntrasted against the SGA.



Function f2

Foll owing figures and tables discuss onresults for f2
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Fig. 5 Ebest values throughou the experiments for SGA, EIP2G and EIP3G on f2.
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Fig. 6 Percentile of Ebest values below and above 1.5% throughou
the experiments for SGA, EIP2G and EIP3G onf2.

HEBEST O EBEST O /UEeBesT
SGA 3,43027374 3,25609318 0.949222
EIP2G 2,33285389 1,98179553 0.849515
EIP3G 1,247088019 1,482983636 1.189157

Table 3. Mean and standard deviation values for Ebest throughou
the experiments for SGA, EIP2G and EIP3G on f2.

Although with lessperformance than in the f1 case, for both approaches SGA and EIP, here
again figures 5 and 6,and table 3 show that the EIP approac clearly outperforms SGA when
optimizing function f2. The number of optimal hits through the series is greaer (fig. 5). It
also can be perceived that, preventing incest during three @nseautive generations is better
than doing it ontwo generations only. Here, also Ebest values are better and remain enough
centrali zed arourd the mean in any EIP variant when they are cmntrasted against the SGA.



Analysis of Epop foll ows.
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Fig. 7 Epopvaluesthroughou the experiments for SGA, EIP2G and EIP3G on f2.
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Fig. 8 Percentile of Epopvalues below and above 2% throughout
the experimentsfor SGA, EIP2G and EIP3G on f2.

Hepor OEporP O/l epop

SGA 4,69946624 3,08721954 0.701725
EIP2G 3,64490413 2,27059911 0.622951
EIP3G 1,247088019 1,482983636 1.189157

Table 4. Mean and standard deviation values for Epop throughout
the experiments for SGA, EIP2G and EIP3G onf2.

Figures 7 and 8, and table 4 show that in the final stages, when the agorithm converges,
popuation remains closer to the optimum value when either EIP approacd is used. It al'so can
be observed that, EIP3G is better than EIP2G. Epopvalues are aso better and remain enough
centrali zed around the mean in any EIP variant when they are mntrasted against the SGA.



Function f3

Foll owing figures and tables discuss onresults for f3
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Fig. 9 Ebest values throughou the experiments for SGA, EIP2G and EIP3G onf3.
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Fig. 10Percentile of Ebest values below and above 0.003% throughou
the experiments for SGA, EIP2G and EIP3G onf3.

HEBEST OEBEST O /Uegest

SGA 0,06338075 0,24056168 3,79550068
EIP2G 0,00293075 0,06045548 20,6279894
EIP3G 0,00411278 0,05958231 14,4871133

Table5. Mean and standard deviation values for Ebest throughou
the experiments for SGA, EIP2G and EIP3G onf3.

Here with much better performance than when optimizing f1 or f2, for any approach, figures
9 and 10and table 5 show that the EIP approach clearly outperforms SGA when ogimizing
function f3. It also can be perceved that, preventing incest during three @nsecutive
generations is better than doing it on two generations only. Here, again Ebest values are
better but a slower dispersion aroundthe mean in any EIP variant is observed.



Analysis of Epop foll ows.
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Fig. 12 Percentile of Epopvalues below and above 0.8% throughou
the experimentsfor SGA, EIP2G and EIP3G onf3.

Fig. 11 Epopvalues throughou the experiments for SGA, EIP2G and EIP3G on f3.

Hepop JEpoP g /Uepop
SGA 0,50199955 0,5002563 0,99652739
EIP2G 0,54270477 0,49906946 0,9195966
EIP3G 0,23704757 0,49792428 2,10052472

Table 6. Mean and standard deviation values for Epop throughout
the experiments for SGA, EIP2G and EIP3G onf3.

In the cae of function {3, although bah approaches behave well figures 11 and 12,and table
6 show that in the final stages, when the agorithm converges, popuation remains closer to
the optimum value when either EIP3G or SGA approadis used. It aso can be observed that,

EIP2G is lessdispersed than EIP3G.

ANALYSISOF GBEST

SGA EIP2G EIP3G
Mopest | Ocpest | 9/Heeest | Uopest | Ocgest | 9/Heeest | Uogest | Ocpest | O/Mcsest
fi | 207,15 | 83,53 0,40 182,9 72,04 0,39 182,9 72,04 0,39
f2 | 241,65 | 79,41 0,32 237,05 | 68,66 0,28 237,05 | 68,66 0,28
f3 565,9 | 262,60 0,46 379,45 | 224,70 0,59 379,45 | 224,70 0,59

Table 7. Mean, standard deviation and coefficient of deviation valuesfor Gbest throughou

the experiments on each function under each approach



Table 7, clearly shows that the best individua retained by elitism, is found in earlier
generations when we use aty EIP variant. Values are dispersed similarly aroundthe mean
for any approach.

5. CONCLUSIONS

EIP, a variant of incest prevention is presented here. Instead of using a measure of
simil arities between individuals through their Hamming distance to prevent recombination,
EIP avoids breeding between individuals belonging to the same parentage for a limited
number of generations.

This approach showed evidence of better performance when contrasted with traditional GA
approadhes on optimization of multimodal functions of varied dfficulty. The optimal value
was reached in many runs of each series and the mean vaue for the best individua
throughout the series was always foundearlier and was better than with SGA.

On the testing functions st, prevention through three cnsecutive generations showed better
results than when it is appli ed through only two conseautive generations.

Experiments with a greater number of conseautive generations, na reported here, were dso
performed bu the process $iows higher overhead when looking for distinct ancestry of
individuals in localized search. Further work would be necessary to determine an adequate
limit to the number of consecutive generations involved in incest prevention.

This new variant presents also an alternative criterion to prevent incest that is independent of
the individual's representation and consequently can be applied to integer, red, vedored or
other representations without change.

Presently EIP is being tested ona wider set of testing functions and even if it can add some
overheal due to the control, specifically when the genetic diversity of the initia population
is not high, the results are promisory.

Further research will i nclude thorough inspection of initial and evolved population diversity
in order to maintain improved performance
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