Disjunctive Logic Programming
with Negation As Failure in the Head

Laura A. Cecchi*

Departamento de Informatica y Estadistica
Facultad de Economia y Administracién
UNIVERSIDAD NACIONAL DEL COMAHUE

e-mail:lcecchi@uncoma.edu.ar

Pablo R. Fillottrani Guillermo R. Simari

Grupo de Investigacién en Inteligencia Artificial
Departamento de Ciencias de la Computacién
UNIVERSIDAD NACIONAL DEL SUR
e-mail: {ccfillo, grs}@criba.edu.ar

KEYWORDS: Disjunctive logic programming - Negation as failure in head - Non min-
imal model semantics - Answer set semantic

Abstract

Disjunctive logic programs have been studied in order to increase expressivity,
especially in representing indefinite information. Even though there is no general
consensus on any specific semantic for disjunctive logic programs with negation,
most of well known semantics are minimal model based. Sometimes real applications
need to capture non minimal models, in spite of the fact that they contain redundant
information. In representing disjunctive knowledge, for instance, minimal approaches
capture exclusive disjunction but they cannot managed the inclusive meaning.

The purpose of this paper is to analyze the expressive power of a special com-
bination of disjunctive logic programming, negation as failure (NAF), and strong
negation. This class of programs are syntactically uniform, since both kinds of nega-
tion are allowed to appear in the head and in the body of a rule, and its semantics
allows non minimal models. We introduce a non injective syntactic transformation of
disjunctive logic programs with NAF in head into disjunctive logic programs without
NAF in head, in order to compare semantically both class of programs.

Finally, we prove that the set of answer sets of the transformed disjunctive logic
program is strictly included in the set of minimal answer sets of the original program
and we discuss its consequences.

*Supported by a fellowship of the Universidad Nacional del Comahue.



Disjunctive Logic Programming
with Negation As Failure in the Head

1 Introduction

Logic programs are nowadays widely recognized as a valuable tool for knowledge rep-
resentation and commonsense reasoning. In order to increase the applicability of logic
programming in many fields, several extensions of the class of definite programs have
been proposed. Normal programs [L1o87] add negation as failure in program clause bod-
ies, basic programs [GL90| allow strong negation not only in the clause bodies but in
the clause heads as well and disjunctive programs [Min82] allow disjunction as heads of
program clauses.

Disjunctive logic programs have been studied in order to increase expressivity, espe-
cially in representing indefinite information. Even though there is no general consensus
on any specific semantic for disjunctive logic programs with negation, most of well known
semantics are minimal model based. Several model classes defined, such as the perfect
and stable models for theories with body negation are subsets of the minimal models and
coincide with the minimal model in the absence of negation in the rule bodies. Some-
times real applications need to capture non minimal models, in spite of the fact that
they contain redundant information. In representing disjunctive knowledge, for instance,
minimal approaches capture exclusive disjunction but they cannot managed the inclusive
meaning.

The purpose of this paper is to analyze the expressive power of a special combination
of disjunctive logic programming, negation as failure (NAF), and strong negation. This
class of programs are syntactically uniform, since both kinds of negation are allowed to
appear in the head and in the body of a rule, and its semantics allows non minimal
models. This idea was introduced by Liftchitz and Woo [LW92|. Arguing the lack of
uniformity of logic programming, Liftchitz [Lif94] defined the logic of minimal belief and
negation as failure which provides a unified framework for several logic programming
languages and non monotonic formalisms.

In [LW92], a class of propositional formulas of minimal belief and negation as failure
called theories with protected literals (PL-Theories), is defined. Protected literals are
formulas of the form BL and not L, where L is a literal and, B and not are two non
monotonic operators representing minimal belief and NAF respectively. A PL-theory
is a set of PL-formula which can be characterized by formulas that can be built from
protected literals using =, B, not and A. The class of disjunctive programs with NAF
in the head was introduced as an equivalent way of writting a disjuntion of protected
literals and their negation. Therefore disjunctive logic programs with NAF in head are
embedded into minimal belief and negation as failure.

In this paper we compare disjunctive programs with NAF in the head with disjunctive
logic programs without NAF in head. In section 2, we review some background about
this class of logic programs. Section 3 describes and illustrates the answer set semantics,
discusses its non minimality property and shows how it can capture the inclusive meaning.
Section 4 introduces a non injective syntactic transformation of disjunctive logic programs
with NAF in head into disjunctive logic programs without NAF in head and compares
semantically both class of programs, specifying those programs with NAF in head which
have no equivalent translations without NAF in head. Then in section 5, we present



the main result of this paper. We prove that the set of answer sets of the transformed
disjunctive logic program is strictly included in the set of minimal answer sets of the
original program and we discuss its consequences. Finally in section 6, we give our
conclusions and mention some possible directions for future research.

2 Programs with NAF in the Head

In [Wag94]| Gerd Wagner distinguishes three different notions of negation:

o Default Implicit Falsity or Weak Negalion: Defined through the negation as failure
(NAF) operator which is represented by the symbol not. NAF is used to represent
incomplete information.

o Directly Established Falsity or Strong Negation': This notion of negation is rep-

resented by the symbol —. The strong negation of an atom holds if the atom is

explicitly false.

e Negation as Inconsistency: An atom is false if its addition to the knowledge base
leads to inconsistency.

The class of programs we will study deals only with weak and strong negation. Next we
present the syntax of these programs.

Definition 2.1. A disjunctive program with negation as failure is a set of rules of the
form

Li| ... |Lg| not Lgyq| -.. |not Ly, < L1 A ... ALy A not Lyyg A ..o A not Ly

(1)

where the symbol | stands for V, L;’s is either a ground atom A or its strong negation
—“Aandn >r >m >k > 0. The left-hand side of the rule is called Head, while the
right-hand side of the rule is called Body. The set of all disjunctive programs with NAF
will be denote by DPNA¥ . Those programs such that k = m and r = n will be called
positive disjunctive programs. The set of all positive disjunctive programs will be denoted
by DP. Finally, we will denote the set of all disjunctive programs with k& = m (i.e., with
negation as failure only in the body of the rules) by GDP. ™

A formula of the form (1) with m = k = 0 is called constraint. A set X of literals
violates a constraint if {Ly,y1, ..., Ly} € X and X N{Lyy1, ..., Ly} = &. Otherwise,
X satisfies the constraint. Constraints will not be considered in particular, even though
all definitions and results include them.

We use | rather than V in disjunctive rule heads because there is a subtle difference
between the use of disjunction in the heads of rules and the use of disjunction in classical
logic. Consider the following program from [GL91| {q¢ <« p,p|-p <}. The disjunctive
rule expresses that p is either known to be true or known to be false. Intuitively, every
model of this program includes either p or —p and therefore the possible minimal models

'In some of the literature strong negation is called classical negation. Answer set semantic is not
“contrapositive” with respect to < and —, i.e., it assigns different meanings to the rules p « —¢ and
q < —p. As interaction between strong negation and «— is different from the interaction between classical
negation and <, we prefer strong megation rather than classical negation in order to keep in mind this
distinction.



are {p,q} and {—p}. Unlike the law of the excluded middle (AV —A) in classical logic,
the rule p|—p cannot be removed from the program without changing its meaning.

Let’s present some notation. For any set X of literals, we will denote the set {not L :
L € X} by not(X). Henceforth, a disjunctive rule will be represented in the form [Lif96]

HPosUnot(HNeg) «— BPosUnot(BNeg) (2)

where HPos, HNeg, BPos, BNeg are some finite sets of literals. In particular, (1) is
represented by setting

HPos={Ly, ..., Li}
HNeg ={Lys+1, ..., Lm}
BPos = {Lm41, ---, L}
BNeg ={Lyy1, ..., Ln}

By definition a program is a set of atomic rules. However, real application programs
usually use variables in order to express general information. Following Liftchitz’s no-
tation [Lif96], literals that contain variables will be called schematic literals. Schematic
rule and schematic program definitions are parallel to the definitions of a rule and of a
program given in definition 2.1, with schematic literals instead of literals.

Let R be a schematic rule and P a schematic program. Ground(R) stands for the set
of all ground instances of R and

Ground(P) = U Ground(R)
ReP

Henceforth, we will use the terms program and Ground(P) which clearly is a program
in the sense of the definition 2.1 interchangeably.

Example 2.2. We would like to represent the fact that a person who likes literature
either reads Bécquer’s work or Bradbury’s work. Furthermore, we want to distinguish
between people who like fiction and romantic books. The following schematic program
encodes the above intended meaning, together with the fact that Jean is a person who
likes literature. Note that Ground(P) € DP.

reads(X, becquer) | reads(X, bradbury) < person(X), likes_literature(X)
likes(X, fiction) < reads(X, bradbury)

likes(X, romantic) < reads(X, becquer)

person(jean) «—

likes_ literature(jean) «—
|

Example 2.3. Suppose we want to encode the operation of switch that turns on a
light. Assuming that the light and the switch are not prone to be broken, we want to
represent that the light will be on if the switch is on, and that the switch will be on
whenever the light is on. The following schematic program P represents this information
and the fact that a person will fall down if the light is not on. Ground(P) is inDPNAL,

P: light_on | not switch_on <«
switch_on | not light_on «—
falls_-down(X) «— person(X) A not light_on
person(marie) «—



Next section formalizes this intuitive meaning of disjunctive programs through the answer
set semantic.

3 Disjunctive Answer Set

In this section we introduce the semantics of the programs in GDP. The declarative
meaning of logic programming has been studied based on the sceptical semantics. In
[GL88], Gelfond and Lifschitz defined the stable semantic based on the minimal model
semantic which is first extended to programs with strong negation [GL90], and then to

DP[GL91].

Definition 3.1.  [Lif96] Let P € DP and X be a set of literals. X is said to be logically
closed if it is consistent or X contains a pair of complementary literals® and therefore X
is equals to the set of all grounded literals, that we will denote Lit. X of literals is said
to be closed under P if for every disjunctive rule Head < Body in P, Head N X # &
whenever Body C X. X is an answer set for P if it is a minimal (relative to set inclusion)
set of literals that is both closed under P and logically closed. n

Example 3.2. Let’s consider again the program in example 2.2. The possible answer
set of P are

{person(jean),reads(jean, becquer),likes(jean, romantic)}

and
{person(jean),reads(jean, bradbury), likes(jean, fiction)}

As the property of minimality holds under the answer set semantic, a person cannot read
both Bécquer and Bradbury, which is our intended meaning. n

Definition 3.3.  [Lif96]Let P be in DPVAF . The reduct of P relative to a set of literals
X is obtained from X by:

e deleting each disjunctive rule (2) such that HNeg ¢ X or BNegN X # &, and
e replacing each remaining disjunctive rule (2) by HPos + BPos.

This program in DP will be denoted by PX.
X is an answer set for P if X is an answer set for PX. A consequence of P is a literal
that belongs to all its answer sets. n

Example 3.4. Let’s consider the example 2.3. The answer sets of P are:
X1 = {person(marie), falls_down(marie)}

and
X9 = {person(marie), light_on, switch_on}

where the reducts are

2Let A be an atom. The literals A and —A are said to be complementary.



PX1: falls_down(marie) < person(marie)
person(marie) «—

and
PX2: light_on —

switch_on « m
person(marie) «—

In view of example 3.4, we can informally describe the meaning of the not in the head
of a rule as follows. If the set of consequences of a program does not include H Neg, then
it will exist H € HNeg such that it is not a consequence of the program. Therefore,
notH and the disjunction will hold. So we do not need to take into account this rule.
In the example 2.3 under the first answer set the disjunction light_on | not switch_on
holds because not switch-on holds. If HNeg is included in the set of consequences of a
program, then the truth value of the disjunction will depend only on H Pos. The second
answer set of the program P introduced in the example 2.3 reflects this situation.

Lifschitz and Woo pointed out that minimality does not hold in the answer set se-
mantic of a program in DPY4F, For instance, let’s consider the following program P
with only one rule {r | not r}. If X = {r} then P} = {r} and if X = {} then P{} = {}.
Both {r} and {} are answer sets.

The non minimality property is useful to distinguish between the inclusive and ex-
clusive meaning of disjunction. Suppose we want to represent the following disjunction
a | b whose intended meaning is inclusive. We can translate a | b into

alnota <«
b|lnotb
«—not a A not b

The answer sets are {a}, {b} and {a, b}, capturing the intended inclusive meaning.
Possible model semantics [Sak89, Cha89] and the mixed completion theory [DIL.94]
are alternatives approaches proposed to solve this problem for positive disjunctive pro-
grams. Hence the importance of this application is that it is possible to make an explicit
distinction between inclusive and exclusive meaning, in a more general class of programs.

4 Transformation

Extending logic programming with NAF in the head increases the expressivity allowing
non minimal answer sets. Therefore given a program in DPY4F | we cannot find an equiv-
alent program in GDP. However, we are interested in the semantic relationship between
them. In order to investigate this problem, we now define a syntactic transformation and
show some examples of its application and consequences.

Definition 4.1.  Let P eDPNVAF| The transformation ®:DPV4Y — GDP, is defined
as

®(P) = { HPos «— BPos U HNeg U not BNeg |
HPos U not HNeg < BPos U not BNeg is in P}
|
Informally the transformation ® considers H Neg as a conditional part of the rule, so
that I Neg is removed from the head and is added to the body. The following example
will help us to discuss the consequences of applying ® over a program in DPVAF,



Example 4.2. Let P be the program introduced in the example 2.3. Then ®(P) is

O(P): light_on «— switch_on
switch_on < light_on
falls_down(marie) «+ person(marie) A not light_on
person(marie) «—

The semantic of ®(P) has been restricted to the unique answer set
{person(marie), falls_down(marie)}

The following example shows that the previously defined transformation is not injec-
tive.

Example 4.3. ®(P’) is equal to ®(P), where P is the program of the example 2.3.

P’ light_on « switch_on
switch_on < light_on
falls_down(marie) | not person(marie) «+ not light_on
person(marie) «—
Note that in this case the unique answer set of P’ is the answer set of ®(FP’). ™

In view of the above examples, we can conclude that there exist some programs in
DPNAF that are equivalent to their transformed programs. At this point, the problem
of specifying this subset arises. Programs in DPY4 that capture a non minimal answer
set do not have an equivalent program in GDP. For instance, {p | not p} which can be
read “p is believed or p is not believed”, has two answer sets {p} and {}, but {p < p}
which can be read “p is believed if p is believed”, has only one answer set {}.

Another example is {p | not q,q | not p}. {p,q} and {} are its answer sets. However,
®({p | not q,q | not p}) = {p < q,q < p} has an unique answer set, {}.

These examples have a feature in common: “not” in the head is part of an infinite
loop. These programs in DPVAY have at least two answer sets. The non minimal one
includes all the literals in the loop; the minimal one includes none of them.

A transformed program in GDP captures only minimal answer set. In the following
section we will show that it cannot even capture all minimal answer sets of the original
program in DPNAF,

5 Comparing DPY4" with GDP

In light of the discussion of the previous section, we can assure that including NAF in
head increases the expressive power. Since programs in GDP capture only minimal
models, we can ask ourself if the set of transformed programs are powerful enough to
capture all minimal answer sets of the original program in DPVA¥ | In this section, we
will prove that the set of answer sets of transformed programs is strictly included in the
set of minimal answer sets of the original programs in DPNA,

The following lemma is necessary to prove theorem 5.2 which is the main result of
the paper.



Lemma 5.1. Let P be a DPVAF. S/ is closed under P5” for some S” such that
S’ C 8" C S, then S’ is closed under &(P)%. -

Proof: Let
HPos — BPos UHNeg € ®(P)° (3)

then exists
HPosU not HNeg «+— BPosU not BNeg € P

such that BNegN S = &.
Let’s consider the following cases:

(a) If BPos UHNeg C S’ then BPosU HNeg C S”. Therefore,
HPos — BPos € P%"

Since S’ is closed under P9 and BPos C S', HPosN S’ # & then (3) is satisfied
by S’

(b) If BPosU HNeg € S’ then S’ satisfies (3).

. 9" is closed under &(P). -

Theorem 5.2. Let P be a DPVAF If S is a answer set of ®(P) then S is a minimal
answer set of P.

Proof: Let S be an answer set of ®(P). In order to prove that S is an answer set of
P, we must prove that S is an answer set of P, i.e.,

(i) S is logically closed. Trivial.

(ii) S is closed under P%.
Let HPos «+ BPos € P%, such that BPos C S. Then exists

HPosUnot HNeg «— BPosUnot BNeg € P
such that HNeg C S and BNegN S = @. So
HPos +— BPosUHNeg U not BNeg € ®(P)

and
HPos «— BPos U HNeg € ®(P)’

As S is an answer set of ®(P), is an answer set of ®(P)° and S is closed under
®(P)®. Therefore HPosN S #£ @.

(iii) There is no S’ C S such that S’ satisfies (i) and (ii).
Let’s suppose that exists S’. As S’ satisfies (ii) then by lemma 5.1 S’ is closed
under ®(P)®. Therefore S’ satisfies (i) and is closed under ®(P)* what contradicts
the fact that S is an answer set of ®(P).



It remains to prove that S is a minimal answer set of P.
Let S’ be an answer set of P such that S’ C S. If S’ is an answer set of P then S’ is
logically closed and S’ is closed under PS". By lemma 5.1 S is closed under ®(P)* and
this contradicts the fact that S is an answer set of ®(P).

S is a minimal answer set of P. n

We proved that semantic of the class of transformed programs in GDP is always captured
by the original program in DPNAF | Furthermore, we proved that an answer set of the
transformed program is a minimal answer set of the original program in DPNAY, The
converse of this theorem does not hold as the following example shows.

Example 5.3. Consider the following program P and its transformed ®(P)

P: qglnotp « O(P): q«p
plnotq peq
r «—not p T« not p

{p,q} and {r} are both minimal answer sets of . However only {r} is answer set of
®(P). Once more, NAF in head involved in a loop causes this behavior. n

The above results show the key distinction between encoding information by p | not ¢
and encoding it by p « ¢. The first rule allows us to represent non minimal models
and even some minimal models that the second one is not able to express. Its uses will
strongly depend on whether the application accepts redundant information or not.

6 Conclusion and Future Work

We have semantically compared programs in DPY4¥ and programs in GDP, defining a
syntactic transformation between them. We have showed that negation as failure in the
head increases the expressive power of disjunctive logic programming, since it can capture
non minimal answer sets. Furthermore, we have proved that all transformed program
answer sets are strictly included in the set of minimal answer sets of the program in
DPNAF been transformed. Hence, transformed programs are not powerful enough to
capture all the minimal answer sets of the original program in DPNVAF

We have presented as an immediately application the distinction between the inclusive
and exclusive meaning. Representing the inclusive meaning requires to capture redundant
information, which is done by the non minimal answer sets.

Recently, Inoue and Sakama [IS98| have independently studied the class of disjunc-
tive programs with NAF in head, restricting the subset of DPV4¥ which are seman-
tically equivalent to the class of programs in GDP. Furthermore, they have showed
that DPNAY computational complexity remain in the same complexity class as normal
disjunctive programs.

Dix in [Dix95a, Dix95b, Dix95c| presents a set of properties for classifying and char-
acterizing the various semantics of logic programs with negation. A possible future work
would be to decide whether it is possible to provide a unique characterization of the
answer set semantic of disjunctive logic programs with NAF in head.
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