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Abstract

Background: Fieldwork has thoroughly established that most eggs are intensely predated. Among the few exceptions are
the aerial egg clutches from the aquatic snail Pomacea canaliculata which have virtually no predators. Its defenses are
advertised by the pigmented ovorubin perivitellin providing a conspicuous reddish coloration. The nature of the defense
however, was not clear, except for a screening for defenses that identified a neurotoxic perivitellin with lethal effect on
rodents. Ovorubin is a proteinase inhibitor (PI) whose role to protect against pathogens was taken for granted, according
to the prevailing assumption. Through biochemical, biophysical and feeding experiments we studied the proteinase
inhibitor function of ovorubin in egg defenses.

Methodology/Principal Findings: Mass spectrometry sequencing indicated ovorubin belongs to the Kunitz-type serine
proteinase inhibitor family. It specifically binds trypsin as determined by small angle X-ray scattering (SAXS) and cross-
linking studies but, in contrast to the classical assumption, it does not prevent bacterial growth. Ovorubin was found
extremely resistant to in vitro gastrointestinal proteolysis. Moreover feeding studies showed that ovorubin ingestion
diminishes growth rate in rats indicating that this highly stable PI is capable of surviving passage through the
gastrointestinal tract in a biologically active form.

Conclusions: To our knowledge, this is the first direct evidence of the interaction of an egg PI with a digestive protease of
potential predators, limiting predator’s ability to digest egg nutrients. This role has not been reported in the animal
kingdom but it is similar to plant defenses against herbivory. Further, this would be the only defense model with no trade-
offs between conspicuousness and noxiousness by encoding into the same molecule both the aposematic warning signal
and an antinutritive/antidigestive defense. These defenses, combined with a neurotoxin and probably unpalatable factors
would explain the near absence of predators, opening new perspectives in the study of the evolution and ecology of egg
defensive strategies.
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Introduction

Decades of fieldwork have thoroughly established that the eggs

of most animals are subject to intense predation [1–3]. The reason

is clear: Their high nutritional value offers to a pest or pathogen

the best target for attack [4].

Among the few exceptions are the eggs from the freshwater

apple snail Pomacea canaliculata which, though filled with large

amounts of polysaccharides and proteins [5], have only one

predator reported worldwide: the fire ant Solenopsis geminata [6]. P.

canaliculata egg clutches are unusual in two respects: they are

cemented outside the water and they are brightly coloured [7–9].

The strategy of laying eggs off the water allows eggs from aquatic

organisms to avoid aquatic predators but at the same time they

must face a variety of selective challenges, since they are exposed

to stressful environmental conditions that may affect embryonic

development and survival of offspring [10;11]. On the other hand,

the conspicuously reddish coloration of the clutches (Figure 1) [12]

advertises to visual-hunting predators the presence of egg defenses

(aposematic warning). The message says: avoid me or pay the costs

of a very unpleasant and/or unprofitable experience. However,

the nature of these defenses remained a mystery until recently

when, searching for defenses against predation, our group

identified and characterized a proteinaceous neurotoxin (PV2)

lethal to mice, the first genetically encoded toxin located inside an

egg in the animal kingdom [13;14]. Eggs are toxic if orally

administered to mice, but this slow-acting neurotoxin alone could

not account for the virtual absence of predators, strongly

suggesting the presence of other complementary noxious and/or

unpalatable defensive factors, as the potential unpalatability

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e15059



reported for the eggs of a related species P. paludosa [15]. As in

most gastropods, the female albumen gland provides eggs with the

perivitellin fluid surrounding the fertilized oocyte to nourish and

protect the embryos. Perivitellin fluid proteins, called perivitellins,

have classically been considered merely storage proteins but recent

work has shown that many of them serve other functions before

being ingested by the embryos. For instance they provide eggs with

lectins, proteinase inhibitors and other antimicrobial agents [16–

20], growth factors for the developing embryo [21] and, in the case

of P. canaliculata, a neurotoxin [13].

In particular, the presence of proteinase inhibitors in eggs, has

classically been assumed to play a role either to protect against

microbial infection (inhibiting extracellular proteases secreted by

microorganisms) [4] or to minimize degradation of important

peptides and proteins from egg vitellus or perivitellus [22].

However, despite its intuitive appeal, the antimicrobial hypothesis

has been proved only in egg PIs of very few species, such as the

eggs of the amphibian, Odorrana grahami [23].

P. canaliculata eggs have a perivitellin called ovorubin which is a

strong proteinase inhibitor [24], that is at the same time pigmented

with a carotenoid, providing eggs with their aposematic coloration.

This multifunctional protein is massively accumulated in the

perivitellin fluid [25], providing protection against sun radiation

[12], stabilizing and transporting antioxidant molecules in the

perivitellin fluid [26] and helping to prevent egg dessication [27].

As in other eggs, ovorubin PI function was assumed to be

antimicrobial based on its capacity to inhibit in vitro the bacterial

proteinases subtilisin and fungal takadiastase but this hypothesis

has never been tested [24].

Several structural features of this 300 kDa oligomeric perivi-

tellin have been studied and relevant for the current work are its

high stability in a wide range of pH and temperature and elevated

glycosylation [28–30].

In the present study we investigated some structural and

functional aspects of ovorubin as proteinase inhibitor in P.

canaliculata egg defenses through a combination of biochemical,

biophysical and feeding experiments. First we studied the

primary structure of ovorubin and its interaction with trypspin.

Then we tested if the proteinase inhibitor properties of

ovorubin conform the ‘‘antimicrobial assumption’’ and provide

evidence that it is an antinutritive factor with a role in egg

biochemical defenses that would render them unprofitable for a

predator.

Results

Mass spectrometry analysis and sequencing
As a first step, we conducted a structural analysis of ovorubin

studying its primary structure by mass spectrometry and Edman

degradation. This led to the inclusion of ovorubin into the family

of Kunitz-type serine proteinase inhibitors.

Before mass spectrometry analysis, ovorubin was chemically

deglycosylated. This treatment reduced subunit heterogeneity to

a single 24 kDa band in SDS-PAGE (Figure 2, inset). Mass

spectrometry analysis of the tryptic products of this band

resulted in a well resolved fingerprint (Figure 2). The analysis

showed one peptide with m/z = 1361.57 which matched

(MASCOT score 71) the serine proteinase inhibitor from the

insect Sarcophaga bullata (SBPI) (Figure 2). This protein belongs

to the small Kunitz-type inhibitors family that features

identically spaced cysteines, along a peptide chain of varying

length [31].

Automated N-terminal Edman degradation identified 15 amino

acid residues (Table 1). Interestingly, when the sequence was

submitted to the NCBI non-redundant database without taxon

restriction, no homology with known proteins was found.

Figure 1. The conspicuous reddish egg clutches from P.canaliculata display a warning signal mostly provided by the perivitellin
ovorubin. Inset: Egg surface does not have any protective ornamentation.
doi:10.1371/journal.pone.0015059.g001
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Ovorubin – trypsin interaction
Incubation of the digestive serine protease trypsin and ovorubin

in the presence of the cross-linker dithiobis[succinimidyl propio-

nate] (DSP) allowed the study of the interaction between both

proteins. It should be noted that the cross-linking reaction is

irreversible under the experimental conditions. As shown by SDS–

PAGE (Figure 3), the cross-linked products, represented by the

high molecular weight (MW) band, increase with increasing DSP

levels all free trypsin being cross-linked at 0.8 mM DSP. (Figure

3A lanes 6, 7 and 8). This band was immunoreactive to both anti-

trypsin and anti-ovorubin antibodies as shown by Western blot

assay, thus confirming specific interaction between both proteins

(Figure 3 B, C). The absence of ovorubin-ovorubin cross-linking

was confirmed by subjecting purified ovorubin to DSP cross-

linking. This treatment rendered a high MW band which showed

a lower Rf value than the ovorubin-trypsin complexes (Figure 3,

lane 4), and was not immunoreactive to anti-trypsin IgG antibody

(data not shown).

The interaction was then further characterized by Small angle

X-ray scattering (SAXS) experiments on the complex, providing

an indication of its size. From the Guinier plots of free ovorubin

and ovorubin-trypsin complex it was possible to fit a gyration

radius of 40.1060.80 Å and 44.0561.20 Å, respectively. The

gyration radii obtained for the ovorubin-trypsin complex are

compatible with a 1:1 stoichometry, whereas the gyration radii for

free ovorubin are compatible with previous reports [28], that is, a

compact oligomer of about 300 kDa, the MW determined for

ovorubin [32].

Trypsin inhibition
Trypsin inhibition properties of ovorubin were studied consid-

ering the effect of pH and temperature on this activity (Figure 4).

The protein retained most of its inhibitory activity after heating at

100uC for 40 min at pH 7.4 (68.960.28% activity). In contrast,

ovorubin lost almost all inhibitory activity by a combination of

Figure 2. Tryptic digest fingerprint of deglycosilated ovorubin determined by quadrupole ion trap nanoelectrospray MS/MS (ESI
ToF/ToF). Inset: SDS-PAGE 8–20%. Lane 1: ovorubin; lane 2: MW markers; lane 3: Chemically-deglycosilated ovorubin. Bottom line, candidate
sequence with homology to a Kunitz-type serine protease inhibitor.
doi:10.1371/journal.pone.0015059.g002

Table 1. N-terminal amino acid sequence of deglycosilated
ovorubin.

5 10 15

N K E X L L L D I (I) D A T T S

doi:10.1371/journal.pone.0015059.t001
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pre-incubation at pH = 2.0 for 48h followed by heating at 100uC
for 40 min (3.460.07% activity) or by preincubation for 48 h at

pH = 2.0 (3.060.20% activity).

Antimicrobial activity of ovorubin
We tested the antimicrobial hypothesis adding ovorubin to

bacterial cultures (Escherichia coli JM109, Salmonella typhimurium,

Bacillus subtilis 168 and Lactobacillus casei) in liquid and solid media.

Ovorubin showed no antibacterial activity against any of the

strains tested, or the media employed in our experimental

conditions (Figure 5).

Simulated gastrointestinal digestion of ovorubin
The lack of antibacterial activity of ovorubin combined with a

previous report indicating a high structural stability in a wide

range of pH (pH 4.0–12.0) [28], suggested that the protein could

be tailored to withstand the gastrointestinal tract of a predator.

Therefore we tested this assumption in vitro, using a physiologically

relevant digestion system, and then in vivo, by feeding studies (see

below).

We found that ovorubin was resistant to simulated gastric

digestion for 2 h, as shown by SDS-PAGE (Figure 6A). After this

simulated gastric digestion, the pH was adjusted to duodenal

conditions, trypsin was added and ovorubin simulated intestinal

digestion performed for another 2 h. Again, ovorubin showed no

significant alteration (Figure 6B).

Effect of ovorubin-supplemented diet on rat growth rate
Finally, a bioassay to test the biological effect of ovorubin was

performed using rats. During the first 3 days of ovorubin oral

administration the animals showed a significantly lower standard

growth rate than the control ones (Figure 7A and inset). This effect

Figure 3. Analysis of ovorubin-trypsin cross-linked products by SDS-PAGE and immunobotting. (A): SDS-PAGE 8–20%. Lane 1: Ovorubin
and trypsin mix; lane 2: Trypsin; lane 3: ovorubin; lane 4: cross linked ovorubin; lane 5: Molecular mass standards; lanes 6–8: ovorubin-trypsin mix
+0.05, 0.20 and 0.80 mM DSP, respectively. (B): Western blot analysis of lanes 6, 7 and 8 using anti-trypsin antibody. (C): Western blot analysis of lanes
6, 7 and 8 using anti-ovorubin antibody.
doi:10.1371/journal.pone.0015059.g003

Figure 4. Effect of pH and temperature on trypsin inhibition
capacity of ovorubin. Black line: negative control (no inhibitor); Red
line: positive control (100% inhibition); Green line: pH = 7.4; Blue line:
pH = 7.4+Ø; light blue line pH = 2.0; Violet line; pH = 2.0+Ø.
doi:10.1371/journal.pone.0015059.g004

Figure 5. Effect of ovorubin on E. coli and B. subtillis growth.
Bacteria were incubated in LB at 37uC, OD600 was measured at 2, 4 and
24 h. Black line: control; Red line: 100 mg ovorubin; Blue line: 20 mg
ovorubin.
doi:10.1371/journal.pone.0015059.g005
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on growth rate disappeared after the fourth day of treatment.

Daily food ingestion was similar in control and ovorubin-

supplemented rats along the experimental period (Figure 7B).

Discussion

The principal functions so far attributed to egg proteins are: (i)

provision of nutrients for the developing embryo; (ii) protection

from microbial attack; and (iii) transport of nutrients into the

developing embryo [33]. In the present study we provide evidence

that ovorubin additionally functions as an antinutritive molecule,

protecting the eggs against predation.

Ovorubin is a small Kunitz-type proteinase inhibitor with
many of the structural features of the family

Partial sequencing allowed the inclusion of ovorubin among the

small Kunitz-type inhibitors family. This family includes many

very well studied plant inhibitors, most of them with only one

active site and resistant to proteolysis [34;35]. These characteristics

are present in ovorubin, and provided us with the first clue on the

role that its proteinase inhibitor function might play in the egg (see

below). However, unlike most animal and plant proteinase

inhibitors [36–38], ovorubin is a high MW oligomeric protein

composed of several glycoforms and isoelectric point isoforms [27].

This large size for a single-site PI can be understood considering

that ovorubin is in fact a multifunctional perivitellin displaying

several other key functions related to the reproductive strategy of

this freshwater snail [12]. Interestingly, the majority of Kunitz-

type inhibitors are proteins with a molecular weight of about

20 kDa, which is the approximate MW of the deglycosilated

ovorubin subunits (Figure 2) [27].

Despite its large size and oligomeric nature, ovorubin and the

other members of the Kunitz-type inhibitors family share stability

properties, such as a high structural stability in a pH range of at

least 4.0–12.0 and a high thermostability [28;29;38–40]. This high

structural stability was also reflected in its PI activity. Heating

ovorubin at 100uC caused a minor loss to its trypsin inhibition

capacity. PI activity was retained after a short exposure to acidic

pH values (not shown), but was lost if exposed for 48 h at pH 2.0.

This inactivation is in agreement with the unfolding and

disassembling of the particle described for this protein at

pH,4.0 [28]. Although proteinase inhibitors have been reported

in eggs of several species, the use of SAXS and cross-linking

provided the first demonstration, to our knowledge, of the protein-

protein interaction of an egg proteinase inhibitor with a digestive

protease in a stoichiometric relationship.

The proteinase inhibitor role of ovorubin in eggs is not
antimicrobial

Many serine proteinase inhibitors have been identified in egg-

laying organisms such as arthropods, birds, and reptiles and

invariably a role in either resistance to pathogens or the protection

of critical peptides for embryo development has been ascribed to

them [4;20;23;24]. In this line of thought a role to prevent

microbial infection was assumed for ovorubin [24]. When we

tested this assumption we found that ovorubin did not display

antibacterial properties against Gram positive or Gram negative

bacteria strains, at least in the experimental conditions used. In

agreement with this lack of antimicrobial properties, a recent study

reported that eggs of P. canaliculata can be experimentally infected

Figure 6. In vitro digestibility of ovorubin analyzed by SDS-PAGGE. (A) gastric digestion and (B) duodenal digestion. Lanes 1–3: 0, 60 and
120 min of incubation, lanes 4 and 5: positive (with enzyme) and negative control (without enzyme), respectively.
doi:10.1371/journal.pone.0015059.g006

Figure 7. Effect of ovorubin supplemented diets on Wistar rats’
standard growth rate and food consumption. (A) Standard
growth rate during the first 6 days. Inset: Standard growth rate during
16 days showing rat adaptation to PI. Control (black square), treated
(red circle). Values represent the mean 61 SD (n = 12). *** p,0.001;
** p,0.01. (B) Food ingestion during a 16-day experiment.
doi:10.1371/journal.pone.0015059.g007
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by fungi [41]. Further, the absence of biochemical antimicrobial

defenses in hard-shell eggs has been reported in other gastropods

[2;16].

Ovorubin PI activity is part of egg defense against
predation

The PI functional features of ovorubin were not concurring with

the roles classically ascribed to egg proteinase inhibitors. Surveying

the literature on the roles of PIs we found that, like ovorubin, plant

storage proteins in seeds [42], tubers [43] and fruits [44] have at

the same time PI activity providing defenses against embryo

predation. Moreover, these plant storage proteins/PIs share other

biological activities with ovorubin. They are synthesized only in

organs of reproduction, propagation and dispersal; they are

accumulated in large amounts, display antioxidant properties and

exhibit activities consistent with a role in protecting embryos from

abiotic stresses [45]. However, in contrast to plant storage protein-

PI, ovorubin has several additional protective functions as

mentioned in the background section and discussed below

[12;26;27].

Plant PIs in seeds and tubers comprise a complex defense

system against insects, nematodes, birds and mammals by the

inhibition of their digestive proteases, thus preventing the

predator from digesting and incorporating nutrients from the

tissues consumed [22;46;47]. Similarly, simulated gastrointestinal

digestion showed that ovorubin withstands the harsh condition of

the digestive tract. The high stability against pH of plant PIs

is explained by the need of maintaining the native (active)

conformation within the digestive fluids of predators [42;48;49].

In this regard, ovorubin pH stability falls within the pH range of

vertebrate and invertebrate digestive tract fluids [50–53]. Thus,

ovorubin could reach the predator’s intestine in a fully active

form as it has been reported for soybean Kunitz-type and other

plant PIs fed to rats [54]. Feeding experiments provided in vivo

evidence that ovorubin was indeed capable of decreasing rat

growth rate during the first 3 days. The effect disappeared after

continuous ovorubin feeding, probably because the animal adapts

to the PI as it has been reported for several plant PI-herbivorous

interactions [46]

Taking into account that trypsin has a highly conserved

structure in animals, ovorubin inhibitory activity could be directed

against the digestive tracts of a wide variety of organisms,

including vertebrates [50;51;53] and insects [52], though this

assumption needs experimental validation. Moreover, since trypsin

catalytically activates the other gut protease zymogens, if this key

enzyme of the cascade is blocked, it would render most of the

other proteases also inactive. The action of the snail egg trypsin

inhibitor on rats may therefore involve both the inhibition of

trypsin activity (antidigestive role) and the resistance of the

inhibitor to digestion by gut enzymes (antinutritive) limiting the

predator’s capacity to digest egg nutrients.

Though plant proteinase inhibitors have long been recognized

as components in their defenses against predation, this is, to our

knowledge, the first report in the animal kingdom.

Ecological implications
Escaping predation is essential to survival for most animals and

has resulted in the evolution of an amazing diversity of predator

avoidance tactics. Among them, conspicuous coloration and

unpalatability advertise chemical antipredator defense across

many taxa. In this regard, there is a current debate regarding

the allocation costs of avoiding predators: To effectively avoid

predation, is it more advantageous to invest in increased

conspicuousness or greater noxiousness, or to allocate equally to

both signal modalities? [55]. In this study we present a novel

alternative to the debate where there is no need of such trade-off,

since noxiousness and conspicuousness are provided by the same

molecule: ovorubin. In addition, by genetically encoding both the

warning signal and the antinutritive/antidigestive defense, synthe-

sis is even more cost-effective because females do not need to

ingest toxic preys to endow eggs with chemical defenses.

Furthermore, the ‘‘leftovers’’ of these defenses are in fact storage

proteins consumed at a later time by developing embryos and

hatchlings [5]. On the whole, apple snail egg defenses appears as a

unique solution to allocation costs.

When considering the evolution of defenses, it is important to

remember that something effective against one set of predators

may be ineffectual against others. With only one reported predator

worldwide, P. canaliculata eggs are an exception. It appears that

their multifunctional perivitellins provide not only nutrients, but

also a suite of defenses composed at least of antinutritive/

antidigestive, neurotoxic and aposematic components (resumed in

Table 2). These defenses acting simultaneously, and probably

complemented by unpalatable factors, would impair the acquisi-

tion of nutrients and toxify the predator rendering P. canaliculata

eggs unusually well defended. Regarding apple snail egg laying

strategy to avoid predation it is important to note that there is

neither ornamentation of the eggshell nor the use of external

protection as oviposition on spiny vegetation or in protected areas

(Figure 1, inset).

Considering that eggs with conspicuous coloration are very

frequent across the Ampullariidae, this biochemical defense is

probably not exclusive of P. canaliculata, and might be found more

widely in other Pomacea with aerial oviposition, though more

comparative work is needed to test this hypothesis.

Plant and apple snail embryos are sitting targets to predators,

surrounded by highly nutritious compounds, and the evidence

provided here suggests that both use proteinase inhibitors for

protection. In plants, the loss of essential nutrients caused by these

defensive proteins is predicted to be one of the most ecologically

and evolutionally stable forms of defense against predation [56],

this may very well be the case with apple snail eggs.

Table 2. Components of the biochemical defense system of P. canaliculata eggs.

Perivitellin Composition Feature Role in defense Reference

Ovorubin Glyco-lipo-caroteno protein Red-coloured Aposematic (warning coloration) [12;26;27;30;66]

Ovorubin Glyco-lipo-caroteno protein Proteinase inhibitor Antinutritive/antitrypsin Present paper

PV3 Lipo-caroteno protein Orange-coloured Aposematic [12;32]

PV2 Glyco- lipoprotein Lethal to mice Neurotoxic [13;14;30;66]

doi:10.1371/journal.pone.0015059.t002
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Conclusions
This study shows that, in contrast with the classical assumption,

ovorubin would not function as an antimicrobial agent in the eggs

of P. canaliculata. Instead, we provide evidence for a different

function of this proteinase inhibitor as part of the biochemical

defenses of snail eggs against predation

Its structural and functional properties are similar to plant

storage proteins that play a dual role to nourish embryos and as a

defense against predators by limiting predator’s ability to digest

egg nutrients. This function for an egg proteinase inhibitor is to

our knowledge, the first description in the animal kingdom.

Unlike plant proteinase inhibitors, ovorubin is actively involved

in the defense of the embryos not only by rendering them

antinutritive, but also by providing them with a genetically

encoded warning signal, comprising a new level of coordination

and complementation of egg defenses. This strategy is a novel

alternative solution to energy allocation costs to avoid predation by

combining toxicity and conspicuousness in the same molecule,

opening new perspectives in the study of aposematism and

mimicry.

The information gathered here and in previous reports indicates

that the acquisition of this complex defense system including

aposematic, neurotoxic and antinutritive components provides the

eggs with a protection that predators have not managed to

overcome yet. It is to our knowledge the first study that unveils the

nature of the defenses of a prey which has virtually no predators.

Apple snail eggs provide an exceptional model to study the

evolution of biochemical and physiological adaptations, which

may have profound implications for addressing questions on

ecology and evolution heretofore not fully appreciated.

Methods

Ethics Statement
All the studies performed with rats were approved by the

Directive Board of the INIBIOLP and were carried out in

accordance with the Guide for the Care and Use of Laboratory

Animals [57]; (Instituto de Investigaciones Bioquimicas de La

Plata’s Animal Welfare Assurance No. A5647–01).

Ovorubin isolation and purification
Adults of P. canaliculata were collected in streams or ponds near

La Plata, province of Buenos Aires, Argentina. Eggs were collected

from females either raised in our laboratory or taken from the wild

between November and April (reproductive season). Embryo

development was checked in each egg mass microscopically [32],

and only egg masses having embryos developed to no more than

the morula stage were used.

Methods for ovorubin purification have been described

previously [25]. In short, egg homogenate was centrifuged

sequentially at 10,000 xg for 30 min, and then at 100,000 xg for

60 min and the supernatant stored at 270uC until analysis.

The soluble protein fraction obtained was purified in a Merck-

Hitachi high performance liquid chromatograph (HPLC) (Hitachi

Ltd., Tokyo, Japan) by a serial HPLC purification method. First,

the sample was analyzed in a Mono Q HR 10/10 (Amersham-

Pharmacia, Uppsala, Sweden) using a gradient of 0–1 M NaCl in

a 20 mM Tris buffer. The ovorubin peak was then further purified

by size exclusion chromatography (Superdex 200 HR 10/20,

Amersham-Pharmacia, Uppsala, Sweden) using an isocratic

gradient of sodium phosphate buffer 50 mM, 150 mM NaCl,

pH 7.6. Purity of the single peak obtained was checked by native

PAGE performed in a Mini-Protean III System (Bio Rad

Laboratories, Inc.) following manufacturer directions, MW

standards were obtained from GE Healthcare (Uppsala, Sweden).

Protein content was determined by the method of Bradford [58].

Internal sequences determination by mass spectrometry
Ovorubin was first deglycosilated using trifluoromethansulfonic

acid (TFMS, Sigma Chemical Co, St. Louis, USA) as described by

Edge et al.[59] and the products were analyzed by SDS-PAGE.

Peptide sequencing of tryptic digests of deglycosilated ovorubin

was carried out by quadrupole ion trap nanoelectrospray MS/MS

(ESI ToF/ToF) in an LCQ instrument (Finnigan TermoQuest,

San Jose, CA), at the Proteomic Service, National Centre of

Biotechnology, Madrid, Spain. The interpretation of MS/MS

spectra was done manually, but assisted by various software

packages, including Mascot (Matrix Science Ltd., London) and

MSProduct, a facility of the Protein Prospector package [60].

N-Terminal amino acid sequence determination
Sequencing was performed by automatic Edman degradation at

Laboratorio Nacional de Investigación y Servicios en Péptidos y

Proteı́nas (LANAIS-PRO, Universidad de Buenos Aires - CON-

ICET). The system used was an Applied Biosystems 477A

Protein/Peptide Sequencer interfaced with a 120 HPLC for

one-line phenylthiohydantoin amino acid analysis.

Trypsin inhibition assays
In order to test the effect of pH and temperature on ovorubin

trypsin inhibition, ovorubin solutions (0.5 mg/ml) at pH 2.0 and

7.0 were heated at 100uC for 40 min. After this treatment, ovorubin

preparations were incubated with a 10 fold molar excess of trypsin

for 1 h and trypsin inhibition determined [61]. In short, N-benzoil-

L-arginine ethyl ester (BAEE) is hydrolyzed by trypsin at the ester

linkage causing an increase in absorbance at 253 nm at 25uC.

Results were expressed as units of activity (the amount of enzyme

that causes an absorbance increase of 0.003 per minute at 25uC).

Interaction between ovorubin and trypsin
The interaction was analyzed by cross-linking experiments as

well as by small angle X-ray scattering (SAXS).

For the in vitro chemical cross-linking, purified ovorubin (5mg/

ml) and trypsin (5 mg/ml) (Sigma) in a total volume of 200 ml were

cross-linked for 30 min at room temperature using DSP (Pierce,

IL, USA) at final concentrations of 0.05, 0.2 and 0.8 mM in a

reaction buffer composed of 0.1M phosphate, 0.15M NaCl,

pH 7.2. Ovorubin self cross-linking was checked at 0.8 mM DSP.

Reaction was terminated by the addition of 1.0 M Tris, pH 7.5 to

a final concentration of 50 mM. The complexes were analyzed by

8–20% SDS-PAGE, transferred onto nitrocellulose membranes

and subjected to immunoblotting, as described previously [62].

For the complex detection, membranes were incubated for 2 h

with an anti-trypsin polyclonal antibody (Santa Cruz Biotecnol-

ogy, Inc.) (diluted 1:5,000) and an anti-ovorubin polyclonal

antibody in 10 mM Tris-HCl, pH 7.4, 0.15 M NaCl. Specific

antigens were detected by goat anti-rabbit IgG horseradish

peroxidase conjugate (Bio-Rad Laboratories) diluted (1:3,000).

Immunoreactivity was visualized by electrochemiluminescence.

The interaction between ovorubin and trypsin was also studied

by SAXS experiments. Complexes obtained by chemical cross-

linking were purified by size exclusion chromatography and purity

checked by native electrophoresis, as described in the purification

section. Experiments were performed at the D02A-SAXS2 line

operating in the Laboratório Nacional de Luz Sı́ncrotron,

Campinas (SP, Brazil). The scattering pattern was detected using

a MARCCD bidimensional charge-coupled device assisted by
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FIT2D v12.012 software [63]. The experiments were performed

using a wavelength of 1.448 Å for the incident X-ray beam to

minimize carbon absorption. The distance between the sample and

the detector was kept at 1044 mm, allowing a Q-range between

0.012 and 0.25 Å21 (nominal Dmax #260 Å). The temperature was

controlled using a circulating water bath, and kept at 25uC. Each

individual run was corrected for sample absorption, photon flux,

buffer scattering, and detector homogeneity. At least three

independent curves were averaged for each single experiment.

SAXS experiments in a protein range of 2.4–0.20 mg/mL were

performed to rule out a concentration effect in the data. The size of

ovorubin-trypsin complex was determined using the gyration radii

(RG) obtained by analysis of SAXS patterns as Guinier plots

(ln(I) = ln(I0)2RGQ2/3, Q = 4psin(h)/l, RGQ#1).

Antimicrobial Activity Assays
The antimicrobial activity of ovorubin was tested on Gram (+)

(E. coli JM109 and S. typhimurium) and Gram (-) strains (B. subtilis

168 and L. casei), both in solid and liquid media. For all the tests

the microorganisms were grown overnight to mid-logarithmic

phase in Luria-Bertani broth (LB) for E. coli, S. typhimurium and B.

subtilis and de Man, Rogosa and Sharpe (MRS) broth for L. casei.

For the solid medium assay, 50 ml of each culture were spread onto

LB/agar or RMS/agar plates, and 20 min later 10 ml drops

containing 20 mg, 10 mg and 2 mg of ovorubin were dispensed on

each plate; sterile phosphate buffer was used as negative control.

The plates were incubated for 18 h at 37uC and the formation of

inhibition rings was observed. The liquid media assays were

performed using one E. coli (JM109) and B. subtilis (168) strains,

grown as indicated above. Aliquots of culture were diluted with

fresh medium in glass test tubes to obtain an OD600 = 0.19, and

supplemented with 100, 20, 10, or 2 mg of ovorubin, respectively;

sterile buffer was used as control. The tubes were then incubated

at 37uC with vigorous shaking and changes in OD600 recorded.

In vitro ovorubin digestibility
The simulated gastrointestinal digestion of ovorubin was

performed in vitro following the method previously described by

Moreno [64] with slight modifications. Briefly, gastric digestion

was performed at 37uC for 120 min at pH 2.5 in the presence of

porcine pepsin (Sigma, Dorset, UK; product No. P 6887) at a ratio

of enzyme: substrate 1:20 (w/w). Aliquots were taken at 0, 60 and

120 min and analyzed by SDS-PAGE as described above. The

digestion was stopped by raising the pH to 7.5 using 50 mM

phosphate buffer. For in vitro duodenal digestion the 120 min

gastric digest was used as starting material. The duodenal digestion

was performed using trypsin from bovine pancreas (Sigma,

product No. T 9935) at a ratio of enzyme: substrate 1:400 (w/

w), at 37uC taking aliquotes at 0, 60 and 120 min for SDS-PAGE

analysis. Albumin was used as positive (with enzyme) and negative

control (without enzyme) in both gastric and duodenal digestion.

Effect of ovorubin supplemented diet on rat growth
Male Wistar rats 6 weeks old (weighing approximately 180 g at

the start of the experiments) were separated into two groups

(control and treated) of 12 animals each and fed ad libitum with a

commercial diet for 16 days. The treated group was orally

administered 100 ml of purified ovorubin (4 mg/ml) in 50mM

phosphate buffer pH 7.4 on a daily basis, while the control group

received 100 ml of buffer. Food consumption as well as body

weight was determined daily for each animal. The standard

growth rate (SGR) was calculated as follows:

SGR~ Wto=Wtð Þ1=t
{1

� �
|100

Where Wto is the initial weight, Wt is the final weight, and t is

the time in days [65].

The experiment was replicated twice. Data were analyzed by

one-way ANOVA using Instat, v. 2.0 (GraphPad, San Diego, CA)

and considered significant at a level of 5%.
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