A formalization of defeasible argumentation
using labelled deductive systems
(Preliminary report)

Carlos Ivan Chesnevar! Guillermo Ricardo Simari

Instituto de Ciencias e Ingenierfa de Computacién (ICIC)
Grupo de Investigacién en Inteligencia Artificial (GIIA)
Departamento de Ciencias de la Computacién
Universidad Nacional del Sur
Av.Alem 1253 — (8000) Bahia Blanca — REPUBLICA ARGENTINA
Fax: (54)(91)595136 — TEL.: (54)(91)595135
EMAIL: {ccchesne,grs}@criba.edu.ar

KEY WORDS: artificial intelligence, defeasible reasoning, argumentative systems, labelled deductive systems

Abstract

Argumentative systems [SL92, Vre93, Che96] are formalizations of defeasible rea-
soning [Pol87, Nut88]. An argument is a tentative piece of reasoning an intelligent
agent can use to reach a given conclusion. In case there is information available sup-
porting counterarguments which defeat the argument, its conclusion will no longer be
valid. In order to determine whether a conclusion h is justified belief, it is necessary
to consider a tree-like structure (having an argument A for h as its root), in which
defeaters for A, defeaters for these defeaters, and so on, must be taken into account. If
the argument A prevails over all its associated defeaters, then A is called a justification
for h.

Currently there exist several alternative formalizations of defeasible argumenta-
tion. Recent work [PS96, KT96, BDKT97] has shown that defeasible argumentation
constitutes a point of confluence for the characterization of different approaches to non-
monotonic reasoning (NMR). From the early 90 there have been several attempts to
find a unified logical framework for NMR. In this respect, the labelled deductive sys-
tems [Gab96a] (or LDS) constitute an attractive approach, allowing to characterize
different logics by introducing labels as part of the logic’s object language and keeping
a single inference mechanism for all logics.

This paper presents a formal approach for characterizing defeasible argumentation
in terms of LDS. Inference rules are presented in the style of natural deduction, and
they capture the process of defeasible argumentation as defined in the MTDR frame-
work [SL92, SCG94]. We contend that this approach makes easier to state and prove
properties and characteristics of defeasible argumentation within a logical-deductive
setting.

!Becario de Perfeccionamiento del Consejo Nacional de Investigaciones Cientificas y Técnicas (CON-
ICET), Reptblica Argentina.



A formalization of defeasible argumentation
using labelled deductive systems
(Preliminary report)

1 Introduction and motivations

Argumentative systems [SL92, Vre93, Che96| are formalizations of defeasible reason-
ing [Pol87, Nut88]. An argument A is a tentative piece of reasoning an intelligent agent
can use to support a given hypothesis h. In case there is information available supporting
counterarguments which defeal this argument, the hypothesis A will no longer be valid.
In order to determine whether a conclusion h is justified belief, it is necessary to consider
a tree-like structure (having an argument A for A as its root), in which defeaters for A,
defeaters for these defeaters, and so on, must be taken into account. If the argument A
prevails over all its associated defeaters, then A is called a justification for h.

Currently there exist several alternative formalizations of defeasible argumentation.
Recent work [PS96, KT96, BDKT97| has shown that defeasible argumentation constitutes
a point of confluence for the characterization of different approaches to non-monotonic
reasoning (NMR). From the early 90 there have been several attempts to find a unified
logical framework for NMR. In this respect, labelled deductive systems [Gab96b] (or LDS)
constitute an attractive approach, allowing to characterize different logics by introducing
labels as part of the logic’s object language and keeping a single inference mechanism for
all logics.

This paper introduces a formal approach for characterizing defeasible argumentation
in terms of LDS. Inference rules are presented in the style of natural deduction, capturing
most of the process of defeasible argumentation as defined in the MTDR framework [SL92,
SCGY4]. We contend that this approach makes easier to state and prove properties and
characteristics of defeasible argumentation within a logical-deductive setting.

The paper is structured as follows. Section 2 introduces the concept of labelled deduc-
tive systems. Then, in section 3, we analyze how to define the MTDR framework in terms
of an LDS. In our discussion we assume that the reader is familiar with this framework
(which is also summarized in the appendix at the end of this paper). Finally, in section 4
we consider the main conclusions that have been obtained, as well as research directions
for future work.

2 Logical systems as LDS

Following Gabbay [Gab96b|, a logic can be seen as a pair (J~ ,Sl,v ), where |~ is a conse-
quence relation on a language L and S N is an labelled deductive system or LDS for short.

The need for introducing LDS is based on the fact that a consequence relation defines a
binary relation on finite sets of formulas A and T', written as '~ A. The LDS S N provides

the proof system for p .
A LDS constitutes a proof system defined as a triple (A, L, R), where L is some logical

language (involving connectives and wffs), A is an algebra (with some operations) of labels,
and ‘R is a discipline of labelling formulas of the logic. Formulas are labelled according to



a family of deduction rules, and with agreed ways of propagating the labels via the appli-
cation of the deduction rules. We replace the traditional notion of consequence between
formulas of the form Ay,..., A~ B by the notion of consequence between labelled for-
mulas 1 : A1,...,tn : Apl~ s B. Depending on the logical system involved, the intuitive
meaning of the labels varies.

Definition 2.1 (Algebraic LDS) Let A be a first-order language, A =
(A,Ry,..., Rk, f1,..., [m) where A is the set of terms of the algebra, and R;’s are
predicate symbols on A, and f;’s are function symbols on A of various arities. Flements
of A can be thought of as atomic labels. Functions can help generate more labels, and
predicates give additional structure to the labels. A diagram of labels is a set D containing
elements generated from A by the function symbols together with formulas of the form
R(t1,...,tm), where t; € D and R is a predicate symbol of the algebra. Let L be a
predicate language with connectives #1,...,4, of various arities, with quantifiers and the
same set of atomic terms A as the algebra. We define the notions of label and declarative
unit, as follows:

1. An atomic label is any t € A. A label is any term generated from the atomic labels
by the symbols 1, ..., fm.

2. A formula is any formula of L.

3. A declarative unit is a pair t: A, where t is a label, and A is a formula.

Natural deduction allows us to characterize a logical system in terms of a set of infer-
ence rules. No axioms are needed, since they can be expressed as inference rules with no
preconditions (they can always be applicable). The lack of axioms is compensated by a
clean application of the deduction theorem. New formulas can be introduced as hypothe-
ses (assumptions) whenever necessary along a given proof. Those assumptions should be
later discharged. Natural deduction allows us to represent introduction and discharge of
assumptions using bozes as a pictorial notation. Every time a new assumption is intro-
duced, a box is opened. In order to discharge assumptions, rules which have boxes as part
of their premises can be used. Hence a box contains a fragment of a proof, in which it
became necessary to introduce some assumptions (those which ’opened’ the box). Some
rules will allow to discharge assumptions by ’closing’ boxes.

3 Characterizing MTDR as an LDS

In any argumentative framework several representational levels (or layers) can be distin-
guished [PV98]. First, we may consider a logical layer, which involves providing a suitable
object language for representing knowledge (e.g. some extension of classical logic). That
object language, together with some inference rules, should enable the construction of
arguments. Using this level as a basis, a dialectical layer can be defined, in which conflict
relationships between arguments can be formally stated?.

In [PV98], the authors discuss two additional layers, the procedural layer (which in-
volves the definition of protocols for dispute), and the strategic layer (which considers some

2 Actually some approaches start by taking this level as a basis for further analysis (for example, Dung’s
approach [Dun93] is based on a 2-uple (Args, <), where Args denotes the set of all possible arguments,
and < denotes a preference relationship on members of Args)



kind of heuristics for dispute). In our approach, we will only take into consideration the
first two layers. Next we will discuss the first layer, which involves representing knowledge
and performing inference in order to build arguments.

3.1 The logical layer

We will assume that the reader is familiar with the MTDR framework (see appendix).
We will define an object language L4, which will allow us to represent knowledge for
defeasible argumentation. Following Gabbay [Gab96b], formulas in Ly, will be labelled.
We will provide an algebra A of labels. Atomic labels will be associated with wifs in the
agent’s knowledge base, denoted (I, A). Every wif in (K, A) will have the form [ : f,
where | denotes an atomic label, and f is a wif in Lg,.

Definition 3.1 (Language Ly,) Let L be a propositional language. We will define an
object language for defeasible argumentation Lg, as a subset of L. Wifs in Ly, can be
facts, strong rules and defeasible rules.

e Facts, which correspond to literals in classical logic.

e Strong rules, having the form ai,as,...,ay—b, where ai,aq,...,ar,b are literals.
Strong rules should be understood as material implications in classical logic.

o Defeasible rules, having the form a1, ao, ..., ar—b, whereay,aq, ..., a,b are literals,
and “ — 7 is a meta-relation linking the antecedent ay, as, . . ., ap with the consequent
b.

The agent’s knowledge base is a pair (K, A) involving non-defeasible knowledge K, and
defeasible knowledge A. K is a consistent set of facts and strong rules (i.e., K I/ 1), and
A is a finite set of defeasible rules. Every wif in (X, A) will be labelled. The algebra of
labels for defeasible argumentation Ag,.q will be defined as follows:

Definition 3.2 (Algebra Agyg) Let Ayrg = (A, @,%,(,)), where ®, = are predicate sym-
bols on A. Members of A will be called atomic labels. They will be associated with each fact,
strong rule and defeasible rule in Lq,. These labels will be denoted with subscripted Greek
letters a, B and . For the sake of simplicily, we will use ax,..., ay for facts, B1,..., B;
Jor strong rules, and 1,. .., v; for defeasible rules. More complex labels involving predicate
symbols will result from applying inference rules on wffs in (K, A).

Example 3.1 Consider a knowledge base with the facts eq and es, the strong rule e;—ha,
and the defeasible rules eo —h1, hi, ho—q, g——e1. We can represent that KB as a pair

(K, A) where
IC:{ a1 €1, A:{ ’)/1262%]11,
Qo e, and ~2 : hi, ho —q,
,81 . 61—>h2 }, Y3 i g—"€q1 }

Let (K,A) be a knowledge base. We will define a consequence relation p, which
will allow us to derive new wffs from those in (K, A). The consequence relation p~ will
also propagate labels along with wifs in L4,. Complex labels will be built from atomic
ones, giving account for the steps needed to conclude a new wff from (K, A). Some
distinguished labels will be called arguments. We will also define a preference ordering on
labels, according to which some arguments can be considered to be preferred over others.



Definition 3.3 (Consequence relation |~ ) Let Laa be our object language for defeasi-
ble argumentation. We will define the consequence relation b\ based on the language Ly, as
a set of inference rules { A-introduction, N\-eliminationl, A-elimination2, ®-introduction,
x-introduction, *-elimination in argument (1), *-elimination in argument (2), projection,
1 -introduction in argument, 1 -propagation }.

€1:h e h
1. 1 1 2 2 A-introduction

(€1,€2) : hi, ho

(€1,€2) : hi, ho

2, A-elimination!
€] - hl
€1,€): hi,h
3. ( L 2) L2 A-elimination2
€9 ! hQ
€:hy...h thi...h
4' 1 k i 1 k4 ®-introduction
YRe€:q
€:hi...h thy...hg—
5. 1 k B 1 k4 *-introduction
Bxe:q
xc:h
6. ﬁ— *-elimination in arguments (1)
€:h
exe h
/
; d:h
€% € 2
7 e 4 *_elimination in argument (2)
voe g
€ .. . .
§. —— projection (assuming € is free of occurrences of ®)
h
q
1
€:q . o
9. 1 -introduction in argument
el
el ,
10. /ﬁ L -propagation
®e:
€:b 1a1,02,...,a b
11. i @ i L %2, Ak ®-elimination

€:a; (fori=1..k)

Rules 1, 2 and 3 allow to introduce and eliminate conjunction when performing infer-
ence.® Rule 4 allows the elimination of ~— by infering a new wff which introduces a more
complex label (using ®).4 Rule 11, on its turn, accounts for eliminating a single occurence

3The conjunction ai A a2 A ar will be denoted ay, ag, ..., ak.
4Predicate symbols in the algebra of labels are introduced using infix notation.



of ®.5 Rules 6 and 7 allow eliminating occurences of * in labels. Every occurrence of x
accounts for the application of material implication (rule 5). Rule 8 states that any wff
€ : h whose label is ®-free can be considered to hold in classical logic (i.e., no defeasible
rules were used in its derivation). Rule 9 accounts for introducing inconsistency. Inconsis-
tency propagates from one wif to another, when application of defeasible rules is involved
(rule 10).

Following [SL92|, we want to capture the notion of an argument for a given literal g
as a subset A C A such that a) K U A allow us to infer ¢; b) £ U A is consistent (in
the sense that £ U A should not derive p and —p). We introduce inference rules which
allow us to characterize the notion of argument as a distinguished label. Thus, rules 6
and 7 allow us to discard material implications from labels. Two different inference rules
are needed: in the first case, we are discarding the last application of the inference rule 5;
in the second case, we discard some previous introduction of material implication.

Rule 8 establishes that any wif € : & € K can be considered as holding in classical logic.
Rule 9 defines a special notion of inconsistency in our setting. Whenever having a formula
€ : g allows us to derive inconsistency from ¢ (within classical logic),% we will say that the
wif € : L also holds.

We will distinguish those labelled wffs which are “consistent” (in the sense of rule 9)
and free of ocurrences of . This kind of labelled wifs will be called arguments.

Definition 3.4 (Completed argument. Argument) Let ¢: h be a wff in Lgg such
that (K, A)pye:h, and (K,A)e: L. Then €: h is called an completed argument. If

€ : h is closed under application of rules 6 and 7, then € : h is called an argument.

Example 3.2 Let (K,A) be defined as in erample 3.1. Then (K, A)p
Or=ai:hy, (KA m®az:h, (KA (n®a,fixa1):hi hy, and (K, A)K
(12 @ (M ®@az, frxa1)) : q.

Note that, according to definition 3.4, the wff Ay : q with A1 = (2@ (71 ®aa, f1x 1)),
is a completed argument. 1t also holds that (K, A)py Asg : q, with Ay = (72 @ (11 ®ag, a1)).
Note that As : g is an argument.

It also holds that (K, A)p As : —er, with Az = (73©(12® (11 @ag, fixaq))). However,
As : —ey is not an argument, since (K, A)P\A Az L.

3.2 The dialectical layer

One interesting feature of labelled deductive systems is the possibility of defining a new
LDS in terms of another one, i.e., adding a new labelling discipline to labelled formulas
from an 1LDS L;, getting a new LDS Lo. We will use this feature in order to define a
dialectical layer for defeasible argumentation based on the logical layer introduced before.
In the previous section we presented an LDS ((K, A), ) which allowed us to characterize
the notion of argument as a distinguished labelled formula, in which defeasible rules were
used consistently with the knowledge available in K. Next we will show how to capture
the notion of defeat among arguments (see def. A.5), as well as the notion of dialectical

tree (see def. A.6).

5This rule is needed when considering subarguments of a given argument.
5We assume that all inference rules for classical logic are available.



3.2.1 Capturing defeat among arguments

A setting for reasoning with defeasible argumentation involves inconsistent information in
the agent’s knowledge base. An argument * (A, h) can be defeated by another argument
(B,q). Defeaters can on its turn be defeated by other arguments, so that a so-called
dialectical tree (see def. A.6) results.

In order to capture when an argument defeats another, we will use the following lemma
which provides a syntactic criterion for finding the defeaters associated with a given ar-
gument.

Lemma 3.1 (Pruning Lemma).® Let (A, h), (B,j) be arguments, such that (B,j) >,
(A, h). Then B is also an argument for a ground literal q, such that q is the complement
of some consequent of a defeasible rule in A, and (B,q) is a defeater.

This lemma states that in order to find a defeater for a given argument (A, h), it is only
necessary to compute those defeaters whose conclusions correspond to the complement of
the defeasible rules in A. Thus, given a defeater (B, j) for (A, h), either (B, j) attacks
(A, h)’s conclusion, or (B, j) attacks some inner literal corresponding to the conclusion of
a defeasible rule in A This allows us to formalize defeat by using only two inference rules.

Al :b ./42 :—b ¢(A2,A1)

1. > 4op-introduction 1

A Ay (Ag 0 —d)

Ap:b

Ay:—g Ay, As:(As:—q) | 204

Az A (Asr—q)

> 4.p-introduction2

[\)

where ¢(A;1,.A2) denotes that A; is a label to be preferred over As. The preference ordering
on labels could be defined using some extra-logical criterion (e.g. specificity).

3.2.2 Dialectical proof theory

The process of determining whether a given argument is a justification can be understood
as a dialogue between two parties, proponent (PRO) and opponent (OPP). Informally, an
argument is considered to be justified if PRO can make OPP run out of moves against
every possible attack. A dialogue is thus an alternate sequence of moves performed by
PRO and OPP. PRO introduces the main argument at issue. A party ‘wins’ a dialogue iff
the other party cannot move.

We will formalize a dialogue starting with argument A; : i; as a label 7 attached to
the wif Ay : hy . Hence we will define an DS in which wffs are arguments, whereas labels
correspond to the steps of a dialogue which has that argument as its root. The label will
stand for the ‘dialectical tree’ computed so far, identifying whether the main argument
at issue has been defeated or not. A wil of the form PRO(A1*(71...7¢)) : (A1 : hy )
will identify a dialogue in which the argument A; : h; is supported by PRO, where A;
*(71...T) represents the associated dialectical tree, and 77 ... 7 stands for their imme-
diate subtrees.

"Ocassionally we will use MTDR notation for denoting arguments (see def. A.2).
8Proof of this lemma in this paper can be found in [Che96].



Definition 3.5 (Consequence relation ) Lel AT’gS(K A) (or Args for short) be the
set of all possible arguments that can be built from a given knowledge base (KC,A), i.e.,
Args ={ A:h € (K, A)hfi : A his an argument }. Let Labels(Args) be the set of all
labels in Args. Consider the algebra ( Labels(Args), >,.., x, PRO, OPP ), where >,
*x, PRO and OPP are predicates on Labels(Args). We will define the consequence relation

b based on Args as a set of inference rules { >, -introduction (1), >
(2), PR1, PR2, OP2, PR3, OP3}.

-introduction

def def

Rules > _-introduction (1) and > ,_.-introduction (2) capture the definition of defeat,
as discussed above. Rule PR1 corresponds to the situation in which PRO introduces an
argument A; : hy , starting a new dialogue. The dialogue consists of only the original
argument A; : hy ; hence we infer PRO(A;) as associated dialectical tree.

A dialogue can be attacked in two ways: either by attacking the root (the main argu-
ment at issue), or by attacking some subdialogue. Rules OP2 (analogously PR2) corre-
sponds to the first situation. If a dialogue starting with A; : h; has been performed to a
certain extent and it is being won by PRO, (i.e. PRO(A1*(Th,...,7y)) : (A1 : h1) ), and
OPP can defeat A; : h by introducing As : ho, then we get a new, expanded dialectical
tree, in which PRO ‘loses’ (i.e. "PRO(A1x(T1,..., Ty, A2)) : (A1: h1) ).

When attacking a subdialogue, the situation is as follows. It may be the case that
PRO is losing the dialogue (i.e., "PRO(A1*x(T1,...,7;... 7)) : (A1 : h1) ) because OPP
has defeated PRO in the previous move. In that case, PRO can attack (if possible) the
winning subdialogue that supports the OPP’s winning position (i.e., OPP(7;) : (A2 : q)
). By doing so, a new dialogue results, in which PRO is the winner again (i.e.,
PRO(Ax(Tq,...,T,..., 7)) : (A1 : h1) ). A similar situation arises when PRO is in
a winning situation, and OPP has to find how to 'reinstate’ some subdialogue in order not
to lose (see rule OP3).

1. PROPONENT INTRODUCES FIRST ARGUMENT

A g
PRO(A1) : (A1 : hy)

PR1

2. ATTACKING PROPONENT’S ARGUMENT

PRO(A1*(Th,...,7,)) : (A1 : hy) Ao, A (As 1 q)

(OP2)
—\PRO(.Al*('Tl, . ,'Z}L, AQ)) : (Al . hl)
3. ATTACKING OPPONENT’S ARGUMENT
OPP(Alk('Tl, ceay 'Tn)) : (./41 : hl) A2>>def./41 : (./42 : q) (PR2)
~OPP(Aix(Th,. .., T, A2)) : (A1 2 ha)
4. PROPONENT ATTACKS SUBDIALOGUE
OPP(T;) : (As : q)
,/' . .
SPRO(A(TL, ... Tio To)) : (Ar s h) OPP(T) : (A2 : q) s

PROUA T, T 1)) (A < )



5. OPPONENT ATTACKS SUBDIALOGUE

—OPP(T;): (A2 : q)

/ .. .
PRO(AK(TL, ..., T;... T,)) : (A1 : h1) OPP(T) : (A2 : q)
ﬁPRO(Al*('Tl, e ,'Ti/, . ,'Z;«L)) . (.Al . hl)

OP3

These rules suffice for defining a dialectical exchange between PRO and OPP. The
ability to prove that PRO(T) : A; : hy holds, whereas ~PRO(T ') : A; : h; does not (be-
ing 7' such that it contains 7 as a sub-label), corresponds to the usual notion of justified
argument in MTDR.

Definition 3.6 (Justification) Let Args be the set of arguments based on (K,A), and
let Ay : hy € Args. We will say that Ay : h1 is a justified argument (or justification) iff

1. Args |y PRO(T) : (A1t hy )
2. Args o ~PRO(T') : (A1 :h1 )

where T is a sub-tree (sub-label) of T'.

Example 3.3 Let (K, A) be a knowledge base from which the arguments Ay : hy , As : hs
Az :hs, Ay ha, As:hs , Ag: he and A7 : hy can be inferred, such that As: he de-
feats A1 i hy , A3 : hg defeats Ay : hy , Ay : hy defeats Ay : hy , As : hs defeats Ay : hy |
Ag : hg defeats As: hg , and A7 : hy defeats As : ho . The proponent starts the debate
introducing the argument Ay :hy . Proponent and opponent exchange arguments until
there are no more arguments to consider. It can be shown that A; : hi s a justification,
by performing the following proof steps:

1. (PRO introduces Ay : hy )
PRO(A;) : (A :hy ) (by PR1).

2. (OPP attacks Ay : hy with Ag : hy )
“PRO(A1%(A2)) : (A1 :h1 ) (From 1, by OP2).

3. (PRO attacks Az : ha with A3 : hs )
From 2, we know that ~PRO(A1x(A2)) : (A1 : hy )
Assume OPP(Ag) : (A2 : he )
By PR2, it follows that ~OPP(Aax(A3)) : (Az: he )
Then PRO(A1*(A2x(A3))) : (A1 : hy ) (by PR3).

4. (OPP attacks Ay : hy with Ay : hy )
ﬁPRO(Al*(AQ*(Ag),AAL) : (./41 : hl ) (by OP?,)

5. (PRO attacks Ay : hy with As : hs )
By step 4, ~PRO(A1x(A2%(As), Ag)) : (A1t hy )

Assume OPP(Ay) : (Ag: hy )
Then ~OPP(A4x(As)) : (Ag: ha ) (by OP2)
Then PRO(A1x(Axx(As3), Aax(As))) : (Ay t hy )



6. (OPP attacks As : hs with Ag : he )
From step 5, PRO(A1x(Aax(A3), Agx(As))) : (A1 : hy )
Assume ~OPP(Aax(As)) : (Az: ha )
Assume PRO(A3) : (As : hs )
Then, by OP2, “PRO(A3x(Ag) : (A3 : h3 )
Then OPP(AQ*(Ag*(A6))) : (AQ : hg )
Then ~PRO(Aix(Asx(Asx(Ag)), Agx(As))) : (A = hy )

7. (PRO attacks Ag : hg with A7 : hr )
By step 6, PRO(A1*x(Ax*x(Asx(As)), Aax(As))) : (A1 : hy )
Assume OPP(Agx(Asx(Ag))) : ( ha )
Then by PR2, =PRO(Asx(Ag), A ) (.Ag 3)
Then, by PR3, PRO(A*(Axx(Asx(Aex(A7))), Aax(As5))) : (A1 : b1 )

At this point there are no more arguments to consider. Thus Args ry PRO(T) : (Ay : hy ),
(where T = (Arx(Agx(Aszx(Asx(A7))), Asx(A45))) ) and Args o PRO(T') : (A1 h1 ), (
where T is a sub-label of T > ). Hence Ay : hy s a justification.

4 Conclusions and future work

We introduced a formal approach to defeasible argumentation using LDS. Follow-
ing [PV98], we showed how both a logical layer and a dialectical layer could be separately
defined in terms of LDS, and then interrelated.

In this first approach we did not consider some technical issues involved in MTDR,
such as circularity and contradictory argumentation [SCG94]. As shown in [Che96], the
notion of commitment store (i.e., the set of wffs supported by proponent /opponent) helps
avoiding contradictory argumentation, and allows us to get a pruning strategy for the
dialectical tree. In our LDS-based approach to MTDR, arguments are labelled formulas.
By decomposing the label structure, all defeasible rules used in a given argument can be
identified. We are currently working on the definition of suitable inference rules through
which the commitment store could be inferred. from the labelled wif corresponding to a
particular dialogue.

Resources play also a major role in defeasible argumentation (e.g. time for building
arguments, maximal number of defeaters allowed to proponent/opponent, etc.) So-called
“resource logics” (in which the availability of ‘resources’ determines which wffs can be
derived) can be naturally formalized in LDS. We think that this kind of logics can be
helpful in modelling resource-bounded reasoning.

Many theoretical aspects linking defeasible argumentation and non-monotonic reason-
ing have been successfully formalized so far [ BDKT97|, and further work in this area seems
to be still ahead. We think that LDS constitute a powerful, unifying framework, in which
theoretical results concerning defeasible argumentation can be studied.

A The MTDR framework

We will briefly introduce the main concepts and definitions of the MTDR framework (see [SL92,
SCG94, Ched6] for further details).



A.1 Knowledge representation

The knowledge of an intelligent agent A will be represented using a first-order language L, plus
a binary meta-linguistic relation “ ~— ” between sets of non-ground literals of £ which share
variables. The members of this meta-linguistic relation will be called defeasible rules, and they
have the form “ov = 3 ”. The relation “ ~— " is understood as expressing that “reasons to believe
in the antecedent «v provide reasons to believe in the consequent (3”. Let K be a consistent subset of
sentences of the language £. This set can be partitioned in two subsets K¢, of general (necessary)
knowledge, and Kp, of particular (contingent) knowledge. The beliefs of A are represented by a
pair (I, A), where A is a finite set of defeasible rules. K represents the non-defeasible part of A’s
knowledge and A represents information that A is prepared to take at less than face value. A
denotes the set of all ground instances of members of A.

A.2 Inference

Definition A.1 Let T be a subset of K U AL A ground literal h is a defeasible consequence of
T, abbreviated T’ |~ h, if and only if there exists a finite sequence By, ..., B, such that B, = h
and for 1 < i < n, either B; € I, or B; is a direct consequence of the preceding elements in the
sequence by virtue of the application of any inference rule of the first-order theory associalted with
the language L. The ground instances of the defeasible rules are regarded as material implications
Jor the application of inference rules. We will also write K U A | h distinguishing the set A of
defeasible rules used in the derivation from the context K.

Definition A.2 Given (K, A), and a ground literal h in the language L, we say that a subset A
of A s an argument for h (denoted by (A,h)) if and only if: 1) K U A h, 2)K U A K L
and 3) AA' C A, KUA' |~ h. Given an argument (A, h), we also say that A is an argument for
h. A subargument of (A, h) is an argument (S, j) such that S C A.

Definition A.3 Two argument (A1, h1) and (As, ho) disagree, denoted (Ay, hq) <t (Ag, he), if and
only if KU {h1,ho} - L.

Definition A.4 Given two arguments (A1, h1) and (A, ho), we say that (Ay, hy) counterargues
h
(Ao, ho), denoted (A1, h1)®— (Ag, ho) iff 1) There exists a subargument (A, h) of (A2, he) such

that (A1, h1)x (A, h); 2) For every proper subargument (S, 7} of (A1, h1), it is not the case that
(Ag, ha)® (S, 7).

Definition A.5 Given two argument (A1, h1) and (A2, he), we say that (A1, hy) defeats {(Asg, ho)
at literal h, denoted (A1, h1) >, (As, he), if and only if there exists a subargument (A,h) of
(Ag, ho) such that: (A1,h1) counterargues (As, heo) at the literal h and 1) (Aq, hy) is strictly more
specific? than (A, h), or 2) (A1, k1) is unrelated by specificity to (A, h). If (A1, hy) >, (A2, ha),
we will also say that (A1, h1) is a defeater for (As, ho).

We will accept an argument A as a defeasible reason for a conclusion h if A is a justification for
h. The acceptance of the original argument A as a justification for h will result from a recursive
procedure, in which arguments, counterarguments, counter-counterarguments, and so on, should
be taken into account. This leads to a tree structure, called dialectical tree. Paths along that tree
will be called arqgumentation lines, which can be thought of alternate sequences of supporting and
interfering arguments in a debate.

Definition A.6 Let (A, k) be an argument. A dialectical tree for (A, h), denoted Tia, ny, is recur-
sively defined as follows:

9Specificity imposes a partial order on arguments, being used as a preference criterion among
them [SCGY94]. However, other preference criteria could also be valid.



1. A single node containing an argument (A, h) with no defeaters is by itself a dialectical tree
for (A, h).

2. Suppose that (A, h) is an argument with defeaters (A1, h1),{As, ho),... (An, hy). We con-
struct the dialectical tree for (A, h), Ta, ny, by putling (A, h) in the root node of it and by mak-

ing this node the parent node of the roots of the acceptable dialectical trees of (A1, h1),(Ag, ha),

Definition A.7 Let T 4 »y be a dialectical tree for (A, h). Nodes in T 4 ny can be recursively labeled
as undefeated nodes (U-nodes) and defeated nodes (D-nodes) as follows: a) Leaves in Ty »y are
U-nodes; b) Let (B,q) be an inner node in Tia ny. Then (B,q) will be o U-node iff every child
node of (B,q) is a D-node. (B, q) will be a D-node iff it has al least one U-node as a child node.

Definition A.8 Let (A, h) be an argument and let T4 1y be its associated dialectical tree. 10 we
will say that A is a justification for h (or (A, h) is a justification) iff the root node of Tia ny is a
U-node.
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