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An exactly solvable quantum many-fermion system with an arbitrarily strong two-body 
interaction is studied and some exact thermodynamic functions (in the thermodynamic limit) 
are derived within the framework of the statistical inference scheme based on information 
theory. The solution for the associated su(3) Clebsch-Gordan series (for any number of 
particles) is given. A very important relation between the (many-body) system’s entropy per 
particle (in the thermodynamic limit) and the multiple Kronecker product multiplicities (for 
any member of an infinite class of Lie-algebraic exactly solvable models) is demonstrated. A 
general procedure for the treatment of the full class of solvable models is outlined. 

1. Introduction 

A good deal of our present understanding of the physics of quantum 
many-body systems has been gained by recourse to the study of exactly 
solvable models that are able to successfully mimic some of the more salient 
features of these fascinating systems [l]. 

Foremost among these solvable models one finds, of course, that one 
proposed many years ago by Meshkov, Glick and Lipkin [2], that has become 
the customary testing ground for most of the novel ideas [3] that, in the 
intervening years, have purported to illuminate new aspects of the intricate 
quantum many-body problem. However, this su(2) model, its enormous 
importance notwithstanding, is too simple to accommodate some facets of this 
problem, and it is our aim here to present the essentials of a more general 
theory of exactly solvable (MGL-like) many-fermion models obtained as a 
direct extrapolation of the su(2) MGL model. We will center our attention in 
those aspects related to the statistical descriptions of these systems, with 
emphasis upon the Lie-algebraic techniques necessary to obtain an exact 
solution. As an example, we also discuss some interesting new traits observed 
in the thermodynamic behavior of an su(3) MGL model. 
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The proper generalization of the MGL model from two to three (or more) 
energy levels must be tackled by following a path that deviates from the Lipkin 
one on which it was based (basically, on the properties of the well-known su(2) 
angular momentum algebra, the simplest classical Lie algebra). The historical 
path allowed the original authors to circumvent the detailed exposition of 
major mathematical (group theoretical) results while centering the attention in 
the more “physical” aspects of the concomitant problem. 

In the present paper, which is inspired by the illuminating work of Gilmore 
and coworkers [4], we will deal mainly with a three (energy) level system with 
0 identical fermions. We will construct an exactly (MGL-like) solvable model 
by the incorporation of the permutation symmetry in the Hamiltonian of the 
system, so that additional integrals of motion will arise [2J. We will also 
summarize a few general mathematical results that will enable the reader to 
reproduce most steps of the complete procedure needed in order to deal with 
any other n-single particle quantum numbers, MGL-like, 0 fermion model, 
either in the restricted Hilbert space, of dimension n”, or in the complete Fock 
space, of dimension 2”“. 

The Hamiltonian of a many-particle quantum system interacting via two- 
body forces is a sum of linear and quadratic terms in the bilinear products of 
creation and annihilation operators for the considered (quasi)particles, and can 
thus be expressed as a function of the basis operators of a semisimple classical 
Lie algebra. 

It is well known that the set of bilinear products of the creation and 
annihilation operators of n-class fermions realize an so(2n) Lie algebra [5,6]. 
Moreover, any classical Lie algebra can be realized by linear and bilinear 
products of operators that create and destroy particles (either fermions or 
bosons) [7]. The fermion case, which encompasses many interesting systems of 
many-body strongly interacting identical particles, arises in a natural fashion 
within the context of the nuclear shell model theory [S]. 

Among these algebras, one can single out su(3) as the simplest one that is 
endowed with both the intrinsically vectorial nature of its structure and the 
multiple character of its weights. A model constructed on the basis of the su(3) 
algebra acquires thus a relevant paradigmatic value. 

In the three-level many-body problem to be discussed here we will constrain 
the complete Hilbert space of the system, of dimension (3f), to a “restricted 
Hilbert space”, a Hilbert subspace of dimension 3”, as in the su(2) original 
MGL model, and thereby consider an su(3) Lie algebra in order to simplify the 
three-level model. Otherwise, we would be led to the more complex SO(~) 
classical semisimple Lie algebra. (An n-level, MGL-like model of many 
fermions in a restricted Hilbert space gives rise to an su(n) classical Lie 
algebra.) 
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Despite this restriction, the su(3) model can be regarded as a valuable 
paradigm of minimal complexity, which may be useful in dealing with much 
more involved and perhaps more realistic MGL models which, on the basis of 
the underlying representation theory, will exhibit just the following two generic 
properties, that appear in the su(3) case and are absent in the simpler su(2) or 
su(2) @ su(2) [9] models: 
(i) Quantities of intrinsically vectorial nature. 
(ii) A multiple number of weights in most of the irreducible representations 
(IRS) of the associated algebra .Z. 

It has to be noted that the treatment of the two-level Lipkin model is usually 
further restricted to a subspace of dimension 0 + 1 that corresponds to the 
su(2) IR which contains the ground state of many-fermion system [2]. 

The precise fashion in which the space of states for the (composite) system is 
constructed on the basis of the state space of its constituents becomes the 
essential trait in the concomitant formulation, and the Kronecker product 
representation the main mathematical device. This construction coincides, of 
course, with that used, albeit only implicitly, in the su(2) MGL original model 

PI- 
This work also aims at paving a direct road between the realms of finite-level 

MGL-like exactly solvable quantum many-body models and their concomitant 
statistical behavior. In particular, some interesting thermodynamical facets will 
be discussed for the simplest nontrivial su(3) MGL-like Hamiltonian, that are 
entirely absent in the analogous two-level situation. 

2. Remarks on the mathematical environment 

Although the forthcoming remarks are of a very general nature, it is perhaps 
easier to follow the presentation by first introducing the “quasispin-like” 
operators for the su(3) case. 

Let uPi be the annihilation operator for a fermion in a single-particle state 
characterized by two quantum numbers, p = 1, . . . ,a and i = 1, 2, 3. The 
total “quasispin-like” operators are defined by the relations 

(1.4 

(1.b) 
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where the notation employed (not the usual one within the present context [l]) 
for these operators, that can be traced back to the old Sakata model [5], 
emphasizes the mathematical background one is referring to here. 

Due to the fermionic character of the creation and annihilation operators, 
the operators (1) satisfy “su(3)” commutation rules. More exactly, these 
operators realize, when one considers a real numerical field, one of the real 
forms of the “complexification” [lo] of the classical compact simple real Lie 
algebra su(3). (According to Cartan’s classification, the operators (1) belong to 
the simple complex Lie algebra AZ.) We continue, for the sake of brevity, with 
the usual (less precise) terminology [lo]. 

The complete list of nonvanishing commutators for these operators is [5] 

The Cartan (maximal Abelian) subalgebra basis [lO,ll] can be chosen to 
consist of the two commuting operators h1 and &, whose eigenvalues, hi = 
A(hi), i = 1,2, in any representation will yield all the weights belonging to that 
representation. Each possible set of eigenvalues hi can be considered as 
determining the orthogonal components of a vector, usually called the weight 
vector. All possible weight vectors belong to the so-called weight space. The 
complete set of weights for a given irreducible representation (IR) can be 
derived from the highest weight vector, A, which labels that IR [ll]. 

Any IR of a semisimple Lie algebra 9 of rank 1 may be uniquely 
characterized by 1 nonnegative integers, IZ~, . . . , n, [ll]. This way of labelling 
appears naturally in Cartan’s construction. (For the su(l + 1) algebras this 
labelling is related to the signature ( fi, . . . , A), f, 2 . . . a&, which also 
specifies an su(Z + 1) IR [12] by n, =4 -&+1, j = 1,. . . ,l.) 

If -lq, ffz, . . . , q} form the simple root system of the semisimple complex 
Lie algebra 9, then the 1 fundamental weights {A,, AZ, . . . , A,}, which also 
span the weight space, are given by 

Ai = k+l 4A-‘)ki , 
a- ’ ffk 

A,k=2L, 
ak ’ ak 
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where A is the Cartan matrix of 9 [ll,lO] and the “dot” product is defined by 
recourse to the Killing form on the Cartan subalgebra in the Weyl canonical 
basis [lo]. This product takes the form of a common scalar product of vectors 
when an orthonormal algebra basis is used (see, for example, [13]) (this is not 
the case for the algebra basis used here which is chosen so that all structure 
constants are half-integer numbers). 

The highest weight of any IR is expressed as 

A = n,A, + n,A, + * . . + n,A, ) (4) 

where {n,} are nonnegative integers. This IR will be denoted by 

] nl, n2, . . . , ql. 
For the su(3) case the two fundamental weights are, by (3), 

A, =+a, ++c+, A2 =+a, ++z. (5) 

The dimension d(A) of any IR of a semisimple Lie algebra is given by the 
Weyl dimensionality formula [14] 

44 = n a-(A+S) 

a>0 
Q .s ) 

S=$_Y, 
a>0 

(6) 

where the product is taken over all the positive roots (Y of the corresponding 
Lie algebra. 

In terms of the weight vector components of the su(3) IR label, the 
dimension of the IR A = [nl, n2] is, by (6), 

d(A) = +(l + n,)(l + n,)(2 + IZ~ + n2) . (7) 

For any semisimple complex Lie algebra the second-order Casimir operator 
is defined by [15] (sum on repeated indices) 

c = &Tj8’8’ , (8) 

where g, = cilkcik’ ’ 1s a contravariant symmetric tensor, ciik are the structure 
constants of the algebra in the algebra basis {&} (cf. eq. (2)) and & = gij_?‘. 

In the standard (nonunique) su(3) algebra basis (l), the second-order 
Casimir operator is (eqs. (8) and (2)) 
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A general expression for the eigenvalue C(A) of the second-order Casimir 
operator in any IRA of a semisimple complex Lie algebra was derived by 
Racah [16]. This formula expresses C(A) explicitly in terms of the highest- 
weight vector A labelling the IR as a second-degree multinomial in the 
components of A as 

@(A)=A.(A+26), s=+ccY. (10) 

For the su(3) algebra the above expression reads 

C(A) = f [$ + n; + y11n2 + 3(n, + n2)] , (11) 

where [n,, n2] = A. 

3. Kronecker product representations 

The consideration of an n-level fermionic many-body problem in the 
restricted Hilbert space leads one to consider a specific su(n) (reducible) 
Kronecker product representation of dimension nR built up from fi defining 
IRS of the su(n) algebra. 

The defining representation of su(n) is labelled by the components of the 
fundamental weight vector relative to the fundamental weight basis (3) as 
[l, 0, . . . , 0] = A,, and the algebra Kronecker product representation, which 
we will abbreviate as A:, is given by (0 terms, with a factors each) 

where I is the y1 X II unit matrix. Within the present context, this expression is 
not an easy one to find (as far as we know) for multiple products. In [lo], 
however, a two-fold algebra Kronecker product expression is given. This is due 
to the privileged status this representation has (in particle physics), mainly in 
the calculation of transitions probabilities of two-particle scattering processes 
and related issues. 

A full generalization of the representation structure (12) (and of the Lie- 
algebraic MGL-like exactly solvable models) which is induced by the system’s 
space of states, restricted only by the requirement that it should lead to a 
physically viable model, can be given if one permits the defining representation 
of 2, A,, to be any one of the fundamental IRS of the considered algebra (cf. 
eq. (3)). In the su(3) case, for example, the replacement of A, by A, in (12) 
would lead to a system of 0 fermion “holes” distributed among three single- 
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particle energy levels. This is closely related with the description of antiparti- 
cles in particle physics (see, for example [lo], and references therein). 

Any representation of a semisimple Lie algebra 9 is fully reducible by 
Weyl’s theorem, so that one can decompose that &fold multiple Kronecker 
product An, with i = 1, or 2; * 0, or 1, as a direct sum of IRS of the algebra 9. 
This is expressed through the well-known product relation, which with this 
notation takes the form 

A”-C,@n(.f&n)n, (13) 
A 

where the summation runs over all nonequivalent IRS A = [n,, n2, . . . , n,] of 
the su(n) algebra, and YB(R; A) is the multiplicity of the representation A 

contained in the reduction (or Clebsch - Gordan series) (13) of the multiple 
Kronecker product. These multiplicities are called “Kronecker product multip- 
licities” or “external multiplicities”, so as to distinguish them from the 
(internal) multiplicities of a weight within a given IR. They will become very 
important to us because of the relevant physical meaning of a related quantity 
of fundamental importance in the description and explanation of most natural 
phenomena, namely, the system’s entropy. This fundamental link between these 
two previously unrelated concepts will play a central role in our subsequent 
considerations. 

The important point in the possibility of an exact calculation of any statistical 
expectation value of a strong interacting many-particle system, within the 
framework of either the orthodox (classical) statistical mechanics or the 
conceptually broader information theory approach, as developed by Jaynes 
[22], is that, due to the Clebsch - Gordan decomposition (13), any trace 
(evaluated in the system’s space of states) of any operator capable to be 
expressed as an analytical function of the basis operators of the semisimple Lie 
algebra .9? can be decomposed as a sum of partial traces on IRS of 9. For 
example, the canonical partition function can be cast as 

&(P) = T m(fl; A) tr[exp(-PH,)] , (14) 

where tr is the trace over each IR of the associated algebra _Y (a subspace of 
the restricted Hilbert space) and H, is the matrix representative, of dimension 
d(A) given by (6), of the system’s MGL Hamiltonian A, on the carrier space of 
the IR with highest weight A. 

For the su(3) case, the operators describing a particle “jumping” from one 
single-particle state to another can be realized by linear combinations of the 
eight Hermitian traceless matrices hi, j = 1, . . . ,8, introduced by Gell-Mann 
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in his SU(3) y s mmetry scheme [17]. These matrices are the analogs of the Pauli 
spin matrices for the su(2) algebra. 

Denoting by r(k) the defining IR (i.e. the IR A, = [l, 01) of an su(3) basis 
element 2 defined in (l), the above correspondence may be established (by an 
appropriate similarity transformation) by the following relations: 

qh,) =+ A, ) m,) =$p, > (15.a) 

Qg,,,) = +(A, 2 ih,) , T(i ?a2 )=$(A6 t ih,), 

r(L?,,J = +(A4 t ih,) . (15.b) 

This explicit realization for the defining ~(3) IR is naturally related to the 
Fock representation space of the operators of creation and annihilation of 
particles, aii, upi, and can be obtained using the Condon and Shortly phase 
convention [18] for the d,,l and the g_ generated su(2) subalgebras. The 
relationship between these matrices resembles the relation between the sets of 
operators {J,, J,, .I,} and {J+ , J_ , J,} of the well-known su(2) angular momen- 
tum theory. 

The two Gell-Mann diagonal matrices (15.a) can be directly used for low 
values of 0), in (12), to find any given Kronecker product representation by 
counting all its weights and degeneracies in the (two) resulting (diagonal) 
matrices. However, there exists a more direct and powerful procedure, whose 
rationale depends on the identification of the o-fold Kronecker product 
representation with the representation of the diagonal subalgebra [lo] of the 
direct sum algebra su(3) @ su(3) 0. . * @ su(3) (0 times). This subalgebra is 
just the 43) algebra realized by the operators (1). 

Because of the fact that any representation is determined up to an 
equivalence, the eigenvalues hi = A(hi), i = 1,2, of the su(3) Cartan subalgebra 
basis (1.a) can simply be generated by assigning all the possible nonnegative 
integer values to the eigenvalues, Ni, of the number operators that count the 
number of particles in each a-fold degenerate single-particle state labelled 
with the index i, i.e. 

Icri = c u;p,, ) i-1,2,3, (16) 
P 

with the constraint N1 + N2 + N3 = 0, in the relations (cf. eq. (1.a)) 

h, =+(N, -W, h, = +(N1 + N2 - 2N,) . (17) 
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These weights belong to a discrete (hexagonal lattice-like) domain contained 
in a triangular-shaped region of the weight space (whose size grows with 0). 

This procedure generates all the distinct weights of the multiple Kronecker 
product representation [l, OIR. Moreover, each weight appears in this reducible 
(if 0 > 1) representation with a degeneracy given by 

Yqn; A) = 
L!! 

N,(A)!N,(A)!N,(A)! ’ 

which, owing to the multinomial formula, verifies 

(18) 

where the summation is taken over all the distinct weights of the o-fold 
Kronecker product representation. Thus, this counting exhaust all the quantum 
states of the three-level 0-fermion system in the restricted Hilbert space. 

For a given dominant A, the %!(a; A) weights belonging to the (reducible for 
0 > 1) a-fold K ronecker product are distributed among the IRS (of any 
Lie-algebraic solvable model) in the following way: 

where m”(A) is the (internal) multiplicity of the weight A, which is zero if the 
weight A does not belong to the IR labelled by its highest weight A. 

In the present effort, a major and necessary result towards the complete 
statistical solution of the large class of su(3) exactly solvable models of the 
0-fermion system is here to be advanced, namely, the su(3) o-fold Kronecker 
product multiplicities. These are explicitly given in terms of the components’ 
highest-weight vector, A = [n,, n,], labelling each su(3) IR by [19] 

(n, + l)(n, + l)(nl + n2 + 2)R! 

= [+(a + 2n, + nz) + 2]![$2 - n, + Iz*) + l]![@ - 111 - 2n,)]! ; (21) 

an original result as far as we know. 
Any IR with highest weight 0, such that any argument of the factorials 

becomes noninteger or negative, does not belong to the decomposition (i.e. 
YX(0; A) = 0). 

For instance, the Clebsch-Gordan series (13) for 0 = 10 is, by (21), 



158 H.L. Varela, A. Plastino I Maximum entropy and quantum thermodynamics 

[l, O]‘O = [lO,O]@ 9[8,1] @35[6,2]@75[4,3]@90[2,4]@42[0,5] 

@36[7,0]@160[5,1]@315[3,2] @288[1,3] @225[4,0] 

@450[2,1]@252[0,2] @210[1,0] . 

For finite 0, any decomposition can also be calculated by recourse to less 
powerful iterative methods. However, in order to obtain the system’s behavior 
in the thermodynamic limit, the explicit solution (21) or an asymptotic form of 
it (cf. eq. (28)) is needed. 

The solution (21) for the su(3) Clebsch-Gordan series verifies the sum rule 

T ilJt(fl;A)d(A)= 3") (22) 

with d(A) given by (7). 
The solution (21) is the specialization to su(3) of a general formula valid for 

any semisimple Lie algebra [19] which gives the solution for the Clebsch- 
Gordan series, in explicit, close form, as required to attain exact analytical as 
well as efficient numerical solutions to the statistical problem posed by this 
kind of n-level (or, more generally, n-single-particle state) a-fermion, MGL- 
like models, although it can be used, of course, in any context where a 
Clebsch-Gordan series for the tensor product of many IRS of any Lie algebra 
is required. With that formula, only the knowledge of the n-fold Kronecker 
product through its weights and degeneracies is required to this end. It is not 
necessary to find the weight’s internal multiplicities m”(A) for the IRS of .Z (a 
problem usually solved by recourse to the Freudenthal recursion formula 
[lO,ll]). This fact is a nice consequence of the underlying representation 
theory that allows for the saving of a great amount of tedious numerical (and 
bookkeeping) work that would otherwise be needed to obtain any nontrivial 
exact statistical prediction for a given MGL model with 0 finite (and not too 
large). 

The expression (21) is the su(3) analog to the su(2) Wigner spin coupling 
result [20] that is used along with the MGL original model (see, for example, 

[31). 

4. The entropy [21] 

The most general expression for the statistical operator j? is given in terms of 
a set of (relevant) operators, {ak}, k = 1, . . . , N, whose expectation values 
are assumed to be (a priori) known [22,23]. It reads 
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(23) 

where A, is a Lagrange multiplier so chosen as to guarantee normalization 
(Tr /; = 1). The form (23) for the statistical operator is a consequence of the 
maximum entropy (MAXENT) variational principle [23,3,24] and is consid- 
ered to yield the least biased probabilistic prescription, based on the sole 
knowledge of the relevant information supplied through a set of expectation 
values (and nothing else). It is asserted that, essentially, all the known results 
of statistical mechanics (equilibrium and off-equilibrium), are derivable con- 
sequences of this principle [24]. 

The multiplier A, is a function of the remaining A, and is related to the 
generalized partition function by 

T(A,, AZ,. . . , A,) = exp(A,) = Tr[exp(-TA,a,)] . 

The A, are Lagrange multipliers that guarantee fulfillment of the a priori 
knowledge, namely, 

TG&) = @,> , k=l,...,JV, (25) 

and are found by solving the coupled set of X simultaneous equations [22- 

2431 

%,(A,, A,, . . . , A,) 
aA, 

+(A,>=o, k=l,...,X. 

As in the particular case of the canonical partition function (14), due to the 
Clebsch - Gordan decompositions (13) (whose existence is guaranteed for any 
Lie-algebraic solvable model by Weyl’s theorem), the generalized partition 
function (24) can also be written down as 

%:(A,, A,, . . . , AK) = 7 &(a; A) tr[exp(-T A,A,(II))] , (27) 

where we denote as Ak(A) the matrix representative of the operator ak in the 
IR A of the algebra 2. 

The von Neumann entropy [25] is, of course, given by (k =Boltzmann 
constant) 

S = -k Tr(b log 6)) (28) 
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and the intensive related quantity is the intensive entropy, s = S/O. We will 
redefine (28), as usual, by setting k = 1, which corresponds to measuring the 
temperature in energy units (instead of in Kelvin degrees). This makes the 
entropy dimensionless and adequate for its interpretation as a measure of the 
lack of information concerning the system’s microscopic state. In the example 
given in the next section, we will further redefine the temperature scale by 
taking the unit of energy to be equal to the single-particle energy gap E of a 
simple su( 3) MGL-like Hamiltonian. 

A central result of the present study is now to be advanced. After a rather 
lengthy but straightforward procedure, it is shown in the appendix that the 
intensive entropy in the thermodynamic limit, for any n-level MGL-like 
quantum system and for any set of relevant operators, is simply related to the 
exterior multiplicities by the Boltzmannian relation 

(29) 

where v,, is the particular “intensive weight” selected among these that arise 
after performing the scaling 

A=&, (30) 

which defines the intensive weights v = [ vl, v,, . . . , I+], where I is the rank of 
the considered algebra .Z’. The intensive “leader” weight vO can be roughly 
characterized by saying that it is the weight that points towards the IR which 
produces an overwhelming contribution to the partition function for finite (but 
large) values of 0 and depends, of course, on the system’s macroscopic state as 
specified by the expectation values of the set of relevant operators (25). 

In the thermodynamic limit this so-called “leader IR”, A, = C!V~,,, will give 
the unique contribution to the generalized partition function and, conse- 
quently, to all the system’s thermodynamic functions. The contributions to the 
partition function of all the other IRS are to be evaluated in order to perform 
that selection through a maximization procedure (It should be stressed that this 
procedure has nothing to do with the variational maximum entropy principle, 
which is already embodied in writing down the generalized partition function). 

It is worthwhile to point out that no Lagrange or saddle-point method needs 
to be invoked neither in order to arrive at the result (29) or in order to 
evaluate the generalized partition function in the thermodynamic limit (see 
appendix A). 

The existence of a limit of the form (29) for any physical system has been 
conjectured by Grandy [24], who explicitly stated it as a tentative theorem, and 
used it as a basis for explaining the “extraordinary effectiveness” or statistical 
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mechanics and as a starting point for a discussion relative to the fundamentals 
of the second law of thermodynamics for quantum systems. It is perhaps 
appropriate to refer to it as “Grandy’s theorem”. The classical version of this 
theorem (although not stated as such) was given earlier by Jaynes [26] (see also 
theorems 3 and 4 of [27]). 

Here, we are able to extend the quantum mechanical Grandy version of this 
theorem for the infinite class of MGL-like models by identifying the precise 
mathematical object on the right hand side of (29), namely, the external 
multiplicities of a proper o-fold Kronecker product. (Grandy’s theorem deals 
with an ad-hoc notion of “high-probability manifolds” in the Hilbert space 
defined through a classification procedure of degenerate subspaces, and asserts, 
along with a relation like (29) between entropy and a high-probability 
manifold, that any physical system leads to a “decomposable” Hilbert space in 
which a high-probability manifold, in the thermodynamic limit, can be singled 
out.) 

Our proof (see appendix A) embraces the possibility of dealing with a 
noncommuting set of relevant operators, thereby including all the off-equilib- 
rium thermodynamics [24], and is achieved within, although it is not logically 
dependent on, the general context of statistical inference based on the 
information theory [27,23]. 

This theorem, except for the cases in which there exists a continuum portion 
in the single-particle spectrum, applies to any conceivable quantum MGL-like 
system, provided that the standard formulation of the general many-body 
problem (in terms of second quantized operators defined with relation to 
single-particle noninteracting states as the building blocks of the space of states 
of any strongly interacting system) be a valid one. The infinite quasicontinuum 
(denumerable) single-particle spectra should be considered embraced by the 
theorem as a limiting case, because, as the number of single-particle states is 
allowed to arbitrarily grow, the theorem, in the present form, still holds. 

A particular version of the relation (29) for a two-level MGL model 
constructed around the su(2) @ su(2) algebra has previously been found [28], 
besides the few other cases (not MGL nontrivial models) mentioned in [24]. 

Using Stirling’s asymptotic formula in (29) for the su(3) case (i.e. with 
.%R(n; A) given by (21)), one finds the following (exact) Shannon - Wiener 
form for the entropy per particle in the thermodynamic limit valid for any 
su(3) MGL many-body problem: 

(31.a) 

where 
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Pl(zJ) = f(l + 2Vl + 4 , P2(V) = +<1 - 1.‘l + 3) > 

P3(1’) =:<1- VI - 2%) 3 (31.b) 

with 

P;~Oo IIjI Pi= l. (31.c) 

This relation, as well as the result (29), does not depend on the operators of 
the relevant set and, in particular, on the form (or even the existence) of the 
interaction term in the system’s Hamiltonian, provided one can write these 

operators in terms of the su(3) basis operators (l), or, in the general case, the 

basis operators of the considered algebra Z’. It can be seen that this situation 

turns out to be always the case in the full class of MGL models. 

5. The simplest su(3) nontrivial MGL-like Hamiltonian 

We shall illustrate the preceding considerations by recourse to a very simple 

but nontrivial three-level MGL-like model. A two-body interaction term, 

which induces transitions between pairs of particles, will be chosen so as to 

lead to a diagonal Hamiltonian in all the su(3) IRS’ carrier spaces. 

The model describes fl fermions distributed in three R-fold degenerate 

energy levels, which are separated by an energy gap E. The single-particle 

states, [pi), are labelled by two indices. One of them, say i, takes the values 1, 

2 and 3 for the levels with energies -F, 0 and +E, respectively, while the other, 

p, runs from 1 to 0. For each value of p there are three single-particle states of 

different energy. 

The pertinent Hamiltonian reads 

A = EC (ai,a,, - aila,,) 
P 

++Wc (aila&zqlap2 + a$&q2ap3 + aila&aqlap3 + h.c.1 , 
P4 

(32) 

where W is the coupling constant specifying the strength of that particular 

interaction which scatters one particle “upstairs” while another is scattered 

“downstairs” (between corresponding levels), conserving the energy in each 

one of these two-particle processes. The summations on p and q run between 1 

and R. This Hamiltonian can be recast, by (l), (2), (9) and the anticommuta- 

tion relations of the creation and annihilation operators, as 
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(33) 

and is analogous to the su(2) Lipkin original Hamiltonian with V= 0 (see [l]). 
As is well known [24,3,23,22], if fi is the only relevant operator in building 

up i, (cf. eq. (23)) we shall be describing a situation of thermodynamic 
equilibrium, a situation that will not vary if additional operators that commute 
with A are also included in the relevant set. However, the number of 
independent relevant operators that one can choose is limited by the rank of 
the considered algebra. In the present example we are almost forced to limit 
our considerations to the first instance so that all the information-theoretic 
paraphernalia is reduced to the calculation of the standard canonical partition 
function (14). In doing so, we find a new thermodynamic phase which is absent 
in the analogous su(2) model. 

The system’s energy per particle in the thermodynamic limit is 

where 7 = (vi, Q), vi = hi/~, is a m intensive weight belonging to the IR 
labeled by its highest intensive weight v and E(A, h) is the energy eigenvalue, 

EilAAr) = E(A, h))Ahr) , r = 1, . . . , m”(A) . (35) 

By (33), the system’s energy per particle is 

%(? 77) = --E[3r+@(rJ) + 8(77)1 > (36) 

where w = L2WI.z is the finite dimensionless coupling constant for the consid- 
ered two-body interaction. 

S(V) is the quantity defined by 

(37) 

with C(V) given by (ll), and the function P(V) is 

Fig. 1 shows some contour lines for the function ~(7) as well as the path 
traced by the intensive leader weight u, in the intensive weight space as the 
temperature of the system, measured in the system’s natural energy units E, 
varies between zero and infinity, for the special case when the strength of the 
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0.0 0.1 1 0.2 0.3 0.4 0.5 ?j 

2w 
1 

Fig. 1. Path traversed by the intensive leader weight vO in the intensive weight space as the 
temperature of the system varies between zero and infinity. The strength of the interaction is 
w=4. 

two-body interaction is w = 4. Only the upper right part of the intensive weight 
diagram is showed. 

For sufficiently high values of the coupling constant W, the system undergoes 
two phase transitions at the critical temperatures T, and T2 given by (see fig. 2) 

(39.a) 

W[l+U(W)]+2 -l 
T2 = 2(logrv,1 - 2a(w)] - 1 > ’ 

@)=qm-q. 

(39.b) 

If w < 1, there does not exist any ordered phase at any temperature. In this 
case the system behaves as an ideal gas (W = 0), even for finite interaction 
strengths. The existence of this finite threshold seems to be a general 
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Fig. 2. Critical temperatures T, and TX as functions of the adimensional intensive coupling 

constant parameter w. 

characteristic, at least in the class of MGL models. We find it in all known 
cases. The implication of this fact would be, if general, that all the possible 
interactions (the forces) the (quasi)fermions feel remain hidden to the observer 
provided that they be sufficiently small. The impossibility of knowing about the 
existence of statistically concealed forces would remain true even for a finite 
number of particles, because the threshold existence for fermionic systems is 
determined by the finiteness of the region of accessible intensive weight space, 
a circumstance that does not depend on 0. 

Completing the previous results, a straightforward but somewhat lengthy 
calculation yields [ 191 the following: 

Phase I, 3/w s 5 < 1 (0 < T c T,) 

u=o, 

T= wt(logs)-l. (40.a) 

W 

PhaseZZ, l/w<5<3/w (T,<T<T,) 
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(T such that (1 - 5 $ ~)~‘+~(l + 25 + a)rv’-3 = (1 - 5 - 2~)~‘“’ , 

(40.b) 

Phase III, O<[Sliw (T,GTTx) 

fl=~F$C++(1+5), 

% = -&(e + CT) ) 

( 

1+25+C7 -’ 
T=2 Iog l-t_2o . i 

(4O.c) 

Here V, = [f, a] is the intensive weight which labels the leader ~(3) IR 
(which depends on the system’s temperature T). 

The entropy per particle s(q,) = s( 5, u 1s ) . g iven by the same expression (31) 
in the three thermodynamic phases and is depicted in fig. 3. 

0.6 

0.4 

0.2 

0.0 T 
0 1 2 3 4 5 

Fig. 3. Intensive entropy versus temperature for several interaction strengths. 
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-2 
T 0 1 2 3 4 5 

Fig. 4. Energy per particle versus temperature for several interaction strengths. 

The energy per particle is plotted in fig. 4. We only give, for the sake of 
brevity, just a plot for the specific heat, fig. 5, the analytic expression of which 
is easily derived from (40). 

The most salient feature of the simplest su(3) MGL model is the appearance, 
as we anticipated, of a new thermodynamic phase (if w > 1) that does not exist 
in the analogous two-level su(2) situation. 

The specific heat has two finite jumps at each critical temperature, provided 
that w be greater than three and less than a certain “critical” value, w,, for 
which there exist an infinite jump in the specific heat at the temperature T2. 
For greater values of w there exists a temperature interval in which all the 
considered thermodynamic functions are multi-valued and the specific heat 
adopts negative values. This critical value for the coupling constant is w, = 
7.95332718. 

The explanation for this anomaly may be found in a sort of inverse 
symmetry-breaking effect that this strong interaction produces (relative to the 
energy ordering) on the nonperturbed single-particle states, i.e., the inter- 
action term treats the three possible kinds of transitions that in this three-level 
system may occur on an equal footing (each giving an equal contribution to the 
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0 1 1 2 3 4 5 

Fig. 5. Specific heat versus temperature for several interaction strengths. 

system’s energy), while the transitions between the three “nonperturbed” 
single-particle states are obviously energetically distinct. 

This symmetry-breaking effect can be better appreciated by inverting the 
role of the terms in the systems’ Hamiltonian: assume that just the interaction 
term, proportional to IV, specifies the system. The term proportional to the 
energy gap E would arise by the application of an external field that interacts 
with each particle, in close analogy with the Ising model of ferromagnetism 
[29]. This would be the direct symmetry-breaking effect, although in such a 
case the calculated thermodynamic functions would lose their original mean- 
ings. However, the entropy would remain the same, as it should, because of its 
distinct role of being a state function and not an observable. 

It is worthwhile to point out that this example highlights the secondary role 
played by the Lagrange multipliers in the sense that assigning a set of values to 
them does not necessarily completely specify the unique macrostate of the 
system, while, on the other hand, the specification of the expectation values 
uniquely determines this macrostate. From the purely formal information- 
theoretic point of view, this is the first example in which, to our knowledge, 
these multi-valued functions arise. It has to be noted that the information 
theory formalism does not break down, even if the physical interpretation may 
lose its meaning. 
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6. Conclusions 

The present study of solvable MGL models allow us to make significant 
long-range advances of general validity in the statement, systematization and 
partial resolution (mainly in that part addressed necessarily by the systems’s 
statistical description) of a broad class, infinite indeed, of exactly solvable 
quantum models, that may be useful in better understanding the complexities 
of the quantum many-body problem with arbitrarily strong many-body inter- 
action, the su(3) model being the simpler and paradigmatic first example in this 
direction. The advances made will enable the statistical (equilibrium or off- 
equilibrium, numerical or analytical) exact resolution of this kind of quantum 
many-body systems of strongly interacting particles both in the thermodynamic 
limit as well as for a finite number of fermions. 

Appendix A 

We undertake in this appendix the proof of eq. (29), i.e. Grandy’s theorem. 
Let the operator P be defined by 

P((h,)= -i h,A,) (A-1) 
k=l 

where A, are the Lagrange multipliers associated to the operators ak belonging 
to the relevant set selected for the probability assignment, according to the 
information theory approach and the MAXENT variational principle 
[23,3,24,30]. 

Assume that these operators are analytical functions of the basis operators of 
a semisimple Lie algebra _Y?, so that the full class of Lie-algebraic exactly 
solvable models is thereby encompassed. 

Then, by the reducibility of the o-fold Kronecker product representation, 
the operator P is realized by a matrix that can be brought, through a similitude 
transformation, to (block) diagonal form. Each submatrix of dimension d(A), 
given by the Weyl dimensionality formula (6), is labelled by the components, 
relative to the fundamental weight basis, of the highest-weight vector A of the 
IRS of the considered Lie algebra 2 that appears in the reduction (Clebsch - 
Gordan series) of the &?-fold Kronecker product representation. (As the trace 
is invariant against these similitude transformations, the knowledge of the 
(Clebsch - Gordan) matrix that performs such a transformation is irrelevant in 
order to calculate expectation values). 

Thus the generalized partition function adopts the appearance 
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%dAd = 7 nJz(fi; A) tr[exp F,,(A,)] , (A.21 

where F, is a d(A)-dimensional matrix representative of the operator k on the 
carrier space of the IR labelled by its highest weight A, spanned by the kets 

{IAJ+))>, P = 1,. . . , m”(h), with m”(A) being the multiplicity of the weight A 
in the IR A (i.e. the number of times the weight A appears in the IR A), and 
tr. . . is the trace on each IR given by 

(A.3) 

where the summation on A is extended over all the distinct weights of the IR A. 

Let &(A; Ak), i = 1, . . . , d(A), be the d(A)(not necessarily all different) real 
eigenvalues of the Hermitian operator fi on each IR A, 

MhJlA,) =.Gk A,)(Ai) , i=l,...,d(A), 64.4) 

where { [Ai)} are the corresponding orthonormal eigenvectors (after a ortho- 
normalization procedure if necessary). Then the trace (A.3) is 

d(n) 

tr(ev FA> = lFl evM41 . (A.5) 

Let A,be highest weight of the leader IR, defined in such a way as to 
produce an absolute maximum of the function 

G(A) = YJl(fl; A) tr(exp F,) (A.6) 

for a given set of values of the X Lagrange multipliers {Ak}. (Thus the leader 
IR A, depends on the macroscopic state of the system specified through the set 
of Lagrange multipliers.) 

Then, as G(A) is definite positive, the following inequality holds: 

G(A,) =s 2 s n(fi) G(A,) , (A.7) 

where n(O) is the number of terms in the summation (A.2), i.e. it is the 
number of distinct (that is, without counting its multiplicity) inequivalent IRS 
that appear in the a-fold Kronecker product reduction. 

The number n(O) equals the number of nonequivalent distinct weights that 
belong to the IR of the Clebsch - Gordan series which has the maximum 
highest weight. That is the weight f2Aj for the Kronecker product representa- 
tion A;. (Two weights are said to be equivalent if one can be transformed into 
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the other by some sequence of Weyl’s reflections [ll] of the considered algebra 

2.) 
Thus, n(0) is asymptotically proportional to the I-dimensional volume of the 

region of the weight space which contains all the weights of the IR OAj, where 
I = rank(Z). This region has a linear magnitude of the order of 0, measured in 
units of the weight spacing. Thus 

n(Ll) -an’ ) a<w. (A.8) 

For example, for .=.Y = su(3) and either Kronecker product representation Af 
or A;, n(0) is exactly given by 

n(0) = 1+ [$? + @‘I (-@‘) 9 (A.9) 

where [x] is the integer part of X. 
From (A.7) and (A.8) one deduces the inequality 

&g G(4) c i log SC c i log G(A,) + $ log(a0) . (A. 10) 

In the thermodynamic limit (a + w), the last term in (A.lO) vanishes and 
one has by (A.6) 

where 

and 

4 =$n- i log tr(exp F,J . 

(A.ll) 

(A.12) 

(A. 13) 

In (A.ll) we have redefined A, (which is related to the generalized partition 
function by an exponentiation operation) as the intensive Lagrange multiplier 
associated to the identity operator lim,_,h, /a + A,. 

Let &(A,; hk) be (one of) the largest eigenvalue J(A,; hk), i = 1, . . . , d(A,), 
(cf. eq. (A.4)) of the leader IR A,,. Then, by (AS) (with A-A,) and the 
positiveness of the terms in that sum, the following inequality holds: 

(A. 14) 
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or 

A f&Q s A log tr(exp F,,) s + f&$,) + i log d(A,) . (A.15) 

The dimension d(A,) is, by the Weyl dimensionality formula (6), a multino- 
mial expression in the components of the weight A,, {n,,, . . , nor}, with 
positive (or null) coefficients. As the weights’ components can only take 
non-negative integer values from 0 to a, the dimension d(A,) has an upper 
bound given by the dimension of the representation [o, 0, . . , 01 (this 
representation does not belong to the considered Clebsch - Gordan series). 
Next we calculate the dimension of this representation. 

The Weyl formula can be written as 

d(A)=n(l+s), S=+. 
a>0 a>0 

As (Y is a positive root, it can be spanned as 

ff = i ki(cY) cq ) 

i=l 

(A. 16) 

(A.17) 

where k,(a) are I positive integers and (Y~ are the I simple roots of the algebra 
2. 

The highest weight of the bounding JR A = [Lt, 0, . . . , L2] can be expressed 
as (cf. eq. (4)) 

A=&. (A.18) 
j=l 

Using the identity 

A.. a. 
2 -!-.-L = 6.. 

a, . ffi ‘I ’ (A.19) 

we find 

(y . A = $I i kj(a) ai. a, . (A.20) 
j=l 

The product CY - 6 can be calculated by means of the identity [9, p. 5331 

1 
(YI’CX =+Yi~i’a, ) (A.21) 
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giving 

c~-tj=;~k,(a)a~.c~~. 
I-1 

(A.22) 

Let d(0) be the dimension of the bounding representation [.f& 0, . . . , 01. 
Then 

d(O) = n (1+ n> . (A.23) 
uzo 

The number of positive roots depends on the considered algebra .Z’. For 
su(l + 1) that number is $(1+ 1). For so(21+ 1) and sp(Z) it is 12. For so(21) it 
is 1(1+ 1). In any of these cases we have 

d(O) s (a + l)lcr+l) . (A.24) 

Consequently 

I(1 + 1) 
~lOgd(/iO)<~lOgd(~)-- fi log(fi+l)n-_O, (A.25) 

and, in the thermodynamic limit, the last term in (A.15) vanishes and we 
obtain (exactly) 

(A.26) 

fo(Ao) is the leader eigenvalue of the leader IR, which is the only one 
contributing to the generalized partition function in the thermodynamic limit. 
The result (A.26) remains valid also in the case of having more than one (i.e. a 
degenerate) leader eigenvalue. 

The intensive entropy, S/0, in the limit 0-03 (cf. eqs. (28) and (23)), is 

S(hk) = A, + 5 a,& , 
k=l 

Uk =l$n; (A,) , (A.27) 

where uk are the intensive expectation values of the operators belonging to the 
relevant set in the thermodynamic limit. 

By making the scale transformation in the weight space (30) which defines 
the intensive weights v’, we are able to write the I equations which satisfy the 
intensive leader weight V, as 
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(A.28) 

where A,(&) = A&A,; v()). 
The leader IR yields an (absolute) maximum of the generalized partition 

function, and, consequently, of the intensive Lagrange multiplier A,. 
Deriving (A. 11) with respect to A ;, we obtain (because of (A.28)) 

(A.29) 

This derivative is equal to the (intensive expectation value associated to Aj 
with opposite sign (-ai) (cf. eq. (26)). 

From (A.13) we have 

1 

fl tr(exp F,J 
tr 

Using the identity [31] 

S exp F = exp F 
I 

du exp(-uF) 6F exp(uF) , 
0 

we obtain 

-z Aja, = $ A j $, =kFm 0 tr(eip FAo) tr(Foo exP F~,,) 
I 

. CiAexP.J? 

(A.30) 

(A.31) 

(A.32) 

where we have used the relations (A.l), (A.4), (A.5) and (A.26). 
Substituting (A.ll) and (A.32) in (A.27) we finally obtain s = m, i.e., by 

(A. 12) 

(A.33) 

with A, determined from (A.28) and the additional requirement that it 
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produces an absolute maximum of the function &(A,; v). This completes our 
proof. 
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