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Quantum dimer models (QDMs) arise as low-energy effective models for frustrated magnets. Some of these
models have proven successful in generating a scenario for exotic spin liquid phases with deconfined spinons.
Doping, i.e., the introduction of mobile holes, has been considered within the QDM framework and partially
studied. A fundamental issue is the possible existence of a superconducting phase in such systems and its
properties. For this purpose, the question of the statistics of the mobile holes (or “holons”) shall be addressed
first. Such issues are studied in detail in this paper for generic doped QDMs defined on the most common
two-dimensional lattices (square, triangular, honeycomb, kagome, . . .) and involving general resonant loops. We
prove a general “statistical transmutation” symmetry of such doped QDMs by using composite operators of
dimers and holes. This exact transformation enables us to define duality equivalence classes (or families) of
doped QDMs, and provides the analytic framework to analyze dynamical statistical transmutations. We discuss
various possible superconducting phases of the system. In particular, the possibility of an exotic superconducting
phase originating from the condensation of (bosonic) charge-e holons is examined. A numerical evidence of such
a superconducting phase is presented in the case of the triangular lattice, by introducing a gauge-invariant holon
Green’s function. We also make the connection with a Bose-Hubbard model on the kagome lattice which gives

rise, as an effective model in the limit of strong interactions, to a doped QDM on the triangular lattice.
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I. INTRODUCTION

In 1987 Anderson' suggested that the strange behavior of
cuprate materials between the superconducting dome and the
magnetically ordered insulating phase could be described by
a resonating valence bond (RVB) state in which preexisting
magnetic singlet pairs of the insulating state become charged
superconducting pairs when the insulator is doped. Just one
year later appeared the first effective model in which the
magnetic degrees of freedom are disregarded in favor of the
more pertinent singlet degrees of freedom.? This is nothing
but the quantum dimer model (QDM). However, it was
soon realized® that the ground state of the undoped S = 1/2
Heisenberg antiferromagnet on a square lattice exhibits a
long-range Néel order in contrast to the initial expectation
based on the RVB picture. Furthermore, the QDM on a square
lattice was also found to have only gapped crystalline phases
but no evidence of an RVB spin liquid phase in a finite region
of the phase diagram.* It is still possible to argue that, even
though the undoped antiferromagnet has the Néel order, the
RVB picture gives a better theoretical starting point once the
system is doped with holes. However, it would be natural to
ask if the RVB spin liquid phase can be realized in undoped
magnetic system with only short-range interaction.

One may expect that magnetic frustration would favor the
RVB state over the Néel phase. Thus, over time, the main
interest in the QDM was shifted from the original motivation
of the application to high-7, superconductivity, to the effects
of frustration. However, clear confirmation of a RVB phase
remained elusive for a rather long time. A breakthrough in
the study of the QDM was due to Moessner and Sondhi’ who
showed that a simple QDM defined in the triangular lattice
exhibit a disordered phase which, recalling that these dimer
models are supposed to be effective models for frustrated
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magnets, can be considered as an explicit example of the RVB
spin liquid phase. It was also recognized that the RVB spin
liquid phase is a topologically ordered phase with a nontrivial
topological degeneracy of the ground states.® In fact, the RVB
spin liquid phase is essentially identical to the Z, topological
phase which was introduced in a completely different context
of quantum information processing.” The QDM is generally
not exactly equivalent to an antiferromagnetic Hamiltonian
defined in terms of quantum spins. However, the projection
from a magnetic system to a QDM was performed successfully
in Heisenberg antiferromagnets on frustrated lattices, such
as the square lattice with strong enough second and/or third
neighbors couplings®? or the kagome lattice.'” These suggest
that the QDM may well represent phases without magnetic
order in antiferromagnets. In fact, very recently, frustrated
Heisenberg antiferromagnets on kagome and other lattices are
reported to be in the RVB spin liquid phase (Z, topological
phase) by several authors.'!~!3

Now that the existence of the RVB spin liquid phase appears
to be confirmed in QDMs as well as in antiferromagnets,
the issue of superconductivity in doped spin liquids becomes
a more pressing question. This issue started in fact to be
investigated shortly after the appearance of the QDM.'*
Doping of an RVB spin liquid is expected to induce a
novel type of elementary excitations called holon. A holon,
carrying electric charge e but no spin, appears as a result
of fractionalization, namely deconfinement of fractionalized
excitations. Indeed, topological degeneracy of the undoped
RVB spin liquid is known to be intimately connected to the
fractionalization phenomenon. '

Superconductivity may be realized if the holons condense.
At least naively, one may expect that the resulting supercon-
ductor is an exotic one due to condensation of charge-e holons,
instead of usual charge-2e¢ Cooper pairs. A fundamental
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issue in this problem is the statistics of the holon. For the
holons to condense without forming pairs, they must be
bosons. However, it should be noted that transmutation of
the statistics'®!” is possible. Namely, the statistics of holons
as elementary excitations appearing in the low-energy limit
can be different from the statistics assigned to holes in the
microscopic model.

In this paper we address the issue of the statistics of holes
and its interplay with possible superconducting phases in
doped QDMs. In arecent work'® it was shown that a QDM with
fermionic (at microscopic level) holes is equivalent to another
QDM with bosonic holes. Because of the equivalence, the
statistics of the holon as a physical elementary excitation must
be the same for either representation. This proves the existence
of a dynamical statistical transmutation in the system. In this
paper we study in more detail the statistical transmutation
in QDMs and give a simple and efficient method to obtain
the relation between the QDMs with fermionic and bosonic
representation of the holes.

In Sec. II we introduce a second quantization notation for
QDM Hamiltonians and show the gauge symmetry associated
with them. In Sec. III we present the composite particle repre-
sentation of QDM Hamiltonians which is the key ingredient to
show the exact equivalence between a QDM with bosonic
and another QDM with fermionic holes. This equivalence
is shown for a generic flipping term defined in any kind of
lattice. The result, which relies on an orientation prescription
of the bonds in the lattice considered, is totally generic and
can then be applied to any QDM defined in the most common
lattices. The method used here differs considerably from, and
has numerous advantages over, the one used in Ref. 18 where
a two-dimensional version of the Jordan-Wigner (JW) trans-
formation was used. In Sec. IV we argue how the modification
of the orientation prescription can be interpreted as a simple
gauge transformation in the QDM Hamiltonian. We then apply
the general result of the statistical transmutation obtained
in Sec. III to generic QDM Hamiltonians defined on the
square, triangular, hexagonal, and kagome lattices. Section V is
devoted to numerical investigation of four inequivalent QDMs
defined on the triangular lattice. In particular, we identify an
exotic superconductor phase due to condensation of holons
with charge e, measuring numerically the gauge-invariant
Green’s function of a single holon. In Sec. VI we discuss an
explicit realization of one of the QDMs discussed in Sec. V.
It is obtained as a low-energy strong interaction limit of a
Bose-Hubbard model on the kagome lattice. The number of
bosons is directly related to the doping, or number of holes,
in the resulting QDM on the triangular lattice. Section VII is
devoted to the discussion of our results. We also include as an
appendix the derivation of the statistical transmutation for a
generic QDM on the kagome lattice using the Jordan-Wigner
transformation. Of course the result is consistent with the one
obtained with the composite particle representation obtained
in Sec. III, but allows a better understanding of the connection
between these two different methods.

II. THE HAMILTONIAN AND ITS GAUGE SYMMETRIES

We start with a doped quantum dimer model on a two-
dimensional lattice. To fix the ideas, we work here with the
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FIG. 1. (Color online) Schematic snapshot of a doped ‘“dimer
liquid”. Each site is occupied by either a (single) dimer or a hole
(empty site).

Hamiltonian defined on the square lattice but all the arguments
remain valid for any two-dimensional lattice. We write the
Hamiltonian as

H=H,+ Hy+H, (1)
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Lo} 4155 {Kbedite]]
ROV SIENE it

S RRIS R IS8 (R I 2

where the sums are over all the smallest resonant plaquettes
on the lattice (for the square lattice these are the squares). In
a second quantized formalism we assume that dimer config-
urations are created by spatially symmetric dimer operators
blT, ; and holes are created by bosonic operators aZ (see Fig. 1).
Then, we can rewrite the Hamiltonian as

Hy=—J ) (bl bl bjabi; +Hel, )
O
Hy =V Y (bl b} b jbes + bl bl biabii}.  (3)
O
H, = —tY {b] ;bjraja; +Hc). )

1

In the last equation, the indices correspond to the labeling of

the sites of a square plaquette as in Fig. 2. In our previous

conventions, dimer configurations are represented by spatially
symmetric operators b; ; satisfying

[bi,jab/:[] = 84851+ 8u8j ks by jibis) = [b]

ij’

bi,1=0.
&)

The boson operator aj creates a hole in the site i and satisfies

[ai,aj] =36, lai,a;]= [af,a}] =0. (6)
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FIG. 2. (Color online) (a) Indexes corresponding to each square
plaquette in the Hamiltonians H, and Hy . (b) Indexes corresponding
to each hopping process in H,.

The operators a and b commute one with each other,
[a;.b;] = [a].b!] = [a].b;]1 = 0. (7)

We introduce in the model a constraint on the number of dimers
and holes which warrants that at each site of the lattice there
is either one and only one hole or one and only one dimer
arriving to it:

alai+ Y bl bie=1. ®)

Z=:|:é| ,:l:@g

Of course this constraint implies, among others, that the holes
have to be considered as hard-core bosons. It is important
to notice that the Hamiltonian has the following U(1) gauge
symmetry:

a; — 't aj, ©)]

biy — ETp, (10)

where &; is an angle. This invariance can be exploited to
prove the statistical transmutation symmetry in some two-
dimensional systems by means of a Jordan-Wigner transfor-
mation on the holon operators.'® In the following we present
an alternative description for the doped QDM using composite
operators which allows us to understand in a different way the
equivalence between a model with bosonic holes and one with
fermionic holes. For doing this, we have first to make a choice
of a given orientation prescription for the bonds in the lattice.

III. THE “COMPOSITE” REPRESENTATION
FOR THE QDM

A. Composite particles

In order to prove the equivalence between a QDM Hamil-
tonian with bosonic holes and another Hamiltonian with
fermionic holes, we propose a different formulation for the
QDM. This formulation is done in terms of composite particles
by defining the operator

B = b ala. an

This operator destroys a dimer between sites i and j and creates
two holes at the same sites. Let us call H,. the subspace of states
that satisfies the constraint (8). For a given state |{) € H. we
have that |{/) = B, ;) is also a vector in H..

One can easily notice that the operator B; ; is invariant
under the gauge transformation (9) and (10). This U(1) gauge
symmetry was exploited in Ref. 14 to represent a doped QDM
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as a gauge theory coupled to a matter field. More importantly,
one can check that within the subspace H., the set of operators
{B;,;} form a closed algebra similar to the one of {b; ;}. The
Hamiltonian can entirely be written in terms of these B; ;
operators making its gauge invariance manifest. Its precise
form is given by H = H; + Hy + H; with

Hy=—J) (BB} BB +Hcl, (12)
O
Hy =V (B! ,Bl B Bu/+ B B BB}, (13)
O

H,=—tY {Bl;Bj,+Hcl). (14)

i
It is evident that, within this formulation, the basic building

blocks of the model are created by B:[ ; Which corresponds
to composite particles of charge 2e¢. Namely, the model
is completely defined in terms of the constituent particle
with charge 2e. This has several important consequences.
In particular, the gauge invariance requires that the energy
spectrum of the system on a torus, as a function of the
magnetic flux ® through the “hole” of the torus, is invariant
under ® — & + 7 /e. (For early discussions on the 7 /e-flux
periodicity in the QDMs, see Refs. 19 and 20 and references
therein.) This periodicity corresponds to the unit flux quantum
for charge 2e objects. However, this does not necessarily mean
that the physical elementary excitations of the system have
minimum charge 2e.'> The system can have a topological
order which leads to fractionalization; elementary excitations
can have fractions of the charge 2e of the constituent particle
of the microscopic Hamiltonian. If the charge-e holons are
deconfined as a result of fractionalization, they could condense
to form an exotic superconductor.

The apparent contradiction between the periodicity of the
energy spectrum in v /e flux and the expected flux quantization
in the unit of 27r/e in the condensate of charge-e holons is
resolved by the existence of the topological vortex excitation
called vison. Insertion of the /e flux corresponds to trapping
of a vison. Although the flux periodicity of the ground-state
energy does not distinguish an exotic charge-e¢ condensate
from the usual superconductor, an experimental detection
scheme of the charge-e condensation, based on a “vortex
memory effect”, was proposed.>! An actual experiment®? on
the high-7, superconductor did not find such a signature of
charge-e condensation. Nevertheless, the exotic superconduc-
tivity due to condensation of charge-e objects is possible in
principle, and is an interesting subject to pursue theoretically
and experimentally. Later in this paper, we will introduce a
quantity which detects a charge-e condensation, and study it
numerically in several QDMs.

B. Statistical transmutation symmetry

One of the main advantages of the formulation in terms
of composite operators presented above is that one can
prove an equivalence between a Hamiltonian where holes
are hard-core bosons and another one where the holes are
fermions. Let us consider a QDM Hamiltonian with bosonic
holes, where their creation and annihilation operators af and
a; satisfy bosonic commutation relations. Let us also consider
another QDM Hamiltonian with fermionic holes, created and
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annihilated by the set of operators ff and f; which now
satisfy fermionic anticommutation relations. We then build
the respective composite operators:

B,"j = b,»,ja;[a;, (15)

Bij=bi;f f]. (16)

As for the operators B, in the rest of the paper all quantities
with a tilde correspond to operators and coupling constants of
the fermionic representation for the holes. Before proceeding,
there is an important statement to make. Again, one can show
that within the subspace H., both set of operators {B; ;}
and {B,-, j} form the same closed algebra of bosonic dimer
operators. Another important point is that the definition of
the composite operators in terms of fermions is more subtle
because it is necessary to take a prescription for the orientation
of the dimers (which determines the order of the fermions in
the endpoints of each dimer).

In the following we will call “even prescription” of a given
plaquette an ordering prescription for the bonds such that all
the bonds are oriented in a clockwise direction or an even
number of bonds are oriented anticlockwise. By contrast we
call “odd prescription” the prescriptions obtained from the
clockwise ordering by flipping an odd number of bonds.

Notice that, since the resonance plaquettes containing N
dimers have necessary 2N bonds, the anticlockwise prescrip-
tion (where all bonds are oriented anticlockwise) is always an
even prescription.

Theorem. Given a resonant plaquette of arbitrary length
with an even prescription for the bonds, then, for the kinetic
term of the dimers in the plaquette, we have the equivalence
H;(J,bosons) <> H;(—J,fermions). In other words, the res-
onance term of dimers in the plaquette is invariant under a
simultaneous change of “statistics” of the holes in the system
(i.e., bosonic into fermionic or vice versa) and the sign of the
dimer resonance loop amplitude J.

Proof. Consider a resonance loop containing 2N sites (N
dimers) numbered from 1 to 2N in the clockwise direction
as in Figs. 3(a) and 3(b). The kinetic Hamiltonian for dimers
belonging to this loop can be written in terms of bond operators
bi, j as

AR T i
HJN = J[b],2b3,4b;6 ..b N—3$2N—3b2N—1,2N]
X [by3bss ... boy_2on—1bon 1] +He., (A7)

where the index N indicates the number of dimers in the loop.
Now, we add one dimer (two sites) to the loop, obtaining
a resonance loop with N + 1 dimers. In this case, the

2N-2 2N-2

@ ] v ¥
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Hamiltonian can be written as
N+ gpt ph i i i
Hy" = J[bi,2b3,4b§,6 .- b2N—3,2N—2b2N—1,2Nb¢|x,ﬂ]
X [b23bss ... ban—22on—1D2n oD 1] + H.c.

Since all the operators are acting on different bonds they all
commute and we can rearrange them in the following way:

A i f
H}v = J[b{,2b3,4 o ‘sz—s.zN—ssz—l,zN]
X [b23bss5 -+ byy—22n—1]1b2n,1 + H.c.,
N+1 AL il i
H; = J[b{,2b3,4 to b2N73,2N73b£N71,2N]
X [by3by 5 - - 'b2N72,2N71]bl,/3b2N,szﬁ,l + H.c.,

or in a compact notation,

N N1
HY =1J Hbij—llj byjzjv1 | ban1 + He,,
=1 =1
N N1
N+1 _ i T
H;™ =1J Hbgj,l,zj bajoj+1 | bg gbon.abp i
j=1 j=1

+H.c.

Now, we insert on the right of the Hamiltonian the string
of operators S /= ]_[12271 fi iT, where the index i corresponds
to the sites on the resonance loop. This operator acts as
the identity operator on the sites belonging to the loop
because f; fiT = 1 in the absence of holes. We start with the
Hamiltonian H ;V :

N
N Nof T
Hy =H;Sy=1J l—[ijfl.Zj
j=1

X fi flT e szf;N + H.c.

Now, we move the fermions to the left in order to form
the composite operators B; ; = b; ; fiT f; corresponding to
the dimer operators inside the brackets. Commutation of the

fermions gives a global sign,

N-1
l_[ byja2jt1 | bani
j=1

N N-—1
N Rl i
HY = DS\ T]85210 | | T Bajaien
j=1 j=1

X b2N,1f1Tf2JrN + H.c.

We can follow exactly the same procedure in the loop with N +
1 dimers; the global sign resulting from the commutation of
fermion operators to write the products in terms of composite

2N-2 2N-2

®
2N-1 2N-1

LE]

FIG. 3. Elements used to prove the inductive step. Panels (a) and (b) correspond to the two possible dimerizations in a N dimers plaquette

whereas (c) and (d) correspond to the plaquette with N + 1 dimers.
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particles is the same as that in the N dimers case. We can write
for the N + 1 case,

N N—-1
HY = DS ([TBL s | | T Boraie
j=1 j=1

X bl,gbzlv,abﬁ,lflezTNfafJfﬁfg +Hec.

Now we can determine the change in the sign of J when a
dimer is added in the loop. First we commute the operators
flT and fJN in H}V to form the operator BZN,] = sz.jlngNfIT~
This commutation gives another sign to complete the global
phase in the Hamiltonian. Then we can write for the N dimers
case

N
HY =D (T 85,10

N-1
l_[ Byjaj1 | Bana+He.
J=1 j=1

In the Hamiltonian corresponding to N + 1 dimers we have
to define three composite operators. We have that

bl sban abp.1 fi Fiy fu £l 5 1)

= (b;ﬂfﬁfa)bzzv,abﬂ,lfle;Nf(jfg (18)
= (b:;,ﬂfﬁfa)(b2N,af2TNfo:r)bﬂvlflef;r (19)
= (1B fy )b e Fiy s 1D 20)
= (DB} yBon.aBp.1. @n

Finally, the Hamiltonian corresponding to N + 1 dimers reads

=z

-1
Bsjojt1

N
H;VH = (—1)€+11 1_[ B;j—l,Zj
j=1 1

~.
Il

X Bl,ﬁE2N,aEﬂ,1 + H.c.

We have proved by induction that, if for a N dimers loop,
the kinetic term acquires a given sign when the Hamiltonian
is written in terms of fermionic composite particles, then the
kinetic amplitude corresponding to N 4 1 dimers acquires the
same sign. To complete this mathematical induction proof we
need check that the statement holds for the lowest value of N.
The smallest possible resonance loop is given by a loop with
only two dimers. It is easy to check that in this case

H} = Jb} ,b} b2 3bs; + Hec.

= Jbl,bY ybosbas fif 2 fd i £ fafi + He.
= (~1)JB],B],B>3Bs, +Hec.

Then we have proved that the kinetic term for a resonance
loop of arbitrary length oriented in a clockwise direction, the
amplitude J in the Hamiltonian written using dimer operators
b;,j, changes to —J when we write the Hamiltonian in terms
of fermionic composite operators B; ;. A trivial verification

shows that the amplitude remains unchanged when we write
the Hamiltonian in terms of bosonic operators B; ; = b;, jaja;.

The result above can be rewritten in the more appealing
way:

H;(J,B)= H,;(—J,B). (22)

PHYSICAL REVIEW B 87, 104512 (2013)

The proof can easily be extended to the potential term Hy .
In this case it is easy to see that the bosonic and fermionic
versions give the same sign in the amplitude V,

Hy(V,B) = Hy(V,B). (23)

The equivalence proved above is valid for any even prescription
on the plaquette. Starting from the clockwise prescription
where the results above have been proved, if we flip two bonds
this induces the commutation of two fermionic operators and
the sign remains unchanged. But if we flip an odd number of
loops we must commute an odd number of extra fermionic
commutations in order to form the composite operators. These
permutations give an extra sign in the Hamiltonian. Then it is
easy to prove the following corollary:

Corollary 1. Given a resonant plaquette of arbitrary length
with an odd prescription for the bonds, then, for the kinetic
energy of the dimers in the plaquette, we have the equivalence
H;(J,bosons) <> H;(J,fermions).

The equivalence in the potential term does not change if
we take an odd or even prescription. Using this property of
the potential term and Corollary 1 we can derive the following
corollary.

Corollary 2. Note that we have actually proved that, if in
a given lattice we can take an even prescription for all the
plaquettes involved in the Hamiltonian, then the equivalence

H(J,V,bosons) = H(—J,V,fermions) 24)

is valid for the Hamiltonian in the complete lattice, whereas
if we can take an odd prescription for all the plaquettes in the
Hamiltonian, we have the equivalence

H(J,V,bosons) = H(J,V,fermions). (25)

In order to complete the panorama for the doped QDM
we study the fermionic and bosonic representation of the
Hamiltonian H, corresponding to the hopping of holes.

Consider three nearest-neighbors sites of the lattice as in
Fig. 2(b). In terms of bosonic holes and dimer operators we
can write a general hopping term as

hs = bl ;b;ala; 26)

if there is no hole in the intermediate site j we can add on the
right the identity as a; a} = 1. We then obtain

hl(,’t;.’k = —t bijbj,kaza,-aja} 27)
= —1 (b} jaja;)(bjxa’a)) (28)
= —t BIij,k. (29)

In the bosonic case we do not need to worry about the
prescription in the lattice but it is important when we study
the fermionic description. In this case we take the prescription
i — j — k. Starting from the Hamiltonian

Bl = bl binfL S (30)
we insert on the right the operators f; f ].T =1,
Bl = —t1bl i £ fi £ f] (31)
= —t (0} f1 f)baf] 1) (32)
= —1 B} ;B (33)
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FIG. 4. (Color online) Bond prescriptions on the square (a), triangular (b), honeycomb (c), and kagome (d) lattices. Light-blue plaquettes
have an even prescription while the green plaquette has an odd prescription.

Using the prescription i — j — k, the amplitude in the
hopping term for the holes is the same if we use the fermionic
or bosonic versions of the composite operators. Flipping two
arrows we have the prescription k — j — i. It is a simple
matter to see that with this prescription the hopping amplitude
is also the same for the two cases.

Then, the hopping of the holes written in terms of bosonic
and fermionic composite operators have the same amplitude
t, provided that we use one of the two prescriptions satisfying
that the intermediate site has one incoming and one outgoing
arrow. If we take thisi — j — k prescription in all the sites of
the lattice the arrows follow a sort of Kirchhoff’s first rule; see
Figs. 4(a), 4(b), and 4(d). We will call this kind of prescription
“zero-current” prescriptions. Of course it is only possible to
satisfy this prescription in all the sites if the coordination
number of the lattice is even. An example where this is not
possible is the Honeycomb lattice (with z = 3). In this lattice
it turns out that it is not possible to take a prescription with the
same number of incoming and outgoing arrows in each site;
see Fig. 4(c).

IV. QDM CLASSIFICATION FOR DIFFERENT LATTICES

A. On the choice of the bond orientation prescription

As we saw in the last section, in order to prove the
equivalence between Hamiltonians built with bosonic and
fermionic operators, one needs a bond orientation prescription
for the fermionic case. Of course, this prescription is totally

arbitrary and before proceeding it is important to clarify the
issue of a different choice of prescription. Let us imagine
a generic lattice for which we have chosen two different
prescriptions, A and B. To clarify the ideas, imagine that the
orientation of all the bonds in prescription B are the same
that in prescription A, except for one single bond, which
is connecting points i and j. Then, starting from a bosonic
Hamiltonian, by doing the transmutation, we end up with two
different Hamiltonians H4 and Hp which have the same signs
for all the flipping and hopping terms except for the ones that
contain the bond ij. Let us illustrate this with the following
example: consider the square lattice in which prescription A is
the one given in Fig. 4. Then, imagine a prescription B where
only the arrow between sites i and j is reversed, as shown
in Fig. 5. Starting from the same bosonic Hamiltonian, after
the statistical transmutation, we get the Hamiltonians H4 and
Hp. What is the difference between H, and Hg? They have
the same signs for all the flipping terms, except the the ones
of plaquettes o and 8, which are the only two containing this
reversed bond. Also, all hopping terms are the same except
those containing the link ;.

Although one could naively think that these two re-
sulting Hamiltonians are not equivalent, in fact they are,
as can be easily seen by performing the following gauge
transformation:

b, — —blitn=i,m=jorn=j,m=i,

bl = — bl,m else.

n,m

104512-6



HOLE STATISTICS AND SUPERFLUID PHASES IN ...

FIG. 5. (Color online) The change of prescription corresponding
to reversing the orientation of one single bond (ij in the figure)
corresponds to a gauge transformation where only configurations
containing a dimer in the i j bond have their sign changed. This in turn
has the effect of reversing the sign of the flipping and hopping terms
containing the bond ij, as, for example, the flipping of plaquettes
and S.

Most generally, it is easy to convince oneself that different
choices of prescriptions give rise to apparently different
Hamiltonians which in fact are equivalent under a certain
gauge transformation. We are now going to consider each
lattice in detail and justify for each of them the choice of
prescription we have made.

B. Square lattice

For the square lattice, we consider the prescription given in
Fig. 4(a). Using this prescription, the hopping amplitude (¢)
remains equal for the bosonic and fermionic representation B
and B. On the other hand, the kinetic amplitude corresponding
to dimers (J,) changes its sign if an even prescription is
induced in the plaquette of length «. In Fig. 4 the plaquettes
of lowest order are shown. Light-blue areas correspond to
even prescriptions induced in the plaquettes while green areas
correspond to odd prescriptions. The relative sign between
the couplings in the fermionic and bosonic representations
corresponding to the eight smallest plaquettes are presented in
Table I.

TABLE 1. Values of J,/J, corresponding to the lowest orders of
the resonant plaquettes on the square lattice.

N Loop I

4
I -1
-1
1117 1
5 —
Ll 1
l | 1
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TABLE II. Values of J,/J, corresponding to the lowest orders of
the resonant plaquettes on the triangular lattice.

N  Loop 7

Py@<e g

C. Triangular lattice

For the triangular lattice, as in the square case, the
coordination number is even and we can take a “zero-
current” prescription as shown in Fig. 4(b). Then the hopping
amplitudes for bosonic and fermionic holons have the same
sign. Again, the change in the sign when we change from
a bosonic representation of the holes to a fermionic one is
determined by the parity of each flipping term. In Table II
we show the results for flipping loops containing up to three
dimers.

D. Honeycomb lattice

The case of the Honeycomb lattice is more subtle. The
coordination number in this lattice is z =3 and it is not
possible to take a “zero-current” prescription. Therefore, it
is not possible to find a prescription in which all the hopping
terms would remain the same after the transmutation. We then
use the prescription of Fig. 4(c) in which all the hopping
amplitudes for the holes change the sign when we change
to the fermionic representation of the operators (7, = —t,).

The relative signs between the ratios J/7 and J/t are
presented in Table III for plaquettes of three, five, and six
dimers.

E. Kagome lattice

For the kagome lattice, we have chosen the prescription
depicted in Fig. 4(d). All the possible allowed flipping terms

TABLE III. Values of J,/J, corresponding to the lowest orders
of the resonant plaquettes on the honeycomb lattice.

N Loop %
3 -1
5 -1
6 1
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up to 12 bonds are depicted in Table VI of the Appendix. Is it
interesting to note that these loops are all, without exception,
even. This feature is not specific to loops of short lengths and
one can convince oneself that all allowed flipping loops of
arbitrary length are even. Moreover, our prescription choice
is such that the hopping terms within one triangle remain
invariant under the statistical transmutation. From this, one
can conclude that a Hamiltonian with flipping terms {J;} and
bosonic holes is equivalent to a Hamiltonian with fermionic
holes and with the signs of all flipping terms reversed {—J;}.

One last remark one can make about the kagome lattice
relies on its intrinsic flexibility. Take any triangle of it and
change the orientation of the three bonds belonging to that
triangle only. It is easy to see that with the new prescription
all the hopping terms, including those belonging to the chosen
triangle, do not change signs. However, the flipping terms
containing one (and only one) bond belonging to that triangle
will change their signs, i.e., these flipping terms in the
transmutated Hamiltonian have the same sign as in the bosonic
model. What this means is that, in contrast to the other lattice
studied here, it is possible on the kagome lattice to build gauge
transformations which leave invariant the sign of all hopping
amplitudes while changing the sign of “some” flipping terms
(even locally).

F. Example of application of the “statistical
transmutation” symmetry

To illustrate the power and extent of our results, we
concentrate on a couple of concrete examples taken on
the square and triangular lattices, respectively. Let us consider
the QDM defined on the square lattice with only two and three
dimer flipping terms. These terms correspond to the first and
second row of Table I. Its sibling model can be defined on the
triangular lattice by just considering the terms with N =2
and only the second of the terms with N = 3 in Table II. In
principle we would have 16 inequivalent Hamiltonians in each
case. However, our statistical transmutation result tells us that
the number of inequivalent Hamiltonians is smaller. Indeed,
we find only eight inequivalent Hamiltonians for the case of
the triangular lattice, which we dubbed I,, II,, IIl,, and IV,
where 0 = &£ corresponds to the sign of the hopping term.
From these eight classes only four classes are inequivalent
for the case of the square lattice. The smaller number of
equivalence classes in the latter case is due to to the equivalence
t < —t which is valid for the square lattice but not for the
triangular lattice.'® The result is summarized in Table IV.

G. Transformation of assisted terms

When a QDM is regarded as a low-energy effective model
of frustrated antiferromagnets, it is important to see if other
kinds of term, apart from those already mentioned here, arise
in the effective QDM Hamiltonians. Examples of derivation of
the QDM Hamiltonian arising from microscopic Heisenberg
models can be found in Ref. 9 for the square lattice with
second- and third-neighbor couplings and in Ref. 10 for the
kagome lattice. In these QDMs appears a third kind of diagonal
or off-diagonal terms, which are dubbed assisted terms. Let
us now discuss these assisted terms in our framework. An
example of such terms is given in the last row of Table I

PHYSICAL REVIEW B 87, 104512 (2013)

TABLE 1V. Classification for the doped QDM with resonant
plaquettes of length 4 and 6. For the square lattice the families 1.
and I_ are equivalent (idem families I, III, and IV). For the triangular
lattice J, corresponds to the three resonant plaquettes corresponding
to N =2 in Table II whereas Jg corresponds to the second row of
N = 3 in the same table. The last two columns show the references
where such models have been studied (for J4 = 0) on square ([J) and
triangular (A) lattices.

Statistics  J, Js t Family Refs. ((J) Refs. (A)
Bosons + + + I 23,24,25,26 18,24,26
Bosons + + — I_ 23,25 18
Bosons + — + I,

Bosons + - — 1_

Bosons — + + I, 23 18
Bosons — + — I 23 18
Bosons - - + v,

Bosons — — — IvV_

Fermions + + + I, 23 18
Fermions + + — I 23 18
Fermions + - + v,

Fermions + — — IvV_

Fermions — + + I 23 18
Fermions — + — | 23 18
Fermions — - + I,

Fermions — — — 1

in Ref. 9. They consist of diagonal or off-diagonal terms of
the kind of the Hy and H; in Hamiltonian (1) but subject
to the condition that a third dimer is sitting in another given
neighboring bond. Such kind of term can be written as, for
example,

b} b} b kbr; + Helbf, bl (34)

whose effect is to flip two parallel dimers sitting in the
plaquette i, j,k,I provided that there is one dimer sitting in the
plaquette m,n. By extending the arguments developed above,
one can show that under the statistical transmutation, this kind
of term transforms in the very same way as the corresponding
nonassisted term. For example, the term written above would
transform in the same way as the term

bl bl bjbr; + He. (35)

This is simply due to the fact that assisted terms can be written
as the product of traditional diagonal or off-diagonal operators
which we know already how they transform and projectors
which are written in terms of dimer density operators which
are invariant under the statistical transmutation.

V. NUMERICAL INVESTIGATION OF QDMs
ON THE TRIANGULAR LATTICE

A. Summary of phase diagrams in Ref. 18

We now complement the analytical exact results with a
numerical study. In our previous work,!'® we concentrated on
the triangular lattice because it is the best laboratory for using
our analytic results on the statistical transmutation symmetry
and for investigating doped dimer liquid phases. Here we shall
push these studies further but we start with a brief summary
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FIG. 6. (Color online) Qualitative phase diagrams of four in-
equivalent doped QDM’s on the triangular lattice versus doping (x)
and V/|J| for fixed t/J = 0.5, from Ref. 18. All the models have
only flipping terms corresponding to N = 2 in Table II. Case (a)
corresponds to positive J and ¢ and bosonic holes, (b) is obtained
from (a) by changing the sign of the hopping term ¢, (c) is obtained
from (a) by changing the bosons to fermions, and (d) is obtained from
(b) by changing the bosons to fermions.

of the results obtained in Ref. 18. Considering only flipping
terms J = Jy involving the shortest loops corresponding to
N =2 in Table II a topological (Z,) liquid can be stabilized
at zero doping>?’ (the sign of J is irrelevant for x = 0). At
finite doping, four nonequivalent families of Hamiltonians can
be constructed depending on the signs of ¢ and J. Note that
changing the bare statistics of the holons does not introduce a
new class of Hamiltonian since this is equivalent to change
the sign of J as seen in the previous sections. In other
words, one can equivalently choose to work in the bosonic or
fermionic representations. In contrast, the actual statistics of
the elementary excitations has to be studied numerically. One
can use, e.g., the method developed in Ref. 23 which consists
of investigating the node content of the wave functions.

The phase diagrams of the four families of models obtained
in Ref. 18 are reproduced in Fig. 6 for convenience. At zero
doping (where the four models merge into the same x = 0
limit) there are two (insulating) phases, (i) a six-site cell
valence-bond crystal (VBC) for 0 < V/|J| < 0.7 and (ii) a
topological Z, dimer-liquid above. At finite doping, family
(a) in Fig. 6 is the only unfrustrated case and was studied
using the Green’s function Monte Carlo (GFMC) methods in
Ref. 24. In this model bare holons are bosonic and remain
representative of the physical excitations in the entire region
of the phase diagram, as happens also in the Perron-Frobenius
square lattice version, studied in Ref. 23. The situation is even
more interesting when J is changed into —J, or equivalently,
bosons are changed into fermions [families (c¢) and (d) in
Fig. 6]. Finally, changing the signs of both J and t of the
unfrustrated model (a) leads to the complex case (d). Note that
the PS regions are further increased at V < 0 so we restrict
here only to V > 0.

PHYSICAL REVIEW B 87, 104512 (2013)

When J becomes comparable to the holon average kinetic
energy (of order xt) holons may be macroscopically expelled
from the dimer fluctuating background, in order to minimize
the dimer resonance energy. The question of phase separation
(PS), i.e., the possibility for the system to spontaneously
undergo a macroscopic segregation into two phases with
different hole concentrations, was considered in Ref. 18. In
order to perform a Maxwell construction one can define s(x) =
[e(x) — e(0)]/x, where e(x) is the energy per site at doping
x =ny/N (n, is the number of holons in the system and N
the number of sites). In the case of PS, the energy presents
a change of curvature at a critical doping x, corresponding to
the minimum of s(x) as a function of x. The fact that the local
curvature of e(x) at x = 0 is negative then implies that the two
separated phases will have x = x, and x = 0 (the undoped
insulator) hole concentrations. This study revealed that all frus-
trated [(b)—(d)] models show a finite PS region [shown in blue
in Figs. 6(b)-6(d)] at low doping. The extension vs V/|J| of
this region seems to coincide with the x = 0 VBC. In contrast,
the nonfrustrated (a) model does not show phase separation
at V > 0 (as already seen in GFMC simulations) but, rather,
shows a homogeneous region at finite doping where VBC
order survives. Because of the coexisting nonzero superfluid
order [U(1) symmetry breaking, see below], this phase can
be viewed as a “supersolid” (SS). Here supersolidity involves
hole pairing in the vicinity of a (insulating) VBC phase (and in
the absence of PS), as also found in the frustrated doped QDM
on the square lattice?* or in doped frustrated spin-1/2 quantum
magnets.”®

Another important quantity used in Ref. 18 is the sign
operator defined in Ref. 23 which provides a quantitative
analysis of the nodal structure of the wave function and hence
gives insights about the statistical nature of the holons, i.e.,
whether they truly behave as bosons or fermions. Such an
analysis clearly showed that the GS of models (a) and (b)
have the same nodal structure as a superfluid. For models (c)
and (d), we dubbed a “complex phase” as the statistics of
dressed excitations does not correspond solely to bosons or
fermions. Family (d) also shows, in addition, an interesting
fermion reconstruction at large doping, which we call the
“fermionic phase”. In this work we have extended the study
of the nodal structure for larger values of the doping than
the ones of Fig. 6. Our results clearly show that for x = 0.6
the elementary excitation behaves as bosons for the four
models. This means in particular that in model (d) a dynamical
statistical transmutation took place in which each Fermion
bound to a vison in order to form a boson. As we show below,
this result has important consequences in the nature of the
superfluid phases that we find for those values of the doping.

Finally, an Aharonov-Bohm flux can be inserted in one
of the hole of the torus, as done in Ref. 26 for the doped
QDM on the square lattice. A superfluid is characterized by
well-defined minima in the ground-state energy separated by
a finite barrier in the thermodynamic limit. A contrario, in
a typical signature of (weakly interacting) fermions, a flat
energy profile is expected even on such a small cluster.”’
Here, it was reported in Ref. 18 that the ground-state energy
has well-defined minima quantized at half a flux quantum for
all family of models at x ~ 0.25. This might appear as an
evidence for condensation of charge-2e particles. However,
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as already discussed in Sec. IIT A, the 7 /(2¢)-flux periodicity
is a generic feature of doped QDMs and does not rule out
the possibility of condensation of deconfined charge-e holons.
Next, we will characterize more thoroughly the nature of
the superfluid phases, by introducing a gauge-invariant holon
Green’s function to distinguish the charge-e condensation from
the usual charge-2e condensation.

B. New correlations to explore the nature
of the superfluid phases

In order to understand the nature of the superfluid phases
the effective charge of the quasiparticles that condensate have
to be determined—either charge-e or charge-2e quasiparticles.
This is related to the mechanism that leads to the spontaneous
breaking of the U(1) symmetry expected in a superfluid. As
a first attempt, one could naively use the correlation function
(aZa j), but it is not compatible with the constraint (8). In
other words, it is not gauge invariant and thus this correlation
function is zero. To satisfy the constraint, or equivalently the
gauge invariance, we need to write correlations in terms of
operators B. As the hopping of holes can be written in terms
of operators B we can move one of the holes between two
distant sites by applying a string of B Bs.

1. Gauge invariant holon Green’s function

In the subspace where the constraint is satisfied pairs of
holons operators aiaiT acting on sites without holes are equal
to the identity. Then the holon Green’s function we want to
calculate is given by

G =Y "(a] S a;), (36)

n

where 8;"? = b}nlbn,,,121912,,1319,13,,14 co. by by is astring
operator between the sites i and j following the path n. The
label () indicates that the holes are taken as bosons. Similarly,

the fermionic version of the Green’s function is written as

G} =2 (A 87 1) (37)
n
Note that, since there are many ways of moving a hole between
two sites, the gauge invariance alone does not uniquely
determine the definition of the holon Green’s function. Here
we adopt the definition with a sum over all possible strings
(labeled by n) connecting the two sites i and j, with the
same coefficient. This definition appears most natural to us,
as well as in numerical implementation. We expect that other
definitions with some restrictions on strings would also work
as an order parameter. However, the present definition looks
advantageous in numerical calculations, since it can efficiently
detect the holon condensation with the summation over all
possible strings. Notice that, because of the constraint on the
dimers, the paths are necessary self-avoiding.
Using a complete basis of dimer/hole configurations the
correlations can be rewritten as

G = 3" S wla) (Blv) (ela) S ajlB).  (38)
n op

G =33 (wlayplu)els! Y f18).  (39)
n of
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The holon Green’s function can be also written in terms of
the composite operators only,

G = (Bl yBv.i...BliB34B] ;Bio).  (40)
{n}

G} =Bl | yBv.i... Bl BsuB Biy). (4D)
{n}

where the sum is over all possible paths between sites i
and j. One can use this representation to show that the two
correlations are in fact equal, up to an irrelevant sign. In other
words, we have

G = +G') 42)

where the relative sign depends only on the relative distance
between i and j. Off-diagonal long-range order of G, ; is
a fingerprint of the spontaneous breaking of the U(1) gauge
symmetry (associated to charge conservation). It also implies
that the condensing quasiparticles have charge e. It is also
interesting to observe that at large doping, this Green’s function
must necessarily have an exponential decay (see below).
Indeed, the Green’s function for being nonzero needs at least
one path in which dimers are present all along it (the string).
For a large concentration of holes x — 1 it is more and more
unlikely to find a path with dimers on it so that the Green’s
function G; ; should roughly decay as (1 — x)* where L is the
distance between points i and j.

Another observable which can detect the charge-e conden-
sation is

Foj = (al 87} a}) “3)

when a symmetry-breaking ground state (when it occurs)
formed by superposition over different dimer-number sectors
is used. Roughly speaking, this corresponds to the square of
the expectation value of a single hole creation operator (a') in
the ground state, defined in a gauge-invariant manner. Such an
expression is however less convenient to compute numerically
in finite-size systems and will not be used.

The scenario of Bose condensation of polarized spinons (the
holons in our current formulation) under an applied magnetic
field advocated in Ref. 24 implicitly implies long-range order
of G;;. We wish here to substantiate such a scenario by an
explicit computation of this correlation function.

2. Hole pair correlations

If G, ; is short ranged, there is no condensation of charge-e
holons. However, spontaneous U(1) symmetry breaking and,
hence, superfluidity can still occur provided the (hole) pair-pair
correlation,

Pijxi = (Bi ;B ). (44)

exhibits long-range order (LRO). The pair-pair operator is
connected to the square of the single holon effective hopping
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TABLE V. Classification of the possible phases, including various superfluid (SF) phases, that may occur in doped QDM’s on the triangular
lattice. Such phases can be distinguished from the sign of the compressibility «, the long-distance properties (“SR” means short-range, “LR”
means long-range) of various correlations, or the effective charge deduced from periodicity of the GS energy versus a magnetic flux inserted
through a torus. sgn, and sgn, were defined in Ref. 23 to analyze the node content of the GS wave function.

% K (bj.jbi,jbz’lbk_,) (a,ia;a,- aj) (a,-T Si.jaj) sgnp sgng Flux periodicity
PS <0

VBC >0 LR SR SR 2e

SS >0 LR LR SR 1 0 2e
2e-SF >0 SR LR SR 0<sgng <1 0<sgnp <1 2e

e-SF >0 SR LR (weak) LR 1 0 2e

Bose liquid >0 SR SR SR 1 0 2e

Fermi liquid >0 SR SR SR 0 1 2e
“Complex” phase >0 SR SR SR 0<sgng <1 0<sgn, <1 2e

operator in a complicated manner. Namely,
(o Dtz oo, Tt a)
n n'
(o Dt o) Tt
n

n'
= B,;ngJ + {loop terms}, (45)

where the first part of the right-hand side is obtained from a

“closure relation” involving all pairs of “retraceable” strings
P

n'=n,ie.,

D (SHST + SHS™) = bijb,. (46)
and the rest corresponds to pair hopping dressed with extra
loop fluctuations. The proof for Eq. (46) is not straightforward
but the reader may be easily convinced of this result by drawing
the paths for some examples. This suggests that it is physically
meaningful to write the pair correlations as

Piju = GikGji + GuG ji, + Py, (47)

where the first two terms can be viewed as the “mean-field”
contribution and P, stands for the “connected” part in
which we remove all the processes involving compositions
of single holon hoppings. In particular, both sides scale like
x? or (1 — x)?, respectively, in the limit x — 0 or x — 1.
Therefore it is convenient to normalize P;j; by x2(1 —x)?
and G;; by x(1 —x). Equation (47) shows that LRO in
the holon Green’s function G;; — G, characteristic of the
charge-e superfluid, will inevitably induce LRO in the pair-pair
correlation, P ~ Ggo. In contrast, the conventional, charge-2e
superfluid is defined by LRO in the connected part together
with the short-ranged holon Green’s function.

3. Dimer-dimer correlations
We finish by recalling that the dimer-dimer correlations are
expressed in terms of the dimer number operators bj ;bij as
Nijks = (b} ;bi.jbi i), 48)

where sites i and j on one hand, and k and [ on the other hand,
are nearest-neighbor sites. Long-range order in this correlation

function is characteristic of VBC order. The wave vector at
which the associated structure factor diverges defines the VBC
wave vector.

In principle, one can use the new correlations G; ; and
P; j 1.1 to refine the previous phase diagrams (N; j ; was used
in previous work to determine the VBC and SS regions). To
ease the analysis of the numerical results of the doped QDM’s,
a classification of the various possible phases based on simple
considerations is provided in Table V.

We note that there is no phase where there is a charge-e
condensation simultaneously with a dimer long-range order
(“LR” forboth (b .b; ;b} ,bx.;) and (a[ S;. a;).) This is because
existence of the dimer long-range order leads to confinement
of holons.

C. Numerical results

In Fig. 8 are displayed both the holon Green’s functions
[Eqgs. (36) and (37)] and the square root of the pair-pair correla-
tions [Eq. (44)] computed by numerical exact diagonalization
on a 16-site triangular cluster, varying the hole density from
x = 0.125 (low hole concentration) to x = 0.75 (low dimer
concentration), from top to bottom. For convenience, both

(13— {19159
() (o) —(12)
E—E—O—®
)3 @

FIG. 7. (Color online) Sixteen site cluster: labeling of the sites
(numbered circles) and reference bond (purple bond) used respec-
tively in the definition of Green’s functions and the pair correlations.
The bonds are labeled according to one of the sites connected to them
and by a direction, as shown in the example (here site 10).
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FIG. 8. (Color online) Holon Green’s function (open circles) and square root of the absolute value of the pair-pair correlations (filled
symbols) for parameters V = 0.3, |J| = 1.0, and |¢| = 0.5, at various densities ranging from x = 0.125 to x = 0.75 (2 to 12 holons on 16
sites) and for the four classes (a)-(d) of models defined in the caption of Fig. 6. The pair-pair correlation P, ; ;; is defined by a reference bond
orientation T; — T; = i, and the orientation of the final bond T, — T, = ui4. In our case, we chose i, = iy and we consider three cases for iig:
u, (filled squares), i, (filled circles), and u3 (filled diamonds)—see Fig. 7.

the Green’s functions and the square root of the pair-pair
correlations are normalized by x(1 — x) to be able to use
the same scale for all densities. The four Hamiltonian classes
defined previously (see, e.g., the caption of Fig. 6) are depicted
in parallel panels (a)-(d), respectively. For all of them. we
chose the parameters V = 0.3, |J| = 1.0, and |t| = 0.5 for
which, at holon density x = 0.25, the system is either in a
superfluid phase [Figs. 6(a) and 6(b)] or in the “complex”
phase [Figs. 6(c) and 6(d)], depending on the QDM class.

Let us first discuss the data at the lowest hole densities
x < 0.5. As one can see, only model (a) presents a large
amplitude of the holon Green’s function away from the
reference site (the largest disk) and its six neighbors. While
a definite conclusion cannot be drawn from such small
system, a direct comparison between model (a) and the three
others reveals a clear change of behavior. Indeed, for models
(b)—(d), the holon Green’s function decreases at the largest
available distances to significantly smaller values, except
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maybe for model (c) around x ~ 0.5. On the other hand,
the pair-pair correlations, for which the reference link is in
the u; direction, show convergence with bond separation to
a uniform value for model (a) in all relative directions of
the two bonds, while these correlations are strongly reduced
for directions differing from that of the reference bond in
the other models. Hence our data are clearly compatible with
model (a) being in the charge-e superfluid phase described in
Table V, unambiguously revealing strong signals simulta-
neously in the holon Green’s function and the pair-pair
correlation. Note that we also checked that the dimer-dimer
correlations (not presented here) remain SR in model (a) hence
reinforcing the previous claim. The behavior of the other
models at low to moderate doping is less clear, with quite
smaller amplitudes of G;; and P;jy at the largest available
distances. We can, however, recognize a possible 2e-superfluid
phase in model (c) after the phase separation zone and up to
values of x >~ 0.2.

While increasing holon density, from x = 0.5 to x = 0.75,
we observe that the data for the bosonic and fermonic models
become identical, both for # > 0 or t+ < 0. This can be
understood by the fact that the (bosonic) dimers become then
the relevant entities instead of the holes. This implies, in
particular, that statistical transmutation or pairing must occur
for increasing x for the models where fermionic statistics
is expected at small x [models (c) and (d)]. This is indeed
confirmed by the analysis of the nodal structure of the
wave functions that we performed for x = 0.625. In this
sense the complex phase found in model (c) is probably the
region in which fermions bound to visons and transmute, in
order to resemble the bosonic excitations of model (a). Note
also that charge-e superfluidity seems to occur at x = 0.625
in models (a) and (c) (which seems equivalent for this
doping).

However, at larger x corresponding to a dilute gas of dimers
one expects to eventually recover a charge 2e superfluid via a
continuous (second order) or discontinuous (first order) phase
transition. This seems to occur already for x = 0.75 for models
(b) and (d), for which only the pair-pair correlations are sizable
at the largest distances. We have checked that for a lower dimer
density of 1 —x ~ 0.1 Gj; is short range for a/l models as
reported in Fig. 9. In the limit of a very dilute gas of dimers,
pairing between dimers because of the kinetic term J is also
a possibility. This could result in either phase separation or in
a homogeneous phase in which both G;; and P,y are short
ranged but which is nevertheless superfluid, of coherent dimer
pairs of charge 4e. We have checked that there is no phase
separation in any of the four models at those large values of x.
We have also looked at the energy difference between two and
one dimers and found that pairing is indeed favored in models
(b) and (d) which may explain the drop of the P;;1; in Fig. 9
forx 2 0.9.

Based on Figs. 6, 8, and 9, we have extracted the qualitative
phase diagrams for the four models at fixed V/|J| = 0.3 and
t/1J] = 0.5 as a function of doping x. They are depicted in
Fig. 10. Charge-e superfluidity seems to occur in all models,
with the largest occurrence in model (a). For intermediate
doping, models (b) and (d) seem to present short-range
correlations for both one- and two-particle Green’s functions.
This behavior suggests an uncondensed phase which in the
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case of model (d) would correspond to a Fermi-liquid state.
Since elementary excitations in model (b) are bosonic the
presence of an uncondensed phase points toward an exotic
Bose-liquid state, although this statement should require a
more detailed study (using clusters of a much bigger size)
which is beyond the scope of the present paper. For large x,
all models exhibit a charge-2e superfluid phase as expected,
followed by a charge-4e superfluid phase in models (b) and
(d) due to dimer pairing.

VI. CONNECTION TO BOSE-HUBBARD MODELS

We finish this work by discussing the connection to Bose-
Hubbard-like models which do not contain a priori the ice-
rule constraint. However, the physics of the doped QDM can
emerge naturally when some form of large repulsion between
the itinerant bosons is considered, hence providing emergence
of fractionalized excitations.

In Ref. 30 was introduced a simple model of hard-core
bosons hopping (¢) on a kagome lattice with a boson repulsion
Vo favoring the smallest number of bosons in each hexagon,

H=—-1Y @dld+dd)+ Vo) (ol (49
(i.)) O

where diT creates a boson on site i and ng = Z?zl djdi is
the number of bosons in a hexagonal plaquette. When the
boson density is p = 1/2 alarge Vo /¢ stabilizes an insulating
phase whose quantum dynamics is described by a generalized
QDM on the triangular lattice with exactly three dimers per
site. The insulating phase is a Z, topological liquid. When
t < 0 the model is not frustrated and can be studied with
QMC: the superfluid-insulator transition was argued to be a
novel nonconventional fractional critical point.>

To make the connection with some of our doped QDM’s we
shall assume here that the microscopic d bosons have charge
—2e and their density is setto p = %(1 —x/2),x < 1.In that
case, as shown in Fig. 11, for Vo /t — oo the lowest-energy
configuration space (E = NV /3) is given by all hard-core
dimer coverings on an effective triangular lattice, where each d
boson has been replaced by a dimer connecting two sites of the
triangular lattice. Such configurations respect a local ice-rule
constraint with one, and only one, boson per hexagon. When
x = 0, moving a single d boson violates this ice rule so one has
to move at least two simultaneously. This process of amplitude
J =t?/ Vg corresponds exactly to a dimer flip on a lozenge,
identical to the one of the QDM. Strictly speaking this mapping
onto the QDM does not involve any dimer-dimer repulsion V.
However, one can add a small third-nearest-neighbor density-
density repulsion Vg3 < Vo between the d bosons located
on different hexagons. In the mapping for large Vo /t, this
interaction translates directly into the dimer-dimer repulsion
V = V. Thus, by tuning Vg4 in the Bose-Hubbard model, the
topological Z, (insulating) liquid can be stabilized.

When x # 0 an empty site on the original kagome lattice
corresponds to two “defect” hexagons carrying an overall
charge 2e with respect to the insulating ground state. It is
easy to see (Fig. 11) that each “defect” hexagon can move
independently on the effective triangular lattice by simple
processes that involve a single d-boson hopping. Therefore,
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FIG. 9. (Color online) Holon Green’s function (open circles) and square root of the absolute value of the pair-pair correlations (filled
symbols) for parameters V = 0.3, |J| = 1.0, and |¢| = 0.5, at a low dimer density 1 — x >~ 0.1 for the four classes (a)—(d) of models defined
in the caption of Fig. 6. Left: two dimers on a 36-site cluster (x ~ 0.89). Right: three dimers on a 64-site cluster (x ~ 0.91).
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(b) SF or Bose—liquid?

(C) V}E o o -E
>

2e-SF 4e-SF

(d) |2 Fermi-liquid 2e-SF  |4e-SF
g
0.0 0.2 0.4 0.6 0.8 1.0

X

FIG. 10. (Color online) Phase diagrams of the four models (a)—(d)
at V/|J| =0.3and ¢t/|J| = 0.5 derived from Figs. 6 and 8. All have
both the charge-e superfluid (e-SF) and charge-2e superfluid (2e-SF)
phases at different doping depending on the model.

each “defect” can be considered as an effective charge-e hole
on the triangular lattice. The amplitude ¢ of the hole hopping
is the same as the one of the microscopic d-boson Hubbard
model. When a d boson of charge —2e hops by a lattice spacing
a, the effective hole of charge e hops by a distance 2a so that
the charge center of mass is conserved. Note also that the hole
density in the effective QDM is x.

The mapping to the doped QDM on the triangular lattice
is therefore complete. However, it is important to notice
that J = 2 / Vo > 0 (for real t) so that only QDM (a) and
(b) can be realized with HCB depending on the sign of 7.
Introducing imaginary hopping + = it on the kagome lattice
equivalent to putting U(1) fluxes through the triangles leads

KK AN
Xz X3 X X X2 K> X Xy
XX X’X—>><‘XfX X’X
XK XK XX

KAARN AKX
AT AN IRES- XfX'"'Xf

KNS X’X—’X’X X X‘X
XK XK XK X

FIG. 11. (Color online) Hard-core bosons on the kagome lattice.
Covering the lattice with one, and only one, boson per hexagonal
plaquette (ice-rule constraint), we can identify distribution of bosons
with a dimer hard-core covering on the triangular lattice. Removing a
boson of charge 2e creates two defect hexagons (shaded). Each defect
(hole) has charge e and can move on the lattice. Coherent hopping of
two hard-core bosons corresponds to a flipping process in the dimer
model.
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FIG. 12. (Color online) Schematic and speculative phase diagram
of interacting HCB on the kagome lattice for V,;; = 0 (a), with
fine tuning of the third-nearest-neighbor repulsion (b)—see text. In
(a), the exact nature of the transitions between the 2e superconductor
and the VBC insulator at x = O needs to be further investigated. In (b),
the dot at x = 0 might correspond to the X Y* fractional critical point
between the superfluid and the topological Z, insulator. The charge-e
superfluid is the same phase as in the doped QDM of Fig. 6(a).

to the QDM models (c) and (d) in the presence of a magnetic
field. In practice only the case of a real # < 0 hopping on the
original kagome lattice can be handled with QMC. Assuming
the phase of the corresponding doped QDM [(a) model]
is a fractionalized charge-e superfluid, we therefore predict
a nonconventional phase transition between the (ordinary)
charge-2e superfluid of the weakly interaction d bosons and
an exotic charge-e superfluid at large Vo /¢, as schematically
shown in Fig. 12. This is possible if the third-nearest-neighbor
repulsion is carefully tuned-Vy >~ J = 12 /Vo. If Vgg =0,
one gets a transition to a plaquette VBC phase at x = 0, which
might involve intermediate phases. Indeed, close similarities
are expected with the melting of the (bosonic) plaquette
VBC on the checkerboard lattice, revealing an intermediate
commensurate supersolid.>' Similarly to the effective trian-
gular QDM at V = 0, doping of the VBC insulator should
immediately result in a supersolid phase which would melt
into a charge-e superfluid above some critical doping. Last, at
even larger doping (corresponding to a dilute gas of dimers) a
second phase transition to a charge-2e superfluid is expected.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper we have established a rigorous and general
equivalence between QDM Hamiltonians with bosonic holes
and a corresponding QDM Hamiltonian with fermionic holes.
Although this correspondence was already noticed on the
basis of numerical simulations in Ref. 23 and established
analytically in Ref. 18 for Hamiltonians with the simplest
flipping term, the correspondence has now been generalized to
more complicated cases. More importantly, we provide a gen-
eral recipe to very quickly—and without any computation—
establish, which are the two equivalent Hamiltonians under
this statistical transmutation.

We also note that, when working with finite-size systems,
while the composite particle representation is valid for any
kind of boundary conditions, this is not the case for the method

104512-15



LAMAS, RALKO, OSHIKAWA, POILBLANC, AND PUJOL

that uses the Jordan-Wigner transformation. Indeed, the issue
of boundary conditions in the two-dimensional version of the
Jordan-Wigner transformation has been very little discussed
in the literature. The point is that it does not seem possible
to impose periodic boundary conditions in a consistent way
when using the two-dimensional version of the Jordan-Wigner
transformation, even if the total numbers of particles is kept
fixed. This can be contrasted with the one-dimensional version
of the transformation where periodic boundary conditions can
be consistently imposed provided one keeps the number of
particles fixed. In this sense the analytical results obtained'®
with the help of the Jordan-Wigner transformation are only
valid to infinite systems or a finite system with open boundary
conditions while the composite particle representation used
here can be consistently applied for any kind of boundary
conditions. We have then provided many examples of equiv-
alent Hamiltonians for the more generic cases of the square,
triangular, hexagonal, and kagome lattices.

In order to detect condensation of fractionalized holons car-
rying charge e, we have introduced the gauge-invariant holon
Green’s function. We have then considered four inequivalent
cases of QDM Hamiltonians on the triangular lattices and have
numerically studied various correlation functions including
the above-mentioned holon Green’s function, by Lanczos
exact diagonalization of finite-size clusters. We obtained rather
strong and direct evidence for the existence of the exotic
superfluid phase due to condensation of holons carrying charge
e (charge-e superfluid phase), in terms of the behavior of the
gauge-invariant holon Green’s function. In fact, our numerical
results suggest that all four models we have studied exhibit the
charge-e superfluid phase. More conventional charge-2e and
-4e superfluid phases are also present.

The existence of a charge-e superfluid phase may be
naturally understood if the bare holes are bosons, which would
then exhibit condensation. On the other hand, it is much more
puzzling in the case where they are fermions, as it would
correspond to a superconductor without Cooper pairing. While
it might appear that the holes need to be bosons for the
condensation of holons to take place, our rigorous mapping
shows that fermionic statistics can be always assigned to holes
in the microscopic Hamiltonian. This implies a dynamical
statistical transmutation of holons in the QDM where holes are
represented as fermions. Those kinds of dynamical statistical
transmutations can be monitored by studying the nodes of
the wave function and one spectacular example can be found
in model (d) at intermediate values of the doping where the
system seems to switch from a Fermi liquid to a (bosonic)
charge-e superfluid phase.

We have then provided a concrete microscopic Bose-
Hubbard Hamiltonian which in the strong interaction limit
behaves as a QDM on the triangular lattice, as the one analyzed
numerically. It allows us to have a better control on the
doping (by simply varying the number of bosons) and to better
visualize the different superfluid phases. It is important to
stress that the same QDM may arise as an effective low-energy
model of quite different microscopic Hamiltonians. As such,
the physical consequences of various phases in the QDM
can depend on the mapping. For example, if the QDM arises
from a microscopic electronic Hubbard model, the holes are
real electron vacancies [models (c) and (d)], and then they
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are charged. In this case the different superfluid phases are
superconducting phases.

There is, however, another way in which one could intro-
duce doping. Imagine for example a system in which there are
no real electron vacancies but some magnetic field is applied
to the system. The applied magnetic field may have an effect
to break some of the singlets that are represented by the dimers
leaving two polarized spin 1/2, which now play the role of the
holes?* [models (a) and (b)]. In this case the holes are neutral
but carry spin, so that the superfluid phase now corresponds
to a superconductor of magnetic current. Our results provide
a validation of the previous claim?* of an exotic superfluid of
condensed deconfined and polarized spinons (equivalent to our
charge-e superfluid). In addition, we predict here the existence
of another phase of deconfined spinons, the Bose liquid,
corresponding to an exotic spin liquid carrying uncondensed
(polarized) spinons. Interestingly, such exotic phases could
indeed be realized in simple frustrated magnetic systems, as
for example the kagome anisotropic spin-1/2 model close to
the magnetization plateau at 1/3 of the saturation value.*?

One may question if the charge-e and charge-2e superfluids
discussed in the present paper actually represent distinct
phases of matter, or if there is a smooth crossover connecting
the two. While we do not have a mathematically rigorous
proof at present, we believe that the long-distance asymptotic
behavior of the gauge-invariant holon Green’s function clearly
distinguishes the charge-e superfluid from the conventional
charge-2e superfluid, in principle. Thus we expect a quantum
phase transition separating these two distinct phases. On the
other hand, being a nonlocal quantity, it appears difficult
to measure the gauge-invariant holon Green’s function in
experiments. In order to characterize the charge-e superfluid
experimentally, a different scheme such as the “vortex
memory effect” discussed in Ref. 21 would be necessary.

We hope that the results of this paper will establish
new motivations to investigate, with a new light, different
microscopic models which may give rise to the doped QDM
as an effective low-energy model.
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APPENDIX: CONNECTION WITH THE
TWO-DIMENSIONAL JORDAN-WIGNER
TRANSFORMATION

In this Appendix we elaborate on an alternative proof of the
statistical transmutation in the QDM. In this approach we use
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a two-dimensional version of the Jordan-Wigner transforma-
tion. The fundamental ingredients of this transmutation were
presented for the square and triangular lattices in a previous
work.'8 It is important to stress that this procedure is totally
generic and can be implemented in any two-dimensional lattice
with open boundary conditions.?*** As the main technical
steps for the square and triangular lattice were already
presented in Ref. 18, here we only show the details for the
kagome lattice. As we have discussed above, for this lattice
there is a big freedom in choosing the ordering prescription.
This fact gives rise to an extra freedom in taking the sign of the

HJ—JG

The sum runs over all the hexagons of the lattice and all the
possible orientations of the plaquettes are implicit. The kinetic
and diagonal terms are given by

(A4)

and similar expressions for the other terms. For convenience,
the labels « in the amplitudes J, and V, correspond to
the length of the associated resonance loops and when it
corresponds we add the label (a), (b), or (c) corresponding
to the three nonequivalent plaquettes for the cases of length
8 and 10. The Hamiltonian corresponding to the hopping of
holons is given by

H =HY + HY, (A5)
where
== {la (Al z)(al+ Al )

(A6)

The hopping of holons can be written in a general way, inde-
pendently of the lattice, as a sum of three-site Hamiltonians

_ (1)
H = Zh(uk)

(A7)

L+ Jé”‘j} J“’)i +J59 l+ Jl(
Hy = V6I+V8 ‘:+V”)I+V<C)l+v<") + v
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flipping constants when we change the statistics of holes. We
will see in this section that this freedom is materialized within
the Jordan-Wigner approach by using gauge transformations
on dimers and holes. Let us start with a quantum hard-core
dimer model in the presence of holons on the kagome lattice

given by the following Hamiltonian:
H =H;+ Hy + H,. (A1)

The terms Hy and H; corresponding to the diagonal and

off-diagonal terms of the pure dimer model are taken up to

resonance plaquettes of length 12,333

tl* "
Ty &5

(A3)

with

o _
hijiy =

where we have projected the Hamiltonian on the subspace
where the constraint

aaz+zb,,+z fite = 1

—t 75 bijb.,“ka,ﬁai 75, (A8)

(A9)

is satisfied, where the sum runs over nearest neighbors of site

i. Starting from hg) ;5> We transform the boson operators a;
using
aj=e"f (A10)

with

= flfargE - T)

J#

together with the following transformation for the dimer
operators:

(Al1)

BiT,j _ sz,j e*i(&‘+(l§j)’ (A12)
bij =@t p, (A13)
we obtain
he o =—TPb bl fi P, (Al14)
where the hopping amplitude is given by
7 = t ol tare(rj—t)—arg(r;—0)] (A15)

Equations (A14) and (A15) are, in fact, independent of the
lattice details. The information concerning the lattice geometry
is contained in the arguments on the exponential of Eq. (A15).
This equation can be written in a compact form as

f=—reV, (A16)
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where ;, = arg(r; — 7;) — arg(t; — ©x) can be represented
graphically as

(A17)

and o_’)o represents the arg(?j — 7).

Now, we study the kinetic Hamiltonian corresponding
to dimers. Let us start with the smallest resonance loop
compatible with NN dimers on the kagome lattice, the plaquete
of length 6. In this plaquette, the resonance of the two possible
dimerizations is given by

Hy, = JGZ {):\;}:X:/;\:‘ + H.c.} RNNTS)

In order to transform the dimers to the new representation
using the flux generated by the statistical transformation of the
holons we write the Hamiltonian in terms of dimer operators
bi j as

J\
Hy, = hgif}‘?k,umm) (A19)
with
e = Jo bl bl bl ubjkbimbn; +He. (A20)

Using the transformation (A12) it is straightforward to write
the Hamiltonian as

) ety = Jo bl BL Bhy b1 ibrnbn s + He., (A21)
where
Jo = —Jge'Vo (A22)
and
Ve = (arg(Ty — Ty) + arg(t; — 7;) + arg(%e — 7))

— ((arg(7, — 7)) + arg(7; — ) + arg(T — ).

It is convenient to use a graphical representation for the phase

Ye

(A23)

i
= ((arg(Tn — 7i) + arg(T; — T) + arg(7) — Tm))

g

The two graphs correspond to the initial and final dimerization
on the plaquette. In each graph we replace the dimers by arrows
drawn in a clockwise direction and each graph represent the
sum on the arguments of the arrows.
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For the resonant plaquettes of length 8 we have three
topologically distinct configurations. Let us study now the

term corresponding to the resonance plaquette 4. After we

write it in terms of dimer operators and transform following
(A12) we obtain

jéb) _ Jéb) oV (A24)
with
o ldapl o oL AV o
Q/Je(sb):,f?(ﬂ‘,_,,i X (A25)
where
YAV

n

;
/@x = (arg(Tm — Th) + arg(7e — 71) + arg(7i — 75)

+ arg(7o — 7))

It is easy to check that, under transformation (A12) that
the amplitudes 7 corresponding to the rest of the resonance
plaquettes also transform as

JO = —g»eiv (A26)
where wé’/) is the phase obtained from the difference between
the two possible dimerizations in a given resonance plaquette
of the sum of the arguments corresponding to dimers oriented
clockwise (or anticlockwise).

This graphical rule can be used to study higher-order terms
in the kinetic Hamiltonian. This allows us to determine the
Hamiltonian after the JW transformation on the holons. In
the kagome lattice, up to resonance plaquettes of length 12
we obtain that the Hamiltonian H; corresponding to kinetic
energy of the dimers can be written as in (A2), but dimers
are now created by the operators Bi ; and the amplitudes J,

must be replaced by J, whereas the values of V,, remains
unchanged. In Table VI we show the values J, /Jo for the
resonance plaquettes up to length 12.
After the transmutation, the Hamiltonian corresponding to
the hopping of holes is given by
A,=A0+AY, (A27)

where in I:IX) dimers are also created by operators E; ; and the

holes are fermions created by the operators fi]t:

20 =3 {2 (A ]+ 2

+ H.c.},

+

A)|2.)

(A28)
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TABLE VI. Values of J,/J, corresponding to the lowest orders
of the resonant plaquettes.

Length 6 8

P T 0 i
J)J 1 -1 1 -1
Length 10 12
P s 0 m 0
J)J 1 -1 1 -1

where 7 = te~®/37_In order to obtain the original value of
the hopping constant for the holons (f — f), we can perform
a gauge transformation on the dimers. This is possible, for
example, the following gauge transformation:

=)= ]=)
ORI
)

z)
%)

independently if the dimers are on up or down triangles. We
have for the hole hopping term

2P ==t {la (A l+ [ 2){ s

+ H.c.}

+lAa)l2e)

(A29)

while for the resonance terms the gauge transformation does
not change the couplings J and V. Then we obtain

DY WD Y WY

& Wy B

Finally we can use another gauge transformation to get a more
simple Hamiltonian. We change the dimers on up triangles as

’)

)

101

o
29
£~
A=
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while we change the corresponding down triangles as

7)
7))
V)=V

Taking the values 6y =6, =¢; =¢, =0, 63 =xm/2, and
@3 = —m /2, the amplitudes J,, change as

N &) S A

Then finally we obtain a Hamiltonian with a global change
of sign in the amplitudes of the kinetic term. After the
transformation, the terms corresponding to the hopping of

holons becomes
SNIEN

ir(t) _tZA: {e—m/Q
Ay

(e

+ H.c.
This hopping Hamiltonian can be transformed by mean a
simple gauge transformation on the holes, f; — ¢/ f; with
é e NG 3) to recover the original form of the Hamiltonian.
With this transformation we have that

T s /2

Fivmti e f+p1ff’
s /2

f/+p fi =7 f/+psz’

and we recover the original form (A29) for the Hamiltonian
corresponding to the holes. Then, finally we have that,
changing the statistics of holons together with the sign of
all the kinetic amplitudes, we obtain a completely equivalent
Hamiltonian.

By using the JW transformation we can recover the equiv-
alences presented in the previous section, but the procedure
is more laborious. We have pointed out that starting from
different prescriptions for the bonds we can prove different
equivalences. A change in the lattice prescription used in the
composite operator representation is equivalent to a gauge
transformation on the dimers.

One last very important point concerns the issue of
boundary conditions within the JW approach. The composite
operator approach which we have extensively used in the paper
is valid independently of the boundary conditions used for the
system. In contrast, the JW approach is valid only for infinite
systems or finite systems with open boundary conditions. Let
us come back to Eq. (A10) assuming that the bosonic a
operators are well defined in a system in periodic boundary
conditions. This means that, for example, the operators a; and
ai are forced to be the same if sites i and 7 correspond to
the same point in the system because of the periodic boundary

T ) e

v

(A30)
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conditions. However, because of the very nature of the nonlocal
JW transformation, the relation between the operators f; and
f1 must contain a twist. In the one-dimensional version of the
JW transformation, it is easy to see that this twist is a sign which
depends only on the total number of particles in the system.
Then, in one dimension, if one restricts to the subspace of a
fixed number of particles it is possible to implement consistent
periodic boundary conditions. Here in two dimensions, the

PHYSICAL REVIEW B 87, 104512 (2013)

twist one should force for the fermionic operators depends
not only on the number of particles but also on their relative
positions with respect to the points i and i. That means that,
even restricting to a fixed number of particles, starting from
periodic boundary conditions for the bosons operators, it is not
possible to implement boundary conditions for the fermionic
operators which are consistent with all the possible particle
configurations.
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