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Abstract

This paper presents a new approac to reduce the spaceproblem due to combinatorial explosion o
CNM (Combinatorial Neural Model) method. First we show a description & CNM, proposed by
Machado and Rocha [MAC 91], [MAC 92], [MAC 92a], [MAC 97], as a variation d fuzzy neural
network introduced as an dternative to med many requirements, such as expressveness
inteligibility, plasticity and flexibility. Our approac represents an alternative to generate the CNM
network with certainty fadors for ead hypaothesis. We demonstrate by means of a simple pradicd
example that the number of combinations can beredly reduced.
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A Parsimonious Generation of Combinatorial Neural Model

1. Introduction

Clasdfication systems based on symbadlic-conredionist hybrid architedures have been proposed,
e.g. [HUD 92|, [KNA 92 and [GUA 94], as a way of obtaining benefits from the spedfic
charaderistics of both models. The assciative tharaderistics of artificial neural networks (ANN)
and the logicd nature of symbadlic systems have led to easier leaning and the explanation d the

aqquired knowledge.

This work addresses one of such architedures, the Combinatorial Neural Model, introduced by
Machado and Rocha [MAC 91], [MAC 92|, [MAC 924], [MAC 97], presenting an aternative to
cope with ore of its mgjor problems: the wmbinatorial explosion d CNM network as the number
of attributes increases. This approach is illustrated through an example of applicaion in
agricultural reseach. By using ared training set, the total spaceof original CNM network is shown

and then we present the posshble reduction d this gace & a consequence of using our approacd.

2. Description of CNM

CNM is a hybrid architecure for intelli gent systems that integrates symbalic and connedionist
computational paradigms. It has me significant isales, such as the aility to buld a neura
network from badkground knowledge; incremental leaning by examples, solving the plasticity-
stability dilemma [FRE 92]; a way to cope with the diversity of knowledge; knowledge extradion
of an ANN; and the aility to ded with urcertainty. CNM is able to recgnize regularities from
high-dimensional symbadlic data, performing mappings from thisinpu spaceto alower dimensional
output space

CNM uses aupervised leaning and a feadforward topdogy with: one inpu layer, ore hidden
layer - here cdled combinatorial - and ore output layer (FIGURE 2.1). Each neuron d the input
layer corresponds to a awncept - a owmplete idea dou an oljed of the domain, expressed by an
objed-attribute-value form, they represent the evidences of the domain applicaion. On the
combinatorial layer there ae gygregator type neurons, ead ore mwnreded to ore or more neurons
of theinpu layer by fuzzy AND arcs that represent logicd concepts. The output layer contains one
neuron for eat pasdble dass (also cdled hipathesis ), linked to ore or more neurons on the
combinatorial layer by fuzzy OR arcs that also represent concepts. The synapses may be excitatory
or inhibitory and they are tharaderized by a strength value (weight) between zero (not conreded)



to ore (fully conreded synapses), that can expressthe logicd relations. For the sake of simplicity,
we will work with the learning of crisp relations, thus with strenght value of synapses equal to ore,
when the oncept is present, and zero, when the concept is not present. However, this option daes

not affed the gpproach to fuzzy relations learning.

FIGURE 2.1- The mmplete version d the combinatorial network for 3 inpu evidences
and 2 lypotheses[MAC 9]

The network is creaed completely empty, acaording to the following steps. (a) one neuron in
the input layer for ead evidencein the training set; (b) a neuron in the output layer for ead class
in the training set; and (c) for ead neuron in the output layer, there is a complete set of hidden
neurons in the combinatorial layer which correspondto al possble cmmbinations (lenght between
two and nne) of conredions with the input layer. Thereis no reuronin the cmbinatorial layer for

length ore cnredions. In this case, inpu neurons are nneded dredly to hypotheses.
The leaning medhanism worksin orly oneiteration, andit is described bell ow:
PUNISHMENT_AND _REWARD_LEARNING_RULE
*  Setto ead arc of the network an acaimulator with initial value zero;
» For each example cae from the training data base, do:
Propagate the evidence beli efs from input nodes until the hypotheses layer;
For each arc reating a hypothesis nodg, do:

If the reated hypothesis node crresponds to the arred classof the case



Then backpropagate from this node until input nodes, incressing the acamulator of

ead traversed arc by its evidencia flow (Reward)

Else backpropagate from the hypothesis node until inpu nodes, deaeasing the

acamulator of ead traversed arc by its evidencia flow (Punishment).

After training, the value of acaimulators associated to ead arc ariving to the output layer will

be between [-T, T], where T is the number of all cases present in the training set.

Thelast step isthe prunning of network; it is performed by the following adions: (a) remove dl
arcs whaose acamulator is lower than athreshold (spedfied by a spedalist); (b) remove dl neurons
from the input and combinatorial |ayers that became disconneded from all hypotheses in the output
layer; and (c) make weights of the acs arriving at the output layer equal to the value obtained by
dividing the ac acamulators by the largest arc acawmulator value in the network. After this

prunning, the network becomes operational for clasdfication tasks.

3. TheProblem

Despite CNM is a simple model, it has many worthy fedures, as e in the previous sdion.

However, it has me weaknesses that limit its use, like;

¢ intheinitia phase, the generation d the network completely empty, representing all possble

combinations for ead hipathesis, is clealy unfeasible a reaognized by the author of the model.

e thefull generation d al combinations of attribute-values may creae many unred hypothesesin

resped to mgjority appli cations.

e as a onsequence of its knowledge representation form, CNM has its expressvity limited to

Propasitional Logic.

In the first paper [MAC 89], the authors suggest the wntrol of combinatorial explosion d the
nodes in the hidden layer by incrementally building of the network. The mechanism starts with a
low combination ader and increases the order to an upper one until an arbitrary limit. The aithor
suggests a aiterium based onthe “magic number” of Miller [MIL 56], seven plus or minus two, to
stabli sh the upper boundto the order of combinations. Some works [LEA 93] and [FEL 97] address
the same problem - the combinatorial explosion. Although they read combinations of higher order,
the search in the solution spaceis, as a rule, limited by the rapid growing of the network. Our
approach is addressed to this problem too and may be seen as an aternative that can increase

expressvely the order of generated combinations and reduce the growing of the network.



4. Our approach for building CNM network

This sdion presents our approach to generate the CNM, that may reduce the ast of the
algorithm in terms of space and that we cdl parsimonious generation of CNM network. By this
approad, the neurons and the cnredions are aeaed ony by contingence, i.e., orly when required
by an example in the training set. Moreover, during the training phase, it is only computed the
rewarding of the acs arriving at the wrred class There is no purishment. The mmputation d the
effed of misclasdficdions is dore by cdculating the difference between the value of eadh
acwmulator at the end o the training, for ead combination, and the value of the other

acamulators for the same combinationrelated to dfferent classes.

Let us take the example of the training set used in the original propcsal [MAC 89, shown in
TABLE 4.1.

TABLE 4.1- Patients with dseases and asociated symptoms

Name | Symptoms | Disease
John sl,s2,s3 dl
Diana | sl,s2,s4 dl
Mary sl,s3,s4 d2
Peter | s2,S3,4 d2

In the original approac, the expansion d the network based onthis training set produces the
combinations shown in TABLE 4.2. During the initial phase - creaion d the empty network —
twenty eight combinations were generated. After prunning with threshad ore, ten combinations
remain, and with two as threshold, two remain. Using our approadh, acording to TABLE 4.3,
twenty two combinations are generated, and the same quantities remain - ten and two - after the

prunning with threshad ore and two, respedively.
The dgorithm proposed for generation d the CNM takes the foll owing form:
e For each examplein the training set, do:
Compute all possble combinations based onthe example
For each computed combination, do:
If thereisan equal combination in the network arriving to the same dass
Then add one to the acamulator of the ac ariving (Reward)

Else include an arc correspondng to the adual combination, setting the aceimulator to

one (Reward)



To compute the final value of the acamulators, the result of the folll owing operations is taken:
for eadh acamulator of ead combination, take its value as ACC; for all combinations equal to the
precalent one pointing to classes different from the precalent, sum their acamulators, cdling it
SUM; the final result of ACC is given by ACC=ACC- SUM. It is equivalent to purishments of
the original algorithm, in orly one passng. Both training and acamplishment of the final value of

acaumulators are eaily traced through TABLES 4.1and 4.3.

TABLE 4.2- Effeds of training and prunning of the CNM

Symptoms Accumulators Thrshld/ Prun.

Disesse |sl |2 [s3 |s4 |Begin | Jo | Di | Ma| Pe 1 2
X 0 1 2 1 1 1 -
X 0 1 2 2 1 1 -
X 0 1 1 0| -1 - -
X 0 0 1 0| -1 - -

X | X 0 1 2 2 2 2 2
X X 0 1 1 0 0 - -
X X 0 0 1 0 0 - -
dl X | X 0 1 1 1 0 - -
X X 0 0 1 1 0 - -
X | X 0 0 0| -1] -2 - -
X | X | X 0 1 1 1 1 1 -
X | X X 0 0 1 1 1 1 -
X X | X 0 0 0| -1]-1 - -
X | X | X 0 0 0 0| -1 - -
X 0 1| 2] -1 -1 - -
X 0 1| 2] -2 -1 - -
X 0 1| -1 0 1 1 -
X 0 0| -1 0 1 1 -
X | X 0 1| -2 -2 ] -2 - -
X X 0 1| -1 0 0 - -
X X 0 0| -1 0 0 - -
dz2 X | X 0 -1 -1 ] -1 0 - -
X X 0 0| -1]-1 0 - -

X | X 0 0 0 1 2 2 2
X | X | X 0 1 -1 -1 ] -1 - -
X | X X 0 0| -1]-1]{-1 - -
X X | X 0 0 0 1 1 1 -
X | X [ X 0 0 0 0 1 1 -

Jo=John,Di=Diana, Ma=Mary, Pe=Peter



TABLE 4.3 - Parsimonious generation & CNM

Symptoms Accumulators Thrshd/Prun
Disesse |sl |2 [s3 |44 |Begin | Jo | Di | Ma| Pe | Acc 1 2
X 0 1 2 1 1 -
X 0 1 2 1 1 -
X 0 1 1 -1 - -
X | X 0 1 2 2 2 2
X X 0 1 1 0 - -
dl X | X 0 1 1 0 - -
X | X | X 0 1 1 1 1 -
X 0 1 -1 - -
X X 0 1 0 - -
X X 0 1 0 - -
X | X X 0 1 1 1 -
X 0 1 1 -1 - -
X 0 1 2 1 1 -
X 0 1 2 1 1 -
X X 0 1 1 0 - -
dz2 X X 0 1 1 0 - -
X | X 0 1 2 2 2 2
X X | X 0 1 1 1 1 -
X 0 1 -1 - -
X | X 0 1 0 - -
X X 0 1 0 - -
X | X [ X 0 1 1 1 -
5. Example

In this example we use data related to the use of pesticides in S8 Paulo’, duing 1994,
acording to FIGURE 5.1. Training is acamplished over attributes city, crop, disease, pesticide,
and quantity, described below:

city: Code of the dty where the pesticide was appli ed.
There ae 120cities.

crop: Code of the aopthat receved the pesticide.
There ae 27 crops.

disease: Code of the disease being treded.
There ae 55 dseases.

pesticide:  Code of the pesticide gplied.
There ae 140 pesticides.

" Data obtained by agreement between EMBRAPA Environment and CREA-SP.



guantity: It is the target attribute and indicates pesticides level applied in ore dty.

Domain={ High, Medium, Low} .

According to the original version d CNM, disregarding combinations between dfferent values

from the same dtribute, combinations siownin TABLE 5.2 are generated.

TABLE 5.2 - Generated combinations for ead hypothesis through CNM

Combinations of 2 attributes:

city and crop: 3,240
city and disease: 6,600
city and pesticide: 16,800
crop and disease: 1,485
crop and pesticide: 3,780
disease and pesticide: 7,700

Combinations of 3 attributes:
city, crop and disease: 178,200
city, crop and pesticide: 453,600
city, disease and pesticide: 924,000
crop, disease and pesticide: 207,900

Combinations of 4 attributes:
city, crop, disease and pesticide: 24,948,000
Total of combinations for ead hypothesis: 26,751,305

Considering that we have 3 hypotheses, the total amourt of generated combinations, with empty
network, is 80,253,915.The parsimonious generation d the network, with the same training set,
produced ory 5,152 combinations, representing a drastic redution onthe number of generated
combinations. FIGURE 5.1 shows the summary of the training, listing total combinations

generated. In aher training sets this gain may be lower, but it is possble that in amost all cases a

considerable gain will be obtained.



}i' Combinatorial Heural Model HEE

CNM Beginning:|9:4?:35AM End: I&W:EEAM Examples: |1DDD Leave |
Thrashald: I Extract Rules | Bruniing | Test Outputs | Test Combinations |

Message ; ITraining aver

Summary of the training:

HHH Stucture Generated  #H#

Input Modes = 343

Combinatorial Layer Modes = 5152
Arc Modes for Input = 12788
Output Modes = 3

Total of Modes = 18286

Bigger Accumulatar = 42
Smaller Accumulator = 164

FIGURE 5.1 - Partial outputs of the parsimonious generation d& CNM

6. Conclusions

By the presented approach it is never creaed unrecessry arcs in the network; this fad leads to
the generation d trained networks smaler than the origina proposal [MAC 91], [MAC 92,
[MAC 924], [MAC 97], and aher approachs [LEA 93 and [FEL 97]. On the other hand, the final
network obtained after prunning phase is the same in al alternatives. The main problem of space

occursin thetraining phase and ou approach reduces this problem.

During training phase, gain in terms of space provided by this propcsal, presents a
compensation through cost increasse to compute the final value of acawmulators, since it is
necessary to identify equal combinations for different hypotheses. However, such way of building

the network may be considered an alternative when the main restrictionis gace

The space omplexity of this proposal will be, at worst case, equal to that of the original one. In
other words, if all possble combinations are sssociated to al posdble hypotheses in the training
set, the required spaceto buld the CNM in bah aternatives, will be the same. In any other

situations, the present proposal will generate asmall er network.
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