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Abstract

Belief Revision systems are logical frameworks to modeling the dynamics of knowl-
edge. That is, how to modify our beliefs when we receive new information. The main
problem arises when that information is inconsistent with the beliefs that represent
our epistemic state. For instance, suppose we believe that a Ferrari coupe is the fastest
car and then, we found that some Porsche cars are faster than Ferrari cars. Surely, we
need to revise our beliefs in order to accept the new information preserving as much
old information as possible.

There are many different models for belief revision but AGM is the most popular
one. Almost any others are based on the foundations of AGM. They present an
epistemic model (the formalism in which the beliefs will be represented) and then
define different kinds of operators. The basic representation of epistemic states is
through belief sets (set of sentences closed under logical consequence) or belief bases
(set of sentences not necessarily closed). Each operator may be presented in two ways:
by giving an explicit construction (algorithm) for the operator, or by giving a set of
rationality postulates to be satisfied. Rationality postulates determine constraints
that the respective operators should satisfy. They treat the operators as black boxes;
after receiving certain inputs (of new information) we know what the response will be
but not the internal mechanisms used.

The operators for change use selection functions to determine which beliefs will be
erased from the epistemic state. Partial meet contractions (AGM model) are based on
a selection among subsets of the original set that do not imply the information to be
retracted. The kernel contraction approach is based on a selection among the sentences
that imply the information to be retracted. Revision operators can be defined through
Levi identity; in order to revise an epistemic state K with respect to a sentence o, we
contract with respect to —a and then expand the new set with respect to a. On the
other hand, consolidations are operators that make set of sentences (non closed under
logical consequence) consistent.

One of the most discussed properties of the revision operators is success. Success
specifies that the new information has primacy over the beliefs of an agent. We propose
a kind of non prioritized revision operator in which the new information is supported
by an explanation. Each explanation is a set of sentences with some restrictions. The
operator we propose is built in terms of kernel contractions and consolidations. This
presentation contains several examples that justify the intuitions behind our model.
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1 Use of Explanations

We can motivate the use of explanations with an example. Suppose that Michael believes
that («) all birds fly and that (3) Tweety is a bird. Thus, he will believe that () Tweety
flies. Then, Johana tells him that Tweety does not fly. As a consequence, Michael will have
to drop the belief in « or the belief in 5 forced by having to drop J. However, it does not
seem a rational attitude to incorporate any external belief without pondering it. Usually,
an intelligent agent demands an explanation supporting the provided information. Even
more if that information contradicts its own set of beliefs. Being rational, Michael will
demand an explanation for the belief —d. For instance, Johana accompanies her contention
of Tweety does not fly with the sentences Tweety does not fly because it is a penguin and
penguins are birds but they do not fly. Perhaps convinced, Michael would have to check
his beliefs in order to determine whether he believes Tweety flies.

The main role of an explanation is to rationalize facts. At the base of each explanation
rests a why-question [Res70]: “Why Tweety does not fly?”, “Why he said what he did?”,
“Why is it raining?”. We think that a rational agent, before incorporating a new belief
that contradicts its knowledge, demands an explanation for the provided information by
means of a why-question. Then, if the explanation resists the discussion, the new belief,
together with its explanation, is incorporated to the knowledge.

2 Preliminaries

We will adopt a propositional language £ with a complete set of boolean connectives: —,
A, V, —, <. Formulz in £ will be denoted by lowercase Greek characters: a, 3,9, .... Sets
of sentences in £ will be denoted by uppercase Latin characters: A, B, C,.... The symbol
T represents a tautology or truth. The symbol | represents a contradiction or falsum.
The ~ character will be reserved to represent selection functions for change operators. We
also use a consequence operator Cn. Cn takes sets of sentences in £ and produces new
sets of sentences. The operator Cn satisfies the following three conditions:

o Inclusion: A C Cn(A) for all A C L.
e [lteration: Cn(A) = Cn(Cn(A)) for all A C L.
e Monotony: If A C B then Cn(A) C Cn(B) for all A, B C L.

We will assume that the consequence operator includes classical consequences and verifies
the standard properties of deduction and compactness:

e Supraclassicality: If o can be derived from A by deduction in classical logic, then

a € Cn(A).
e Deduction: § € Cn(AU{a}) if and only if (a« — ) € Cn(A).
o Compactness: If a € On(A) then a € Cn(A’) for some finite subset A’ of A.

To simplify notation, we write Cn(a) for Cn({a}) where « is any individual sentence in
L. We also write o € Cn(A) as A F a.

Let K be a set of sentences. As in the AGM model, we will assume three different
epistemic attitudes:



e Accepted: « is accepted in K if @ € Cn(K).
e Rejected: « is rejected in K if ma € Cn(K).

e Undetermined: « is undetermined in K if agCn(K) and ~a¢Cn(K).

3 Formal Definition of Explanation

In order to present a revision operator based on explanations, we will define first different
kinds of explanation. We will use a set of sentences as the explanans (beliefs that support
the new belief) and a single sentence as the explanandum (the conclusion of the explanans).

3.1 Previous works about explanations

In [G&r88| Géardenfors presents some references to works about explanations. He present
an account of explanations where the connections between the explanans sentences (in our
framework, a set of sentences A) and the explanandum («) is always evaluated relative to
an epistemic state.

In [WPFS95] the authors used a notion of explanation using transmutations of infor-
mation systems. They used the Spohn’s notion of reason for within the general setting
of transmutations and extended this to characterize most plausible explanations. Each
sentence has assigned a informational value by an ordinal that represents its firmness in
the epistemic state.

Gardenfors [Gar88] define a kind of explanation measured by a surprise degree. Accord-
ing to Gardenfors, when a person (or agent) wants an explanation of a fact «, he normally
already knows that « is true. So the information conveyed by the explanans does not
change the belief in . Since the fact @ may be more or less surprising or unexpected,
the principal effect of a successful explanation is that the surprise in « is decreased. This
model is different of our model because request an explanation for a belief in the epistemic
state and it use a numerical measure for the surprise degree.

3.2 Evolution of the concept of explanation

Now, we will present different definitions of explanation. We begin with the most simple
form of explanation.

Definition 3.1: First Approach. The set A is an explanation for « if and only if A+ a.
[ |

However, note that in this definition, any inconsistent set is an explanation for any

belief.

Definition 3.2: Second Approach. The set A is an explanation for « if and only if:
1. AF a.

2. Consistency: A¥F 1.
[ |

Omer [Tuo72] has defined a model of explanation using deductive logic. He gives the
following criterion for explanation:

In the explanans no sentence which is less informative in the topic should be given when
it is possible to give a more informative one.



Next, Omer states as “an important subcase” of this requirement [Tuo72]:
No sentence in the explanans should be of less informative content than the explanandum.

One important question left open by the above requirement is how to measure the in-
formation content of a sentence. It is possible to use some kind metrical measure as
probability. However, we do not use this kind of measures; we will use a deductive notion
of informational content.

Definition 3.3: Let a and § be sentences in £. We define the following relationships
about informational content:

o If a1 then:

“a has more informational content than 37, noted by a >i. 8, whenever a + 3
and g F a.

“a has the same informational content than 3”7, noted by a =;c 3, whenever

al g and g+ a.

“a has at least the same informational content as 3”7, noted by a > 3, when-
ever a > [ or a =i J (that is, a F 3).

“a is incomparable with 37, noted by a><;.3, whenever a?;.3 and S#ica (that
is, a ¥ B and ¥ «a).

o If « =1 then 8 >;c a for all § € L.
|

For instance, we have that o >3 @V 3 and a A § >jc a (except in the limit case in which

Observation 3.1: Relations between >jc, >ic, ><jc and F:
1. If a1 then o > § if and only if o F 3.

2. If a ¥ B then B >ic @ or a><;c0.
|

Observation 3.2: The deduction relation  induces a partial order >j. among the
sentences of the language.

PROOF: We need to show that the relation >j. satisfies reflexivity, transitivity and
antysimmetry.

1. Reflexivity: a >j. « for all « € L.

(a) @ = L. Then trivially o >j¢ .
(b) a#L. Since a F a by Observation 3.1 we have that a >;¢ a.

2. Transitivity: If a >;. 5 and 3 >;. ¢ then a >;. ¢ for all o, 3,06 € L.

(a) 0 = L. Then trivially a >jc 0.

(b) 0#L. Since 5 >ic d then S F 0 and S#L. Since o >jc f then a - 5 and a# L.
From o+ 8 and § F 0 then a - §. Therefore, o >;c 9.

3. Antisymmetry: If a >;. 5 and 3 >;. a then a =; 8 for all o, 8 € L.

(a) a = L. If @ >jc § then = L. Therefore a =i .



(b) a#l. If @ >i. B then a F 3. Since 8 >jc a then 5+ «. Therefore, o =j¢ f.
|

In the last definition of explanation, we can have the following explanation for the
sentence a: {aV 3,aV -5}, In this case, the explanandum could be the explanans of each
sentence of the original explanans and the informational content of the explanandum is
greater than the informational content of each sentence in the explanans. Therefore, we
need to add another constraint to the definition of explanation. We do not want the case
in which for all 5 € A, aF 3 (i.e., a >ic ). We can request the following property:

Strong Informational Content: For all § € A, 3 >ic a or ><jc0.

That is, all the sentences in the explanans have at least the same informational content as
the explanandum or they are incomparable to it. However, we can not have the following
explanation for a: {9,0 — a} because & >ic (0 — «). Therefore, we need to weaken the
above requirement.

Definition 3.4: Third Approach. The set A is an explanation for « if and only if:
1. AF a.
2. Consistency: A¥F 1.

3. Weak Informational Content: If there is some S € A such that o > # then there
is some 0 € (A \ {8}) such that § >;. a or ><;cq.
|

This proposal is quite different from Olmer’s approach [Tuo72|. According to Olmer,
the explanandum should be incomparable with any of the sentences of the explanans.

In spite of the fact that a sentence in the explanans can get less informational content
than the explanandum, the conjunction of the explanation has at least as informational
content as the explanandum.

Observation 3.3: If A is an explanation for a then the information content of A(A) has
at least the same informational content as «.

PROOF: Since A is an explanation for o then A - o and aZ 1. Then A(A) F a. Suppose
that A(A)Zica. Due to Observation 3.1, if A(A)Zica then A(A) ¥ « (absurd). Therefore
A(A) Zic a. m

However, we can have the following explanation for a: {aV 3,V —3,9}. Therefore,
we can request another restriction for the definition of explanation, following the principle
formulated by Olmer [Tuo72]:

The explanans should contain redundant information only if it is relevant.
We can approximate this criterion demanding minimality in the explanation.
Definition 3.5: Fourth Approach. The set A is an explanation for « if and only if:
1. AF a.
2. Consistency: A¥F 1.

3. Weak Informational Content: If there is some S € A such that o > # then there
is some 0 € (A \ {8}) such that § >;. a or ><;cq.

4. Minimality: If B C A then B F a.



Due to the compactness of Cn and by minimality, all explanations are finite. This
definition does not correspond exactly with the constraint suggested by Omer but we
will adopt it. Again, we have a problem in some cases: {aV 3, (aV —3) A ¢} could be
an explanation for «. This explanation is logically equivalent to {a V 3, V 3,0} but
syntactically different from it. Therefore, we need to add syntactic restrictions to the
sentences in the explanans.

Definition 3.6: Let A be a set of sentences. The set A is in conjunctive normal form
[Dav®9] if and only if each sentence in A4 is:

i) An atomic sentence (positive literal).
ii) The negation of an atomic sentence (negative literal).

iii) A disjunction of (positive or negative) literals.

Each formulae in £ can be represented as a conjunction of disjunctions of literals.
Therefore, for all « € L there is a set A such that A+ a and A is in conjunctive normal
form. We propose a more flexible way to represent sentences in conjunctive normal form.

Definition 3.7: Let A be a set of sentences. The set A is in weak conjunctive normal
form if and only if each sentence in A is:

i) An atomic sentence (positive literal).
ii) The negation of an atomic sentence (negative literal).

iii) A disjunction of (positive or negative) literals or a logical implication of the form
(y A ... Aay) — B where a1, ..., a,, 3 are positive or negative literals.

Finally, we will give the last definition of explanation.
Definition 3.8: Fifth Approach. The set A is an explanation for « if and only if:
1. A is in weak conjunctive normal form.
2. AF a.
3. Consistency: A¥F 1.

4. Weak Informational Content: If there is some 3 € A such that o >i. § then there
is some 0 € (A \ {#}) such that § >j. a or §><;cq.

5. Minimality: If B C A then B ¥ a.

We will note the relationship “A is an explanation for a” as A — a. |



4 Consolidation Operator

The consolidation operator provides a mechanism to treat local inconsistencies in belief
bases. This operator is defined as a contraction with respect to L. The idea is to give up
all possible contradictions in a belief base. The most common approach to contraction is
partial meet contraction, proposed by AGM [AGMS85] and defined as follow:

Definition 4.1 (Alchourrén & Makinson [AM81]): Let K be a set of sentences and « a
sentence. The set K | « is the set of sets such K/ € K | « if and only if:

1. K CK.
2. K'¥Fa.
3. There is no set K” such that K’ ¢ K” C K and K" ¥ a.

The set K 1 « is called the remainder set of K with respect to a. |

Definition 4.2 (Alchourrdn, Gardenfors & Makinson [AGM85]): A selection function for
a set K of sentences is a function v (v : 2% = 2%) such that, for all sentence a:

1. If K L « is non-empty, then v(K L «) is a non-empty set of K L a.

2. If K 1 «is empty then v(K L a)={K}.
|

Definition 4.3 (Alchourrén, Gardenfors & Makinson [AGM85]): Let K be a set of sen-
tences and v a selection function for K. The partial meet contraction on K generated by
~v is the operation <+ such that, for all sentences a: K-+va = Ny(K L «). An operation
— is a partial meet contraction if and only if there is a selection function ~ such that for
all sentences a holds that K—a = K+~a. |

The partial meet contraction of K with respect to « is equal to the intersection of the set
of selected maximal subsets of K that do not imply «. However, we do not talk about
restrictions on selection functions. The following definition refers to a special case when
the selection function is based on a “preference” relation.

Definition 4.4 (Alchourrén, Gardenfors & Makinson [AGM85]): Let K be a set of sen-
tences. A selection function v for K and the contraction operator based on it are:

1. relational if and only if there is a binary relation C such that for all sentences «, if
K | o # @ then:

YK La)={K':K'e K 1aand K"C K’ forall K" € K 1 a}

2. transitively relational if and only if there is a relational binary relation that is tran-
sitive.

Based on partial meet contraction, we can define partial meet consolidation as a partial
meet contraction by falsum (L) [Han97b]. The partial meet consolidation of K with
respect to L is the intersection of the “most preferred” maximal consistent subsets of K.

The following representation theorem has been obtained by Hansson for partial meet
consolidation.

Theorem 4.1 (Hansson [Han97b]): An operation ! is an operation of partial meet con-
solidation if and only if for all sets K of sentences:



Strong Consistency: K is consistent.
Inclusion: (K!) C K.

Relevance: If a € K \ (K!) then there is some K’ such that K! C K’ C K, K’ is
consistent and (K’ U {a}) is inconsistent.
|

5 Kernel Consolidation

An alternative to partial meet consolidation is kernel contraction. The kernel contraction
is based on the observation that a set K implies a sentence « if and only if contains some
minimal subset that implies .. Therefore, in order to remove « from K, it is necessary to
give up at least one element of each minimal a-implying subset of K [Han97b].

Definition 5.1 (Hansson [Han93a]): Let K be a set of sentences and « a sentence. Then
K 1L« is the set such that K’ € K 1L« if and only if:

1. K/ CK.
2. K'F a.
3. If K" ¢ K/ then K" ¥ a.

The set K lla is called the kernet sel, and its elements are called tha a-kernels of K.
|

Definition 5.2 (Hansson [Han93a]): An incision function o for K is a function such
that for all a:

1. o(K1la) CUK1La).
2. If o C K' € Klla then (K'No(K1la)) # @.

Furthermore, an incision function ¢ for K is smooth if and only if it holds for all subsets

K' of K that if K'+ 8 and 3 € o(K 1lLa) then (K'No(K1lla)) # 2. [ |

Definition 5.3 (Hansson [Han93a]): Let o be an incision function for K. The kernel
contraction on K generated by o is the operation +—¢ such that, for all sentences a:

K+oa=K\ (o(K1la))

An operator — for K is a kernel contraction if and only if there is some incision function ¢
for K such that K—a = K-+oa for all sentences «v. Furthermore, if ¢ is a smooth incision
function then — is a smooth kernel contraction. |

The consolidation is defined as a contraction with respect to falsum. Then, a (smooth)
kernel consolidation is defined as a (smooth) kernel contraction with respect to falsum. The
following representation theorem has been obtained by Hansson for kernel consolidation
and smooth kernel consolidation.

Theorem 5.1 (Hansson [Han97b]): An operation ! is an operation of kernel consolidation
if and only if for all sets K of sentences:

Strong Consistency: K! is consistent.

Inclusion: (K!) C K.



Core-retainment: If a € K \ (K!) then there is some K’ such that K’ C K, K’ is
consistent and (K’ U {a}) is inconsistent.

Furthermore, ! is an operation of smooth kernel consolidation if and only if it satisfies
consistency, inclusion, core-retainment and:

Relative Closure: K N Cn(K!) C K.
|

The main difference between partial meet contraction (consolidation) and kernel contrac-
tion (consolidation) is that the first one uses an order among the subsets of K while the
second one (by means of an incision function) uses an order among the sentences of K.
Furthermore, since relevance implies core-retainment we can see that any partial meet
consolidation is a kernel consolidation. We may see kernel consolidation (contraction) as
a generalization of partial meet consolidation (contraction).

6 AGM Revision

The AGM model is the most popular model of belief revision. This model is defined
upon belief sets (set of sentences closed under logical consequence). The revision operator
is characterized by rationatily postulates [AGMS85, G&r88|. These postulates should be
satisfied by any revision operator applied upon belief sets. Let K be a belief set (i.e.,
K = (Cn(K)), * a revision operator and a a sentence. Then, a AGM revision operator
satisfies the following postulates:

1

Closure: Kxao = Cn(Kxa).

i) Success: Kxa - a.

iit) Inclusion: Kxa C Cn(K U {a}).

iv) Vacuity: If K¥ —a then Kxa = Cn(K U {a}).

v) Consistency: If ¥ —a then Kxa ¥ L.

vi) Extensionality: If F o < 3 then Kxa = Kx(.

Vil

)
)
)
)
)
)
) Superezpansion: Kx(a A ) € On((Kxa) U {5}).
)

Subezxpansion: If Kxa ¥ =4 then Cn((Kxa) U {8}) C Kx(a A [3).

viii

These postulates allow to characterize AGM revision upon belief sets and it is called partial
meet revision. A characterization of partial meet revision on belief bases was presented
by Hansson [Han93b].

Theorem 6.1 (Hansson [Han93b]): The operator * is an operator of partial meet revision
for a belief base K if and only if it satisfies:

i) Consistency: If ¥ - then Kxa ¥ L.
it) Inclusion: Kxa C K U {a}.

iii) Relevance: If 3 € K and B¢ K=+« then there is some K’ such that Kxa C K' C
K U{a}, K’ is consistent but K’ U {a} is inconsistent.

iv) Success: Kxa b a.



v) Uniformity: If for all K’ C K, K' U {«a} is inconsistent if and only if K’ U {5} is
inconsistent, then K N (Kxa) = K N (Kxf3).
|

The AGM revision operator has some discussed properties such as success and con-
sistency. We (and many other belief revision researchers) think that these postulates are
the “weak side” of the model. Success gives more priority to new information. In the real
world, we may not want to give top priority to new information. Moreover, if it conflict
with the old information, we may wish to weight it against the old pieces of information,
and if this is really “better” or “more plausible” than the old information, we may wish
to accept it; elsewhere, we could wish to preserve all old information.

7 Revision using explanations in terms of AGM-revision
and consolidation

Now, we will present a new definition of revision using explanations. The operator of
revision by explanations is a non-prioritized operator [Han97a, Mak97] since it does not
give more priority to the new information. In order to define this operator, we need to
define the set of counter-explanations. The operator was previously defined in [FaSi95,
FaSi96] but this presentation is given in terms of others change operators.

Definition 7.1 (Hansson [Han96]): The function n is a mapping from set of sentences
to sentences (n : 2° = £). Let A be a finite set of sentences. The sentential negation of
A, noted by n(A4), is defined as follows:

1. n(@) = L.
2. If A is a singleton, A = {a}, then n(4) = —a.

3. If A={a,...,qm} for some m > 1, then n(4) = -y V...V —ap.
|

An revision operator can be defined by means of two suboperations: contraction and
expansion. For instance, if we have to revise a set K with respect to a sentence «, we first
contract K by —a and then expand by a. This process is knowed as Levi identity. We
may define a multiple partial meet revision operator using the Levi identity.

Definition 7.2 (Hansson [Han93b, Han96]): Let K be a set of sentences, A a finite set
of sentences and — a partial meet contraction for K. The multiple partial meet revision
of K with respect to A is defined as K«A = (K—n(A)) U A. [ |

Since in our model the explanations are finite, we will use this revision operator.
Hansson [Han92, Han93b| has showed that the revision of belief bases can be generalized
for revision by finite sets.

Definition 7.3: Let K be a set of sentences and A an explanation for «. The set
of counter-explanations of A with respect to K is the set K <t A such that K > A =
U(K 1Ln(A)). |

Definition 7.4: Let K be a set of sentences, * a partial meet revision operator, A an
explanation for a and ! a (partial meet) consolidation operator [Han97b]. The revision
using explanations of K with respect to A is the following:

KsA if AC ((Kx=AU A))

Kod = { K otherwise



The idea is to attack the external explanation with our explanations against it. A C
(K> AU A)! means that the external explanation has “survived” in the consolidation
process. Then, we accept the external explanation and we make an multiple partial meet
revision with respect to the explanation. If A does not survive, then the espistemic state
remains without changes.

Example 7.1: Suppose we have an epistemic state represented by the set K such that:
K ={a,a—5,8—6¢}

Then, we receive the following external explanation for —(:
A={a,p,aNp— B}

It is easy to check that A is a correct explanation for =3 (Definition 3.8). Now, we need
to get the set of counter-explanations of n(A4).

n(A)=-aV-oV-(aAp —0)=-aV-pV-a(laApAp)
n(A4) = ((—aV-pVa)A(maV-pVp)A(maV-pVE)) = TATA(maVEV—p) = (maV V)
The set of counter-explanations of A with respect to K is:
KA =U(K1n(4)) = {a — G}
Now, we have to make a consolidation of the set:
H={a—p,a,0,aNp— =p}

We need an order among the sentences of H. We can use the specificity relation [Poo85,
MTDR92] to decide which sentence(s) will be erased. The set {a A ¢ — =5} of rules
seems more specific than the set {&« — F}. Then, we could retract o« — 3 and the set H
consolidated could be:

H! = {a,p,a Ao — [}

Since A C H! then A has survived. Then, the revision by explanation of K with respect
to A will be KoA = KxA. In order to make possible the AGM revision of K with respect
to A we need an order (possibly different from the above one) among the sentences (or
subsets) of K. A possible outcome of this change is:

KoA ={a,p,aNp — 3,6 — 0, ¢}
|
Example 7.2: Suppose we have an epistemic state represented by the set K such that:
K={a,p,a — 0,0 — ¢}
Then, we receive the following external explanation for —d:
A={a,a = p,o— 0}

It is easy to check that A is a correct explanation for —d. Now, we need to get the set of
counter-explanations of n(A).

n(A) = -aV-(a = @) V(e — —0)

n(A) =-aV-(-aVe)V-a(-pV-d) =-aV(aA-g)V(pAd)



n(4) = ((maVa) A (maV=p)) V(e Ad) = (T A(maV =) V(e Ad)
n(A)=(—aV-poVe)A(—aV-pVi)=(—aV-pVd) = (-aVsoVyp)

The set of counter-explanations of A with respect to K is:
KA =U(K1ln(A4)) ={a — d}

Now, we have to make a consolidation of the set:
H={a—da,a— p,o— -0}

Again, if we use specificity [Poo85, MTDR92] we have that the set {o¢ — 0} of rules is
better than the set {a — ¢, — —J}. So we need to retract & — ¢ or ¢ — = or both.
Therefore, A does not survive in the consolidation process. Then, the outcome of the
revision will be:

KoA=K ={a, 8,00 — 8,6 — ¢}
]

In this construction there is not a strong relation between the concept of explanation
and the revision operator. The key is that an explanation is not defined with respect to a
change operator. We are just formulating a multiple revision operator with respect to a
set with some restrictions.

8 Conclusions

We have proposed a kind of non prioritized revision operator in which the new informa-
tion is supported by an explanation. Fach explanation is a set of sentences with some
restrictions. The operator we have proposed is built in terms of kernel contractions and
consolidations. We defined this operator because we think that the classical revision op-
erator (as AGM) does not correspond with the real world. For instance, we do not agree
with some postulates such as success and consistency. We think that the revisions using
explanations are typical in several contexts.

But this model has a disadvantage; it needs two orders: one for sentences or subsets
of the language, another one for the sentences or subsets of K. However, the two kinds
of relation appear to have different sources. When we perform an ordinary revision (or
contraction), the relation that is used concerns only the sentences in K. When we perform
a revision by explanations, we are comparing new information (more exactly new expla-
nations) typically from outside K, so we need a superior order among sentences or subsets
not neccesarily included in K. This “external ordering” (with respect to K) should be
more fundamental that the ordering in K (first, sentences or subsets of £; second, sen-
tences or subsets of K'). A similar problem is present in the second definition of screened
revision [Mak97], where the order among sentences of the language is more fundamental
that the order among the subsets of K (first, sentences in £; second, subsets of K).
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