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ABSTRACT 
 

The availability of high-density field configurable devices provides the opportunity for designing  
highly integrated solutions (SOPC: System On a Programmable Chip). 

Among the SOPC solutions, a case is the integration of an embedded single processor equipped 
with a multitasking operating system. As an alternative to a single processor the embedding of various 
processors on a chip, even heterogeneous and with multitasking capacity, may be considered. 

A distinctive characteristic of a SOPC device is that the tasks to be performed are well known 
before the design starts. That feature is opposed to the traditional multiprocessing and multitasking 
systems in which general purpose applications are adopted during design. The benefit of this 
knowledge is that hardware as well as software can be adapted to fit the application’s requirements. 

This paper presents the hardware modifications performed on an microcontroller embedded core, to 
allow its inclusion as a multitasking device in a “multiprocessor on a chip”, through the addition of a 
hardware task manager (scheduler) and communication channels among processors. 
 

RESUMEN 
 
La disponibilidad de dispositivos de Lógica Programable de alta densidad de integración permite 
buscar soluciones integradas en un dispositivo SOPC (System On a Programmable Chip).  

Un tema de creciente interés son los procesadores empotrados, siendo usual un único procesador y 
un sistema operativo con capacidad de multitarea. 

Sin embargo, debe considerarse como alternativa insertar varios procesadores, no necesariamente 
idénticos, que pueden a su vez atender varias tareas. En un SOPC, como diferencia fundamental con 
los casos tradicionales de multiprocesamiento y multitarea, las tareas a realizar son conocidas antes de 
comenzar el diseño, por lo tanto hardware como software se pueden configurar a medida de la 
aplicación, combinando la velocidad propia del primero, con la versatilidad del segundo. 

Este artículo describe las modificaciones de hardware realizadas al núcleo IP (Intellectual Property) 
de un procesador, de modo de permitir la inclusión de un administrador de tareas por hardware y de 
canales de comunicación interprocesadores. 
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ABSTRACT 

 
The availability of high-density field configurable 
devices provides the opportunity for designing 
highly integrated solutions (SOPC: System On a 
Programmable Chip). 

Among the SOPC solutions, a case is the 
integration of an embedded single processor 
equipped with a multitasking operating system. As 
an alternative to a single processor the embedding of 
various processors on a chip, even heterogeneous 
and with multitasking capacity, may be considered. 

A distinctive characteristic of a SOPC device is 
that the tasks to be performed are well known before 
the design starts. That feature is opposed to the 
traditional multiprocessing and multitasking systems 
in which general purpose applications are adopted 
during design. The benefit of this knowledge is that 
hardware as well as software can be adapted to fit the 
application’s requirements. 

This paper presents the hardware modifications 
performed on an microcontroller embedded core, to 
allow its inclusion as a multitasking device in a 
“multiprocessor on a chip”, through the addition of a 
hardware task manager (scheduler) and 
communication channels among processors. 

 
 

1. INTRODUCTION 
 
The design of a computer processing system 
[8][10][12] strongly depends upon the exact 
knowledge of the characteristics of the problems to 
solve: 
• When the tasks are unknown and diverse, the 

solution is to use a general-purpose processor, e.g., 
a personal computer. 

• When the system will be used to compute specific 
but yet undefined tasks (e.g., image processing), it 
is worth choosing specialized processors as DSP´s 
with a large amount of memory or particular I/O 
features. 

• When the application is totally known before 
design starts, the pertinent approach is to use the 
best adapted hardware resources, and in such a case 
even to use an ASIC (Application Specific 
Integrated Circuit). 

The System On a Chip (SOC) solution is the 
answer to the actual demand for the integration of 
full systems in small spaces, with a short time to 
market effort. The design methodologies based on 
SOC can take advantage of libraries of IP blocks that 
have been already designed and verified. Actually, 
the reusability of IP blocks allows the design of new 
SOCs attending to the space and time demands 
[6][7][9][11]. 

Moreover, in the field of programmable logic 
devices, the trend is moving towards SOPC (System 
On a Programmable Chip) alternatives. Besides, 
there is a growing interest in the literature in 
presenting IP blocks for specific functions [4] [15]. 

The leading companies are already offering some 
commercial products including a single processor, a 
real time operating system (RTOS) with multitasking 
capabilities, and a set of programmable resources: 
• ATMEL is offering an 8-bit RISC processor 

(AVR), with suitable amount of RAM and ROM 
memory, and a 10K to 40K gates in a 
programmable block. 

• TRISCEND is offering a 32-bit ARM7DMI, with 
internal cache memory, interfaces to external 
memory, peripheral devices (timers, UART´s, 
interrupts), and a programmable matrix with an 
equivalent complexity of 40K gates. 



• ALTERA is offering a softcore alternative called 
NIOS [13], with configurable data bus width. A 
hardcore alternative, belonging to the Excalibur 
family, offers three ARM922T models and three 
MIPS32 4Kc models [14]. 

• XILINX has announced a 32-bit softcore 
alternative called MicroBLAZE, which includes 
UART, timer, parallel I/O, interrupt controller, 
multimaster arbitrator, FLASH memory interface, 
and different RAM types. 

All the above solutions are based on a unique 
powerful processor, their own peripheral devices, 
and interconnection resources with a programmable 
logic array. 

As an alternative to the above-proposed single-
processor solutions, it is possible to include several 
processors [1][2] on a chip. Moreover, every 
processor can be different from each other and 
devoted to specific tasks, in an structure called 
MPOC (Multi-Processors On a Chip). 

The key difference of this approach is related to 
the knowledge of the tasks to be performed: 
• In traditional multiprocessing / multitasking 

designs, the features of the tasks are knows ‘a 
posteriori’ because they are oriented to general-
purpose applications. 

• Unlikely, in the MPOC design, the tasks are known 
‘a priori’, then the hardware as well as the software 
can be tuned to meet the requirements of the 
specific applications. 

This paper describes the hardware modifications 
performed into the IP core of an 8-bit MC6805 
processor, to include a hardware multitask scheduler, 
as well as interprocessor communication channels. 
 

2. THE MPOC PROPOSAL 
 
The MPOC (MultiProcessors On a Chip) proposal 
is oriented to low cost applications [5], where a 
structured methodology is suggested for the building 
of multitasking / multiprocessing applications. In this 
proposal tasks are assigned to processors according 
to the type of processes and the inter-processes 
communication rate. As a consequence, the use of 
multiple (no necessarily identical) processors can 
reduce the latencies and overheads of a 
monoprocessor RTOS: 
• Tasks attending the same type of processes can 

reside on the same processor. With the same 
criteria, different types of tasks  can reside on 

different processors; choosing for each task the best 
suited processor. 

• Tasks with a large rate of information interchange 
can communicate between using high bandwidth 
resources (e.g., shared memory areas or FIFO´s). 
Meanwhile, lightly coupled tasks can use simpler 
channels (e.g., serial channels, such as TLINK´s 
[16]). 

To operate in a MPOC environment, a processor 
should have the following characteristics: 
• When attending a predefined number of known 

tasks, the hardware & software overload for task 
management and context switching has to be 
minimum. 

• When interacting with other processors, the 
hardware required for the communication facilities 
has to be as reduced as possible. 

Based on those requirements, an MPOC can be 
seen as a hierarchical structure composed by 
processors, tasks, channels, and I/O ports. 

Figure 1 shows a schematic MPOC, as it has been 
presented in [5]. In that system several processors 
attend several tasks (some of them just one and other 
more than one), and communicate among them using 
point-to-point channels or some broadcasting 
facility. Many of the tasks can communicate with 
external world using I/O lines, while other ones are 
just internal processing tasks. 

 
As an example, consider the design of a car 

computer. In this case there are contextually different 
tasks: 
• Related to the engine: combustion and ignition 

control, temperature control, oil pressure control, 
etc. 

• Related to the structure: adaptive damping control, 
airbags, brakes (ABS) and traction control, etc. 
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• Related to the comfort, navigation or others: air-
conditioned, navigation computer, audio devices, 
centralized lights control, anti-burglar alarms, etc. 

A quick analysis shows the following: 
• The tasks related to the engine are strongly related 

among them, and the relation between these tasks 
and those of the general type is almost nonexistent. 
The tasks related to the engine require intensive 
numerical computation, that could be solved by 
DSP´s. 

• The tasks related to the structure conforms also a 
compact block sharing common sensors and 
actuators. In this case common solutions are based 
on fuzzy logic. 

• The general type tasks include a high amount of 
I/O bit-level operations, resources for multiple 
timers, and communication channels to peripheral 
devices. A general-purpose processor could be used 
in this case, 

 
3. ADAPTING AN IP MC6805 CORE FOR 

MULTITASKING 
 
The MC6805 is widely used in low cost applications. 
Their characteristics can be found in the technical 
manual [17], nevertheless we present its main 
aspects. 

It is a fixed-point processor, with an 8-bit data 
bus, and Von Neumann architecture. The CPU has a 
few internal registers: a variable –up to 16 bits- 
program counter (PC), an 8-bit accumulator (A), an 
8-bit index register (X), a 5-bit stack pointer (SP), 
and a 5-bit status register (CCR). Variables, 
instructions, and I/O share the 64 Kbytes address 
space, and can be referenced using ten different 
addressing modes. 

The design of a single task MC6805 processor 
using Altera’s FLEX10K devices has been presented 
in [3]. This design uses a very reduced amount of 
resources (about 500 logic elements), and has be 
taken as the starting point for this work. 

For multi-task support it is necessary to perform a 
fast context switching, saving all the variable values 
belonging to the leaving task, which will be used 
during the next instance of this task. That implies the 
saving of two resources: 
• The private data (variables stored in RAM). 
• The value of the processor registers. 

The protection of the private data can take 
advantage of the fact that the size of code and data 

used by each task is known ‘a priori’, before the 
synthesis of the processor core within the 
programmable device. Due to that characteristic, it is 
possible to use one common memory for all the 
tasks, assigning slices of this memory to each task, 
pointed by  constant offsets. 

Figure 2 shows the necessary changes to perform 
over the MC6805 address computation unit 
presented in [3]. The resources added are an adder 
and a constant offsets table. 

A later elaboration could be to differentiate the 
access to either RAM or ROM, generating offsets 
over different memory areas to optimize memory 
usage. That distinction should be essential when 
using external RAM/FLASH memories. Besides, this 
multiple offset scheme can also be used for the 
definition of shared areas of memory. 

For up to 16 tasks of variable code length, the 
generation of the offset table will use as much logic 
elements as the wide of the address bus plus those 
necessary for the adder. As an example, given 8 
tasks, with less than 12-bit address buses each, the 
generation of the final 15 bit address bus would 
require only 30 additional logic elements. 

The saving of the register values can be 
performed in parallel or sequential form. In the 
parallel case, each register of the original single-task 
processor is replaced by circular buffer of registers, 
one for each task. 

Figure 3 shows the hypothetical case of a 
processor attending 7 tasks, where it can be seen that 
the active register behavior is independent of which 
is the active register (selected by the multitask 
control stage).  

The circular nature of the registers buffer enables 
the switching from one task to the next one in a 
single clock cycle, with minimum time overhead. In 
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the worst case, if task 0 must be switched to task 6, 
the context switching latency could be 6 clock 
cycles. 

To save the registers A, X, CCR, SP, and a 12 bit 
PC, it is required to add 38 new logic elements for 
each additional task. 

In the sequential case,  the register saving process 
can take advantage of the fact that the MC6805 
automatically stores the registers on the stack before 
serving an interrupt request, and it reads they back 
when returning from the interrupt routine. The only 
register not preserved in that automatic saving is the 
SP, which can be stored using a circular buffer. 

Figure 4 shows the modifications made on the 
original MC6805 control state machine, where only 
one new state (s30-SCHED) was added to the 30 

previous states (s0 to s29) to make possible the 
context switch. 

The scheduler begins the switch cycle requesting 
an interrupt (marked as 1), which forces the registers 

stacking (state sequence s9, s10, s11, s12, s13). 
When the state machine reaches state s13 (marked as 
2) during a context switching, it moves to state s30 
(marked as 3) instead of s14, where an interrupt 
vector is fetch. The first action in s30 is to save the 
old SP in the circular buffer, loading it with the SP 
value of the incoming task. Concurrently, offsets are 
changed to point to the memory areas of the 
activated task. In the next cycle the state machine 
returns from interrupt (marked as 4) already in the 
new context (state sequence s16, s17, s18, s19, s20, 
s21, s8). The modification requires adding minimum 
hardware: 5 logic elements for each new task (for 
saving the stack pointer), and 5 logic elements for 
adding state s30. In this case, minimum switching 
latency is 13 clock cycles. 
 

4. COMMUNICATION CHANNELS 
 
From the MPOC point of view, a communication 
channel is a hardware object describing a link among 
processors. From the point of view of a processor, a 
channel is seen as a peripheral, that can be a serial 
transceptor, a parallel port, or any more complex 
element, such as a shared memory area, or a queuing 
buffer. 

A transaction message is sent by one task and 
received by another, and can be used for 
synchronization. The transaction can be either 
originated by the transmitter (writing new output 
data) and closed when the receptor reads it, or started 
by the receptor (requesting new input data) and 
closed when the transmitter send it. In both cases, the 
agent which triggers the transaction remains halted 
until the transaction is closed, therefore it is 
reasonable to include resources to take advantage of 
that time to process other tasks. 

Models for channel ports are presented in [5] 
including synchronization signals (rdy). As an 
example, a parallel port is the most simple hardware 
scheme for implementing task communications 
(Figure 5). The transmitter uses a register for storing 
the data and a simple state machine for 
synchronization. The receptor is implemented using 
also another small state machine. 
• When the transmitter writes new data (ld active) 

the rdy_tx line becomes inactive, meaning that it is 
waiting, and the availability of data in the channel 
is indicated by new active. When the receptor read 
the data (rd active), the signal rdy_rx becomes 
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inactive, remaining in that state until the transmitter 
writes new data. At the same time, rd activates ack, 
which reinitializes the transmitter signals rdy_tx 
and new.  

• The other situation is when the receptor is willing 
to read new data when it is not present (new 
inactive). In that situation the signal rdy_rx 
remains inactive until the transmitter writes new 
data. 

 
5. MULTITASKING SCHEDULER 

 
There is not any predefined scheduler, because it 
architecture depends on several items: the tasks 
priority, the interrupts management, the existence or 
not of a front-end interrupt processor, and other 
conditions. 

The simplest case is a multitasking system with 
equal priority tasks, using a “round-robin” arbitration 
scheme (Figure 6). In this case, the schedule of a 
new task may have several causes:  
• The active task has triggered a communication 

transaction, then passing to idle until that 
transaction is closed. 

• The slice time available for the active task is 
already exhausted and another task is awaiting.  

• An external interrupt is demanding attention, and 
the scheduler is assigning the CPU to the 
corresponding task. 

In any case, the scheduler interrupts the 
processor, and when in the SCHED state, it switches 
the offsets and decides the time assigned to the new 
task. 
 

6. CONCLUSIONS 
 
When an application in entirely known ‘a priori’ 
before the beginning of the design cycle, then 
hardware and software can be optimized according 
to the requirements. It has be shown that an IP core 
for a conventional processor could be easily 
extended to operate in a multiprocessing and 
multitasking environment., just adding a few 
hardware resources. That solution and the short 
design cycle for programmable logic devices, allow a 
minimal development time, an easy debugging, and 
short time to market. 

Supposing an 8-tasks multiprocessor where the 
addressing bus width for each task is lower than 12-
bit, then 30 logic elements are needed for the 
management of private memory areas; 45 logic 
elements are needed for the modification of the state 
machine and for the stack pointer buffer; and 50 
logic elements for the round-robin scheduler.  That 
represents a 25% increase in hardware when 
compared to the single task processor. 

That increase can be reduced: 
• For this microcontroller core, if the private memory 

areas have the same length and equal to 2N, there is 
not need for the 30 logic elements required for the 
management of the low order address bits of that 
memory areas. In such a case, the 3 upper lines of 
the final address bus come directly from the arbiter, 
and the overhead is reduced to a 20%. Also, if the 
time slice is identical for each task, the hardware 
needed by the arbiter is also decreased. 

• For more complex and powerful processors, with 
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larger address and data buses, and requiring more 
hardware resources, the logic complexity for a 
multitask operation is almost the same than that for 
the core described here. As a consequence the 
percentage of hardware assigned for that 
functionality is smaller. 
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