

UNIVERSIDAD NACIONAL DE LA PLATA

Facultad de Ciencias Naturales y Museo

Diversidad y patogenicidad de especies de hongos entomopatógenos en insectos plaga de la yerba mate *Ilex paraguariensis* en la provincia de Misiones

Tesista: Lic. María Elena Schapovaloff

Directora: Dra. Claudia C. López Lastra

Co-director: Dr. Luis F. Alves

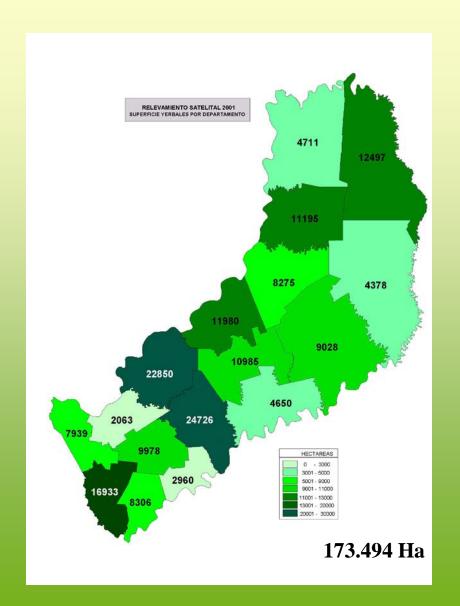
Ilex paraguariensis (St. Hil.) "Yerba Mate"

(Aquifoliales: Aquifoliaceae)

- Es un árbol originario de América del Sur.
- ➤ Su dispersión geográfica está restringida a los países: Argentina, Brasil y Paraguay.
- En Argentina las zonas productoras son: todo el territorio de la provincia de Misiones y el Nordeste de la provincia de Corrientes.

Es un cultivo de gran importancia socio-económica que crece en forma nativa o cultivada, en suelos profundos, bien drenados y ligeramente ácidos.

La importancia de la yerba mate se concentra en el área de las bebidas (mate, té, tereré, jugos y gaseosas), en el área de los cosméticos y actualmente en la gastronomía.



Superficie yerbales de la provincia de Misiones

Importancia económica

Argentina el 1º productor mundial.

Plantaciones de yerba: 194.000 ha, Misiones 85% y Corrientes 15%.

Principales insectos plaga en el cultivo de la yerba mate

❖ Se conocen 86 especies de insectos que se alimentan de diferentes parte de la planta, pocas pueden considerarse plagas ya que la mayoría ocurre esporádicamente en bajos niveles poblacionales, no causando daño económico.

❖ De ese total de especies, sólo 6 son consideradas plagas del cultivo.

Gyropsylla spegazziniana Hemiptera: Psyllidae

Hedyphates betulinus

Isomerida picticollis

Coleoptera: Cerambycidae

Ceroplastes grandis Hemiptera: Coccidae

Thelosia camina | Lepidoptera: Eupteroidae

Hylesia sp. Lepidoptera: Saturniidae

"Taladro o Tigre de la yerba mate"

Clase: Insecta

Orden: Coleoptera

Suborden: Polyphaga


Familia: Cerambycidae

Especie: Hedypathes betulinus

- Los adultos miden 25 mm de largo, presentan el cuerpo cubierto de pelos blancos con mayor densidad en la cabeza, pronoto y élitros, en estos últimos, aparecen manchas negras en forma de "M" con puntos redondeados negros.
- Las antenas son largas, finas y poseen 11 artejos, con manchas blancas y oscuras alternadas.
- ➤ Se puede observar dimorfismo sexual por medio de los escapos y fémures de los machos que son mayores que los de las hembras.
- Es un insecto **holometábolo** (con metamorfosis completa).

Ciclo de vida del "Taladro de la yerba mate"

Daños ocasionados por el "Taladro de la yerba mate"

Adultos

Las hembras perforan con sus mandíbulas la corteza de los gajos o cuello de la planta para la oviposición.

Larvas

Construyen galerías ascendentes o descendentes, llegando hasta las raíces de la planta donde provocan los mayores daños.

Dificultad en la circulación savia

Planta debilitada

Caída de hojas

Gajos secos

Muerte de la planta

"Rulo o Psilido de la yerba mate"

Clase: Insecta

Orden: Hemiptera

Suborden: Sternorrhyncha

Familia: Psyllidae

Especie: Gyropsylla spegazziniana

- Los adultos presentan alas transparentes, miden 2,6 mm de largo los machos y las hembras 2,9 mm, de color variable, amarillo y verde.
- Las antenas son largas de color pardo oscuro filiformes, el cuerpo y las patas posteriores están adaptados para saltar.
- Es un insecto **heterometábolo** (con metamorfosis incompleta).

Ciclo de vida del "Rulo de la yerba mate"

Daños ocasionados por el "Rulo de la yerba mate"

Adultos

- Succionan savia de las hojas nuevas y brotes.
- Las hembras introducen su estilete junto a la nervadura central e inyectan sustancias tóxicas antes de la oviposición, causando hipertrofia en los tejidos, dando origen a las estructuras llamadas "rulos o agallas".

Ninfas

Succionan gran cantidad de savia, excretan cera y un líquido azucarado "rocío de miel" que les sirven de protección.

Formación de los rulos en las hojas

Caída de las hojas Plantas debilitadas Muerte de la planta

MÉTODOS DE CONTROL

Control químico:

Taladro: No son eficientes debido al hábito de las larvas que viven dentro de las ramas y/o gajos de la planta.

Rulo: Aplicación de productos insecticidas, siendo los más usados los organoclorados (Endosulfán) y organofosforados (Dimetoato).

Control Cultural:

Taladro: Recolección manual de los insectos adultos.

Poda y desmalezamiento favorecen la visualización de los insectos y acción de depredadores.

Rulo: Poda de los brotes atacados.

Utilización de trampas luminosas y/o coloridas.

Control biológico: la utilización de enemigos naturales (depredadores, parasitoides y patógenos) para regular la densidad poblacional del insecto plaga.

Depredadores

- Coleópteros
- Dípteros
- Neurópteros
- Hemípteros

Parasitoides

• Himenópteros

Patógenos

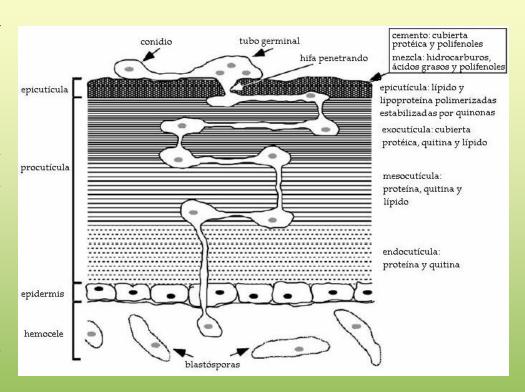
- Bacterias
- Virus
- Nemátodos
- Protozoos

HONGOS ENTOMOPATÓGENOS

Hongos entomopatógenos

Son un grupo de microorganismos capaces de infectar y llegar a causar la muerte de diferentes artrópodos.

❖ Se han citado más de 750 especies de hongos reunidas en 100 géneros diferentes.



Los principales grupos de hongos entomopatógenos se ubican en los **Phyla Ascomycota** y **Entomophthoromycota**.

Modo de acción de los hongos entomopatógenos

- 1. Adhesión del conidio a la cutícula del insecto.
- 2. Formación del tubo germinativo.
- 3. Penetración y multiplicación del hongo en el hemocele del insecto.
- 4. Producción de toxinas.
- 5. Muerte del insecto.
- 6. Colonización total del insecto y emergencia del hongo hacia afuera de la cutícula
- 7. Esporulación del hongo.
- 8. Diseminación del inoculo.

(Modificado de Duperchy, 2003)

HIPÓTESIS:

Las especies de hongos entomopatógenos nativos presentan en general mayor especificidad para los hospedadores de los cuales fueron aislados originalmente y además se adaptan mejor a las condiciones ambientales del lugar de origen, que los hongos patógenos procedentes de hospedantes y lugares diferentes.

OBJETIVO GENERAL:

Estudiar la diversidad y patogenicidad de hongos patógenos de insectos plaga de la yerba mate en la región del noreste Argentino.

OBJETIVOS ESPECÍFICOS:

- **☼** Relevar, aislar e identificar los hongos entomopatógenos a partir de insectos plaga en cultivos de yerba mate y suelos de importancia en la región del NEA (Misiones).
- * Estimar la patogenicidad de los hongos entomopatógenos aislados e identificados en condiciones controladas de laboratorio.
- * Preservar los cultivos fúngicos obtenidos en una colección de cultivos de referencia.
- * Caracterizar los hongos entomopatógenos mediante técnicas de biología molecular.

MATERIALES Y MÉTODOS

Campo

Relevamiento en cultivos de yerba mate con producción convencional y orgánica.

Distintas localidades de la provincia de Misiones: Santa Inés, Candelaria, Apóstoles, Oberá, Jardín América, Campo Ramón, Santo Pipó, Leandro N. Alem, Ruiz de Montoya y Colonia Aurora (15 sitios de muestreo)

Muestreos:

- Frecuencia cada 15 días entre mayo de 2008 y septiembre de 2010.
- Consistió en la búsqueda de daños e insectos asociados al daño en plantas de yerba mate, ocasionados por *H. betulinus* y *G. spegazziniana*.

Cultivos de yerba mate

Insectos plaga

H. betulinus

Muestras de suelo

G. spegazziniana

Ceroplastes grandis "Cochinilla cerosa"

Laboratorio

Insectos (adultos – juveniles) en jaulas y cápsulas de Petri.

Mantenidos a 25 \pm 1 °C durante 7 – 10 días.

Observaciones cada 24 hs. Cadáveres en cámaras húmedas e incubados a 25 °C.

Obtención de micelio fúngico.

Identificación de ssp. fúngicas. Preparados MO.

H. betulinus

G. spegazziniana

Depósito de insectos recolectados y preparados microscópicos como material de herbario de referencia en el CEPAVE.

Aislamiento

* Aislamiento Directo

1. A partir de Insectos

Cámaras húmedas

1. A partir de muestras de suelo

Diluciones seriadas

Cápsulas con colonias fúngicas en medio selectivo

* Aislamiento monospórico

Caracterización

Aspecto y el crecimiento radial de las colonias

- 1. Siembra de la colonia fúngica en SDYA (5 repeticiones por cultivo).
- 2. Incubación a 25 °C en oscuridad durante 10 días.
- 3. Registro de crecimiento radial: dos medidas del diámetro opuestas.

Forma, tamaño y porcentaje de germinación de los conidios

Preparaciones
para MO (agua
destilada).
Valores:
promedio de N =
25 ± ES.

Siembra de 100µl de una suspensión de 1 x 10⁶ conidios/ml en 100µl de SDYA

Porcentaje de germinación: 600 conidios por c/ cápsula luego de 24hs de incubación a 25 ° C en oscuridad (3 repeticiones por cultivo).

RESULTADOS

Relevamiento e identificación

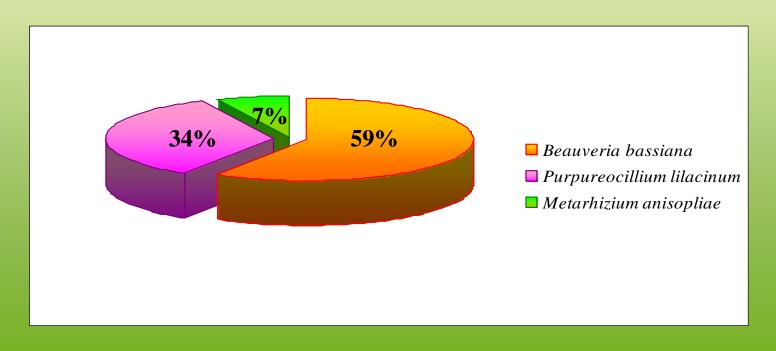
- A) A partir de Coleópteros: *H. betulinus*
- B) A partir de Hemípteros: G. spegazziniana

C) A partir de otros insectos

Ninguno de los insectos plaga de la yerba mate recolectados durante el período de muestreo 2008 - 2010 presentaron infección fúngica.

D) A partir de muestras de suelo

Clase Ascomycota
Orden Hypocreales


Beauveria bassiana

Metarhizium anisopliae

Purpureocillium lilacinum

Aislamiento y caracterización

- De 40 muestras de suelo de cultivos de yerba mate.
- Se aislaron y caracterizaron 29 aislamientos fúngicos.
 - → 17 aislamientos de *Beauveria bassiana*
 - → 2 aislamientos de *Metarhizium anisopliae*
 - → 10 aislamientos de *Purpureocillium lilacinum*

Lista de aislamientos fúngicos de B. bassiana

Colección CEPAVE	Hongo identificado	Sustrato	Localidad/Provincia	Fecha
CEP 332	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	01/11/2008
CEP 333	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	01/11/2008
CEP 334	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	01/112008
CEP 335	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	01/11/2008
CEP 336	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	01/11/2008
CEP 337	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	17/02/2009
CEP 338	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	17/02/2009
CEP 339	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	17/02/2009
CEP 340	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	01/11/2008
CEP 341	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	17/02/2009
CEP 342	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	17/02/2009
CEP 343	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	01/11/2008
CEP 344	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	01/11/2008
CEP 345	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	01/11/2008
CEP 346	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	17/02/2009
CEP 347	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	05/01/2009
CEP 348	B. bassiana	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	05/01/2009

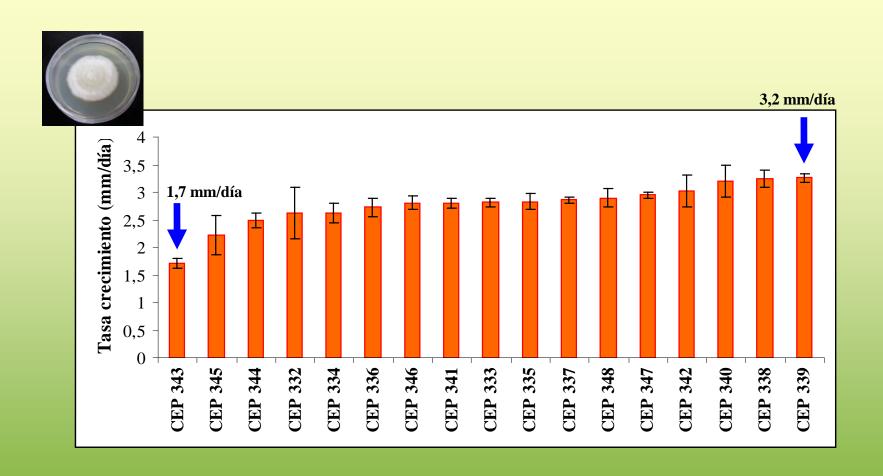
^{*} Cultivo de yerba mate orgánico

Caracterización morfológica de los aislamientos de *B. bassiana*

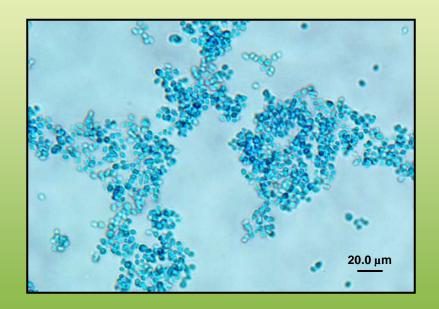
Phylum: ASCOMYCOTA

Clase: Sordariomycetes

Orden: Hypocreales


Familia: Cordycipitaceae

• Los aislamientos fúngicos presentaron un micelio con aspecto algodonoso, pulverulento, de color blanco.


El reverso del cultivo en medio SDYA presentó pigmentación de color amarillo.

Tasa de crecimiento de los aislamientos de B. bassiana

- Los conidióforos se mostraron agrupados en racimos con fiálides con parte basal dilatada terminando en un raquis en forma de zig-zag.
- Los conidios presentaron forma globosa a subglobosa. El tamaño promedio fue de 2,81 μm x 2,30 μm.
- Los porcentajes de germinación de los conidios fueron superiores al 90%.

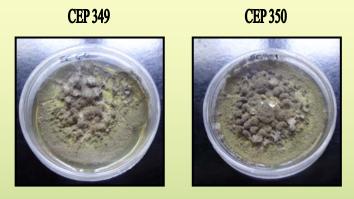
Observación microscópica de los conidios de B. bassiana

Lista de aislamientos fúngicos de M. anisopliae

Colección CEPAVE	Hongo identificado	Sustrato	Localidad/Provincia	Fecha
CEP 349	M. anisopliae	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	17/02/2009
CEP 350	M. anisopliae	Suelo-Yerba mate+	Campo Ramón, Misiones (Sitio 15)	14/05/2010

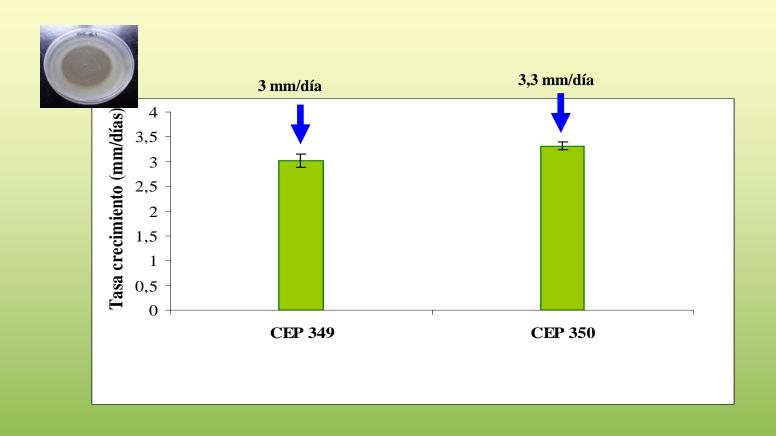
^{*} Cultivos de yerba mate orgánico

⁺ Cultivos de yerba mate convencional

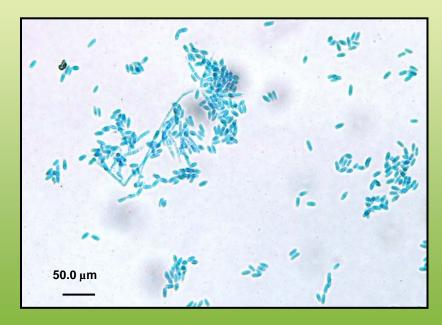

Caracterización morfológica de los aislamientos de *M. anisopliae*

Phylum: ASCOMYCOTA

Clase: Sordariomycetes


Orden: Hypocreales

Familia: Clavicipitaceae



- Los aislamientos fúngicos presentaron un micelio fino y abundante, elevado del medio de cultivo formando agrupaciones casi esféricas sobre las cuales se observa la esporulación de color verde oliváceo oscuro.
- El reverso del cultivo en medio SDYA presentó pigmentación de color amarillo.

Tasa de crecimiento de los aislamientos de M. anisopliae

- El hongo presentó hifas de paredes lisas, hialinas y septadas.
- Los conidios presentaron forma cilíndrica, ahusada y con ambos extremos redondeados, hialinos a oliváceos o verdes. El tamaño promedio fue de 4,93 µm x 2,65 µm.
- Los porcentaje de germinación de los conidios fueron superiores al 90%.

Observación microscópica de los conidios de M. anisopliae

Lista de aislamientos fúngicos de P. lilacinum

Colección CEPAVE	Hongo identificado	Sustrato	Localidad/Provincia	Fecha
CEP 351	P. lilacinum	Suelo-Yerba mate+	Jardín América, Misiones (Sitio 2)	02/06/2009
CEP 352	P. lilacinum	Suelo-Yerba mate+	Apóstoles, Misiones (Sitio 7)	25/06/2009
CEP 353	P. lilacinum	Suelo-Yerba mate+	Apóstoles, Misiones (Sitio 8)	25/06/2009
CEP 354	P. lilacinum	Suelo-Yerba mate+	Apóstoles, Misiones (Sitio 7)	25/06/2009
CEP 355	P. lilacinum	Suelo-Yerba mate+	Apóstoles, Misiones (Sitio 8)	30/06/2009
CEP 356	P. lilacinum	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	17/02/2009
CEP 357	P. lilacinum	Suelo-Yerba mate+	Apóstoles, Misiones (Sitio 8)	30/06/2009
CEP 358	P. lilacinum	Suelo-Yerba mate*	Santa Inés, Misiones (Sitio 1)	05/03/2010
SC 359	P. lilacinum	Suelo-Yerba mate+	Jardín América, Misiones (Sitio 2)	04/07/2009
SC 360	P. lilacinum	Suelo-Yerba mate+	Ruiz de Montoya, Misiones (Sitio 13)	09/03/2010

⁺ Cultivos de yerba mate convencional

^{*} Cultivos de yerba mate orgánico

Caracterización morfológica de los aislamientos de *P. lilacinum*

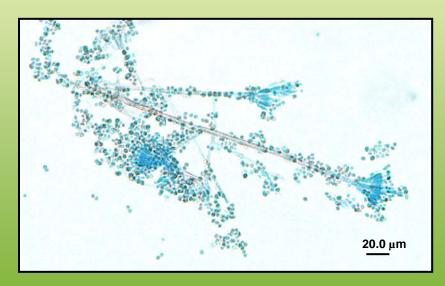
Phylum: ASCOMYCOTA

Clase: Sordariomycetes

Orden: Hypocreales

Familia: Ophiocordycipitaceae

• Los aislamientos fúngicos presentaron un micelio con aspecto algodonoso y pulverulento, de color blanco al comienzo y luego rosáceo.


• El reverso del cultivo en medio SDYA presentó pigmentación de color amarillo.

Tasa de crecimiento de los aislamientos de P. lilacinum

- Las hifas vegetativas presentaron presentaron paredes hialinas y lisas. Los conidióforos fueron ramificados e irregulares, con fiálides que se caracterizaron por constar de una porción basal cilíndrica o hinchada, adelgazándose para formar un cuello muy notorio.
- Los conidios presentaron forma ovoide, El tamaño promedio fue de 2,70 μm x 2,65 μm.
- Los porcentaje de germinación de los conidios fueron superiores al 90%.

Observación microscópica de los conidióforos, fiálides y conidios de *P. lilacinum*

CONCLUSIONES PARCIALES

- ❖ En los sitios de muestreos ubicados en la provincia de Misiones se observó que *G. spegazziniana* "rulo de la yerba mate" (Hemiptera: Psyllidae) fue la especie predominante, ya que se encontró en 13 sitios de muestreo, mientras que *H. betulinus* "taladro de la yerba mate" (Coleoptera: Cerambycidae) se encontró en 4 sitios de muestreo.
- Ninguno de los insectos plaga de la yerba mate recolectados durante los años de muestreo 2008 a 2010 presentaron infección fúngica.
- Se obtuvieron 29 aislamientos *in vitro* de hongos entomopatógenos a partir de muestras de suelo de cultivos de yerba mate.
- La descripción morfológica de los aislamientos fúngicos obtenidos (CEP 332 a CEP 360) permitió identificar a dichos aislamientos como pertenecientes a las especies: *B. bassiana*, *M. anisopliae* y *P. lilacinum*.

OBJETIVOS ESPECÍFICOS:

- Relevar, aislar e identificar los hongos entomopatógenos a partir de insectos plaga en cultivos de yerba mate y suelos de importancia en la región del NEA (Misiones).
- * Estimar la patogenicidad de los hongos entomopatógenos aislados e identificados en condiciones controladas de laboratorio.
- * Preservar los cultivos fúngicos obtenidos en una colección de cultivos de referencia.
- * Caracterizar los hongos entomopatógenos mediante técnicas de biología molecular.

MATERIALES Y MÉTODOS

Cría de insectos para ensayos de patogenicidad

Cría de H. betulinus en condiciones de laboratorio

Adultos de *H. betulinus* provenientes de los muestreos. Ivaí – Paraná- Brasil.

Jaulas de madera de 60x60x40 cm – Recipiente con arena húmeda con ramas de yerba mate.

Sala climatizada del Lab. de Biotecnología Agrícola-UNIOESTE.

Temperatura 26 ± 1 °C; fotoperíodo de 14: 10 L:O y HR 70%.

Cría de G. spegazziniana en condiciones de laboratorio

Gajos con rulos de yerba mate provenientes de los muestreos. Cascavel – Paraná- Brasil.

Jaulas de madera de 60x60x40 cm – Recipiente con arena húmeda.

Sala climatizada del Lab. de Biotecnología Agrícola-UNIOESTE.

Temperatura 26 ± 1 °C; fotoperíodo de 14: 10 L:O y HR 70%.

Ensayos de patogenicidad

Ensayos contra adultos de H. betulinus y G. spegazziniana

Elección de aislamientos fúngicos

mayores porcentajes de germinación de conidios

Cultivos en SDYA - 10 días a 25 °C en oscuridad. 5 cápsulas de Petri por cada aislamiento.

Extracción de conidios

Tubos con Tween 80. Agitación. Suspensión homogénea.

Estimación de la concentración del inóculo (cámara de Neubauer).

Bioensayos contra adultos de H. betulinus

Taladro adulto

3 repeticiones/tratamiento (c/u 10 insectos)
30 insectos/tratamiento

10 mL suspensión fúngica de 1x10⁸ conid/mL

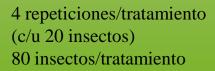
Inmersión en suspensión fúngica

Suspensión fúngica 1x10⁸ conid/ml Control: agua destilada + Tween 80 (Polisorbato de Sodio) 0,01%

Sala climatizada 26 ± 1 °C; fotoperíodo 14: 10 L:O y HR 70%

Bioensayos contra adultos de G. spegazziniana

Ninfas del V estadio


2 mL da suspensión fúngica de 1x10⁹ conid/mL

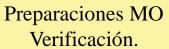
- Control: 2 mL de agua destilada + Tween 80 (Polisorbato de Sodio) 0,01%

Pulverizador acoplado a un compresor de aire

1 plantín de yerba mate en cada jaula de PVC cristal. Incubadas en sala climatizada 26 ± 1 C; fotoperíodo14:10 L:O y HR 70%

Registro de mortalidad cada 24hs,

15 días *H. betulinus*


10 días G. spegazziniana

Esterilización superficial de cadáveres


Cámaras húmedas 25 °C

Pruebas de patogenicidad contra

H. betulinus

G. spegazziniana

Cálculo % Mortalidad acumulada por 15 días (*H. betulinus*) y 10 días (*G. spegazziniana*)

Corrección de la mortalidad de los controles (Fórmula Abbott)

Obtención del tiempo letal medio (TLM) (Programa Probit)

Análisis de Varianza ANOVA y Test Tukey

RESULTADOS

Elección de aislamientos fúngicos para bioensayos contra H. betulinus

Especie fúngica	N° Colección CEPAVE	Viabilidad conidios	
Beauveria bassiana	CEP 332	99,60 % (0,29)	
Beauveria bassiana	CEP 333	91,93 % (3,24)	
Beauveria bassiana	CEP 334	89,46 % (7,48)	
Beauveria bassiana	CEP 335	98,15 % (0,55)	
Beauveria bassiana	CEP 336	98,43 % (1,22)	
Beauveria bassiana	CEP 337	99,43 % (0,66)	
Beauveria bassiana	CEP 338	99,83 % (0,12)	
Beauveria bassiana	CEP 339	98,60 % (0,49)	
Beauveria bassiana	CEP 340	95,83 % (2,94)	
Beauveria bassiana	CEP 341	100 % (0,00)	
Beauveria bassiana	CEP 342	99,33 % (0,74)	
Beauveria bassiana	CEP 343	97,80 % (0,14)	
Beauveria bassiana	CEP 344	100 % (0,00)	
Beauveria bassiana	CEP 345	100 % (0,00)	
Beauveria bassiana	CEP 347	100 % (0,00)	
Metarhizium anisopliae	CEP 349	97,80 % (0,53)	
Metarhizium anisopliae	CEP 350	100 % (0,00)	
Purpureocillium lilacinum	CEP 352	97,33 % (0,74)	
Purpureocillium lilacinum	CEP 353	100 % (0,00)	
Purpureocillium lilacinum	CEP 354	100 % (0,00)	
Purpureocillium lilacinum	CEP 355	100 % (0,00)	
Purpureocillium lilacinum	CEP 356	98,40 % (0,86)	
Purpureocillium lilacinum	CEP 359	100 % (0,00)	
Purpureocillium lilacinum	CEP 360	100 % (0,00)	

Porcentaje de mortalidad promedio y tiempo letal medio (TL50) de los aislamientos de *B. bassiana* contra *H. betulinus*

Aislamiento fúngico	Mortalidad (%)*	TL 50 (Días)+
Control	3,33 (4,71) a	
CEP 332	63,33 (4,71) b	11,76
CEP 333	66,66 (12,47) b	12,99
CEP 334	86,66 (4,71) b	11,64
CEP 335	86,66 (12,47) b	10,39
CEP 336	80,00 (16,32) b	10,19
CEP 337	66,66 (12,47) b	12,11
CEP 338	83,33 (4,71) b	9,64
CEP 339	83,33 (12,47) b	9,7
CEP 340	70,00 (8,16) b	8,74
CEP 341	66,66 (4,92) b	9,58
CEP 342	70,00 (16,32) b	10,29
CEP 343	73,33 (4,71) b	11,9
CEP 344	70,00 (8,16) b	11,9
CEP 345	70,00 (0,00) b	13,59
CEP 347	53,33 (12,47) b	12,17

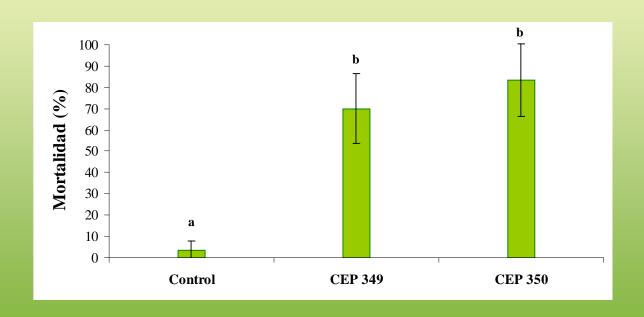
 $[\]bullet$ Porcentaje de mortalidad promedio (error estándar) a los 15 días posteriores a la inoculación. Las letras indican diferencias significativas entre los tratamientos dentro de cada columna (Test de Tukey p<0,05).

⁺ Tiempo letal medio (TL50)

15 días post – inoculación: Se detectaron diferencias altamente significativas entre el tratamiento control y los 15 aislamientos fúngicos de *B. bassiana*.

$$(F = 6,42; g.l = 15; P < 0,0001).$$

Porcentaje de mortalidad promedio y tiempo letal medio (TL50) de los aislamientos de *M. anisopliae* contra *H. betulinus*


Aislamiento fúngico	Mortalidad (%)*	TL 50 (Días)+
Control	3,33 (4,71) a	
CEP 349	70,00 (16,32) b	7,41
CEP 350	83,33 (16,99) b	7,92

[•]Porcentaje de mortalidad promedio (error estándar) a los 15 días posteriores a la inoculación. Las letras indican diferencias significativas entre los tratamientos dentro de cada columna (Test de Tukey p< 0,05).

⁺ Tiempo letal medio (TL50)

15 días post – inoculación: Se detectaron diferencias altamente significativas entre el tratamiento control y los 2 aislamientos fúngicos de *M. anisopliae*.

$$(F = 15,57; g.l = 1; P < 0,00042).$$

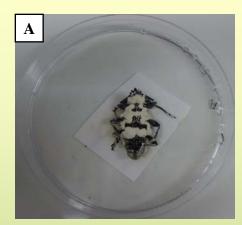
Porcentaje de mortalidad promedio y mortalidad corregida de los aislamientos de *P. lilacinum* contra *H. betulinus*

Aislamiento fúngico	Mortalidad (%)*	Mortalidad corregida (%)+
Control	11,66 (8,49)	
CEP 352	0,00 (0,00)	-0,14 (0,10)
CEP 353	3,33 (4,71)	-0,10 (0,10)
CEP 354	10,00 (0,00)	-0,02 (0,09)
CEP 355	3,33 (4,71)	-0,22 (0,20)
CEP 356	0,00 (0,00)	-0,14 (0,10)
CEP 359	6,66 (9,42)	-0,06 (0,13
CEP 360	3,33 (4,71)	-0,10 (0,10)

[•]Porcentaje de mortalidad promedio (error estándar) a los 15 días posteriores a la inoculación.

⁺ Mortalidad corregida por la Fórmula de Abbott (1925).

Elección de aislamientos fúngicos para bioensayos contra G. spegazziniana


Especie fúngica	N° Colección CEPAVE	Viabilidad conidios	
Beauveria bassiana	CEP 332	99,60 % (0,29)	
Beauveria bassiana	CEP 333	91,93 % (3,24)	
Beauveria bassiana	CEP 334	89,46 % (7,48)	
Beauveria bassiana	CEP 335	98,15 % (0,55)	
Beauveria bassiana	CEP 336	98,43 % (1,22)	
Beauveria bassiana	CEP 337	99,43 % (0,66)	
Beauveria bassiana	CEP 338	99,83 % (0,12)	
Beauveria bassiana	CEP 339	98,60 % (0,49)	
Beauveria bassiana	CEP 340	95,83 % (2,94)	
Beauveria bassiana	CEP 341	100 % (0,00)	
Beauveria bassiana	CEP 342	99,33 % (0,74)	
Beauveria bassiana	CEP 343	97,80 % (0,14)	
Beauveria bassiana	CEP 344	100 % (0,00)	
Beauveria bassiana	CEP 345	100 % (0,00)	
Beauveria bassiana	CEP 346	98,83 % (0,84)	
Beauveria bassiana	CEP 347	100 % (0,00)	
Beauveria bassiana	CEP 348	99,83 % (0,23)	
Metarhizium anisopliae	CEP 349	97,80 % (0,53)	
Metarhizium anisopliae	CEP 350	100 % (0,00)	
Purpureocillium lilacinum	CEP 351	96,40 % (1,10)	
Purpureocillium lilacinum	CEP 352	97,33 % (0,74)	
Purpureocillium lilacinum	CEP 354	100 % (0,00)	
Purpureocillium lilacinum	CEP 356	98,40 % (0,86)	
Purpureocillium lilacinum	CEP 357	99,06 % (0,14)	
Purpureocillium lilacinum	CEP 360	100 % (0,00)	

Porcentaje de mortalidad promedio y mortalidad corregida de los aislamientos fúngicos contra *G. spegazziniana*

Aislamiento fúngico	Mortalidad (%)*	Mortalidad corregida (%)+
Control	20,00 (12,47)	-
CEP 342	0,00 (0,00)	- 0,12 (0,21)
CEP 345	0,00 (0,00)	- 0,23 (0,03)
CEP 344	1,25 (2,16)	- 0,23 (0,03)
CEP 348	2,50 (4,33)	- 0,21 (0,03)
CEP 346	6,25 (5,44)	- 0,16 (0,06)
CEP 332	6,25 (4,14)	- 0,16 (0,05)
CEP 335	7,50 (5,59)	- 0,12 (0,07)
CEP 343	7,50 (5,59)	- 0,15 (0,07)
CEP 333	8,75 (4,14)	- 0,13 (0,04)
CEP 340	8,75 (5,44)	- 0,08 (0,09)
CEP 336	15,00 (5,00)	- 0,06 (0,06)
CEP 341	16,25 (12,93)	0,01 (0,10)
CEP 334	17,50 (10,30)	- 0,03 (0,12)
CEP 339	20,00 (11,72)	- 0,00 (0,14)
CEP 337	21,25 (13,40)	0,01 (0,14)
CEP 338	27,50 (11,45)	0,09 (0,14)
CEP 347	27,50 (10,89)	0.09 (0.13)
Control	11,25 (11,38)	-
CEP 349	2,50 (2,50)	- 0,18 (0,15)
CEP 350	2,50 (4,33)	- 0,29 (0,05)
Control	20,00 (8,49)	-
CEP 351	3,75 (4,14)	- 0,20 (0,05)
CEP 352	2,50 (4,33)	- 0,03 (0,22)
CEP 354	1,25 (2,16)	- 0,23 (0,03)
CEP 356	1,25 (2,16)	- 0,16 (0,03)
CEP 357	6,25 (5,44)	- 0,16 (0,06)
CEP 360	0,00 (0,00)	- 0,25 (0,00)

Emersión de micelio a través de las zonas intersegmentales del abdomen, aparato bucal, antenas y patas: 24 hs *post -mortem*.

Esporulación: entre las 48 y las 72 hs *post* -mortem.

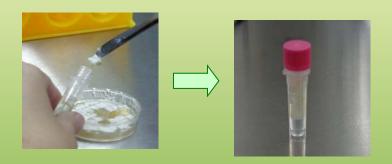
A: Adultos de *H. betulinus* infectados con *B. bassiana*. **B:** Adultos de *H. betulinus* infectados con *M. anisopliae*.

Adultos de G. spegazzinaina infectados con B. bassiana.

CONCLUSIONES PARCIALES

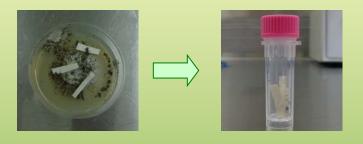
- Los 15 aislamientos de *B. bassiana* y los 2 aislamientos de *M. anisopliae* resultaron ser patogénicos para *H. betulinus*, ya que presentaron un porcentaje de mortalidad superior al 50% y 70% respectivamente. Sin embargo, no se observó patogenicidad para los 7 aislamientos de *P. lilacinum*.
- Los aislamientos **CEP 334** y **CEP 335** de *B. bassiana* presentaron el mayor porcentaje de mortalidad para *H. betulinus* (86,66%).
- Los aislamientos de *B. bassiana* presentaron muy baja patogenicidad para *G. spegazziniana*. La patogenicidad de los aislamientos de *M. anisopliae* y *P. lilacinum* fue nula.

OBJETIVOS ESPECÍFICOS:

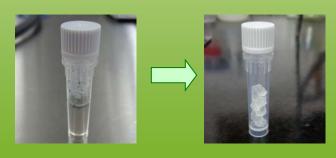

- Relevar, aislar e identificar los hongos entomopatógenos a partir de insectos plaga en cultivos de yerba mate y suelos de importancia en la región del NEA (Misiones).
- * Estimar la patogenicidad de los hongos entomopatógenos aislados e identificados en condiciones controladas de laboratorio.
- * Preservar los cultivos fúngicos obtenidos en una colección de cultivos de referencia.
- * Caracterizar los hongos entomopatógenos mediante técnicas de biología molecular.

MATERIALES Y MÉTODOS

Preservación de los cultivos fúngicos


Método de conservación a largo plazo

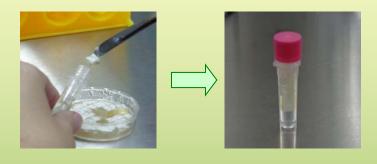
Criopreservación en glicerol estéril 10%



Métodos restringidos

Desecación en papel de filtro

Desecación en sílica gel


Métodos alternativos

Transferencia periódica "repiques"

En agua destilada estéril

Micelio seco

RESULTADOS

Los 29 aislamientos fúngicos se encuentran depositados en las colecciones del CEPAVE (CONICET-UNLP) y en el Laboratorio de Biotecnología Agrícola (UNIOESTE).

CONCLUSIONES PARCIALES

- Los métodos de conservación empleados permitieron una buena recuperación de los cultivos fúngicos.
- * Todos los cultivos conservaron sus características morfológicas originales y no se observaron contaminaciones con otros microorganismos ni con ácaros.
- Los métodos de preservación empleados son de fácil ejecución y bajo costo.

OBJETIVOS ESPECÍFICOS:

- Relevar, aislar e identificar los hongos entomopatógenos a partir de insectos plaga en cultivos de yerba mate y suelos de importancia en la región del NEA (Misiones).
- * Estimar la patogenicidad de los hongos entomopatógenos aislados e identificados en condiciones controladas de laboratorio.
- * Preservar los cultivos fúngicos obtenidos en una colección de cultivos de referencia.
- * Caracterizar los hongos entomopatógenos mediante técnicas de biología molecular.

MATERIALES Y MÉTODOS

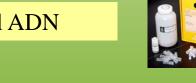
Caracterización por técnicas de biología molecular

N° Colección CEPAVE	Especie fúngica	Sustrato/Insecto hospedador	Región geográfica
CEP 148	Beauveria bassiana	Cycloneda sanguinea	Tucumán, Argentina
CEP 332	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 333	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 334	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 335	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 336	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 337	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 338	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 339	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 340	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 341	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 342	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 343	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 344	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 345	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 346	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina
CEP 347	Beauveria bassiana	Suelo yerba mate	Misiones, Argentina

Cultivo líquido de todos los aislamientos de B. bassiana

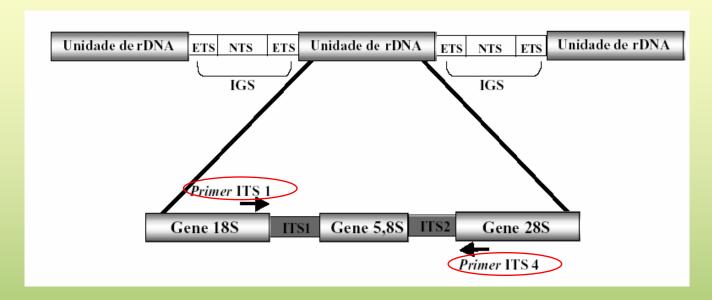
Extracción del ADN genómico

(Metodología Azevedo et al., 2000)



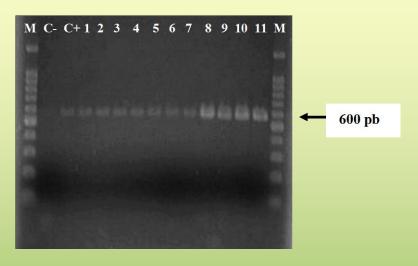
Amplificación de los genes nucleares:

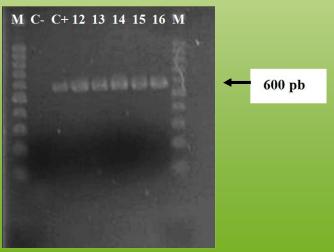
los espaciadores intergénicos del rDNA (ITS1-ITS2)

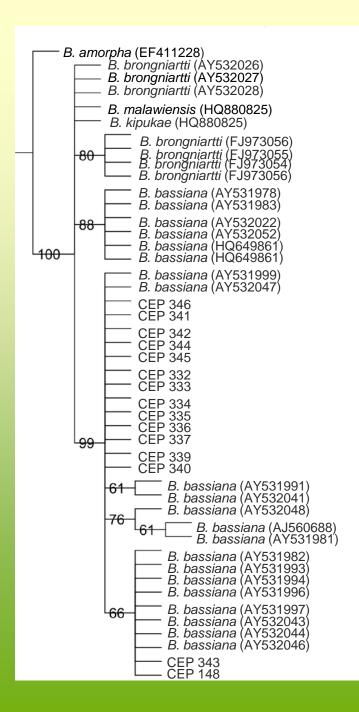

Purificación del ADN

Secuenciamiento del ADN

Amplificación de los genes nucleares




Primers ITS1 e ITS4


Fragmento de 600pb que abarca desde el extremo 3' del 18S rDNA al extremo 5' del 28S rDNA, incluyendo el 5.8S rDNA.

RESULTADOS

Perfil electroforético del producto de amplificación de la región ITS del ADNr (ITS1-5.8S-ITS2) utilizando los *primers* ITS1 e ITS4.

Árbol filogenético de la región ITS1-5.8S-ITS2 del rADN de 15 aislamientos obtenidos de muestras de suelo y 31 linajes representativos de *Beauveria* provenientes del *Genbank* (NCBI) con el número de acceso indicado. El método utilizado para la contrucción del árbol fue máxima parsimonia. Bootstrap de 1000 repeticiones.

CONCLUSIONES PARCIALES

- ❖ De los 18 aislamientos fúngicos sometidos al proceso de secuenciación de la región intergénica del ADNr (ITS1-5.8S-ITS2), 15 resultaron en secuencias probables de ser analizadas.
- ❖ El alineamiento de las secuencias nucleotídicas obtenidas en este trabajo con aquellas secuencias de diferentes especies de *Beauveria*, y que están depositadas en el Genebank (NCBI) permitió la obtención de un árbol filogenético.
- ❖ Todos los aislamientos pertenecen a la especie *B. bassiana*, se muestran filogenéticamente idénticos entre sí y con los linajes de referencia de *B. bassiana*.

CONCLUSIONES FINALES

- Durante la prospección de hongos patógenos de *H. betulinus* y *G. spegazziniana* en cultivos de yerba mate de la provincia de Misiones, desde mayo de 2008 hasta septiembre de 2010, no pudieron observarse infecciones fúngicas en los mismos en condiciones de campo y laboratorio.
- Se obtuvieron 29 aislamientos *in vitro* de hongos entomopatógenos a partir de muestras de suelo de cultivos de yerba mate. Correspondiendo 17 aislamientos a *B. bassiana*, 10 aislamientos a *P. lilacinum* y 2 aislamientos a *M. anisopliae*.
- Los aislamientos nativos de *B. bassiana* y *M. anisopliae* resultaron ser patogénicos para *H. betulinus*, ya que presentaron un porcentaje de mortalidad superior al 50% y 70% respectivamente. Sin embargo, no se observó patogenicidad para los aislamientos nativos de *P. lilacinum*.

- Los aislamientos nativos de *B. bassiana* presentaron muy baja patogenicidad para *G. spegazziniana*. La patogenicidad de *P. lilacinum* y *M. anisopliae* fue nula.
- Los análisis filogenéticos de la región ITS1-5.8S-ITS2 del ADNr permitió confirmar la identificación de los 14 aislamientos de *B. bassiana* provenientes de suelos de cultivo de yerba mate y 1 aislamiento de referencia de la colección del CEPAVE, perteneciendo todos a la misma especie.

PERSPECTIVAS FUTURAS

- Desarrollar la producción *in vitro* de los hongos aislados y evaluados en el presente estudio para llevar a cabo liberaciones a campo en pequeña escala para conocer la capacidad infectiva de estos hongos en condiciones de campo.
- Realizar la evaluación de los hongos entomopatógenos combinados con otros enemigos naturales y evaluar la patogenicidad de estos hongos sobre organismos "no blanco".
- Estudiar la interacción de los hongos entomopatógenos con agroquímicos y productos derivados de la yerba mate para determinar posibles antagonismos o sinergismos.

AGRADECIMIENTOS

- A mi directora la **Dra.** Claudia López Lastra por haberme brindado todos sus conocimientos, experiencia, dedicación y apoyo durante la realización de la tesis. Al igual que por su amistad, consejos y respaldo en todo momento.
- ❖ A mi co-director el **Dr. Luis Alves** por ayudarme, orientarme y acompañarme en mi proyecto de investigación y en mi estadía en Cascavel, Brasil.
- ❖ Al **Dr. Juan García** por su orientación en los aspectos de la investigación científica.
- ❖ A la directora del CEPAVE **Dra. Alda González** y a la co-directora **Dra. Graciela Navone**, por haberme permitido realizar mis tareas de investigación en dicho centro.

A mis compañeros y amigos del laboratorio de Hongos Entomopatógenos del CEPAVE

A mis compañeros del laboratorio de **Biotecnología Agrícola** UNIOESTE Cascavel-Brasil

A mis compañeros del laboratorio de **Micología** de la FCEQyN (UNaM)

- ❖ A los **productores**, **profesionales** y **cooperativas yerbateras** que me permitieron efectuar el relevamiento y muestreo en sus cultivos de yerba mate.
- ❖ A la Ing. Agr. María Inés Urrutia y al Dr. Raúl Alzogaray por la realización y colaboración con los análisis estadísticos.
- * Al **Dr. Richard Humber** por su colaboración con la identificación de los aislamientos fúngicos.
- ❖ A la **Dra.** Noelia Guzmán por su colaboración con el análisis de las secuencias y filogenia molecular.
- * Al técnico de biología molecular del CEPAVE **Dr. Javier Panei** por su ayuda y colaboración.
- ❖ A todos los integrantes del **CEPAVE**.
- ❖ A los miembros de la **UNLP** Y **CONICET** por financiar mi tesis doctoral y permitir mi formación científica en el área de las Ciencias Biológicas.
- ❖ A los directivos y todo el personal del departamento de posgrado de la FCNyM-UNLP.
- ❖ A los miembros del jurado.
- ❖ A todos mis **amigos** que siempre me apoyan y acompañan en todo momento.
- ❖ A toda mi **familia** por el cariño y confianza que me brindan siempre.

A mi madre por su gran amor, apoyo incondicional y comprensión.

A toda la familia de la Yerba Mate

