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Abstract.Fractals are self-similar structures that exist widely in nature. We are 

aiming the current work to prove that social networks, although not a naturally 

generated structure but one created by humans within the World Wide Web, show a 

fractal behavior as well and as such, will experience a self-similar kind of evolution. 

In the present work we attempt to find through the study of fractal behavior, how 

the introduction of a new element in the social network will impact in the existing 

network structure and in the network growth. Also our main interest is into how the 

new node will start interacting with the existing communities in order to eventually 

build its own. 

Keywords: Social Networks, Fractals, fractal dimension, box dimension, adjacency 

matrix, fractal social models and algorithms. 

1 Introduction 

The main focus of this work is the idea of social networks as fractals and how to 

explore and elaborate from there in order to build new functionality useful to the 

study of their behavior over time. If social networks behave like fractals then, the 

existing network random generators would not apply to them as their randomness lose 

their meaning and we will need specific generators with proper parameters more 

suitable to be applied to fractal behavior. 

We show how fractal nature applies to social network structures and how their 

evolution can eventually be predicted by modeling upon them. To do so, our starting 

point is to reviewthe basics about networks in general and their parameters, measures, 

types and the existing models used to generate network structures, to later focus on 

social networks in particular. We also review fractal theory and its applications to be 

able to merge the two concepts together while working on the models. 

As a motivation, we noticed that current models for networks are based on 

randomness in a general way and sometimes such models donot take into account the 

nature of the network. In that sense, we consider that social interaction has a strong 

relevance that should be taken into account when studying models that will be used in 

the future for social networks. We base the present work on the basic structure of the 

social network and escalate from there in order to formulate the prediction as 

precisely as possible thinking more in the individual components and how their 

behavior will imprint its pattern in the whole network. 

Our main contribution is a model and algorithms that allow us to show that 

evolution of a social network obeys fractal rules. 
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After reviewing previous work on this matter we have come with the ones more 

relevant to our line of thought which are detailed below: 

Leskovec (2008) studied network evolution, network cascades and large data while 

analyzing large social networks as a whole in order to formalize and try to predict 

future behavior and structure. His idea was very nicely worked out by a three by three 

focus on observations, models and algorithms on network evolution, cascades and 

large data. He worked mostly on the network itself, but not from an individual node 

point of view.  

Song et al. (2005) analyzed several real networks and found that they consist of 

self-repeating patterns on all length scales. 

In the work by Faloustos et al. (2006),the authors also investigated network 

structures and expanded about the graph generators, but although they mentioned 

power laws they didn’t elaborate on the possibility of using fractal similarity to build 

the network synergy expressed by the links between nodes. 

Erdös, P., Renyi, A.(1959) set the base for future contributors to the area by 

defining random network generation and probability of connections between nodes 

among other definitions. 

We use a different approach from the previous work mentioned above as our main 

focus is the idea brought by Benoit Mandelbrot (1982). The author defined fractal 

structures and the fact that they were present in nature in several levels of complexity; 

he also mentioned that the interaction between systems can be seen as fractals. This 

is, in fact, the driver of our present work. 

The remainder of this article is organized as follows. In Section2 we provide 

background information on the main topics of this work. In Section 3 we present our 

Fractal Social Network Model and our proposed algorithms. Some empirical results 

are shown and discussed in Section 4. Finally, we conclude our work in Section 5 

2 Background information 

Social networks. 

Actual social networks are more related to collections of social ties among friends, 

like the ones based on the internet as Facebook, Twitter, Instagram, Tumblr, Flickr 

and many others; although there are other networks focused on businesses or 

professional relationships like LinkedIn, WordPress, Yelp, etc. These examples are all 

among online networks which, because of their nature, can be massive and reach 

farther boundaries than those based on people direct interactions, which can be 

geographically based, although both kinds are good examples of social networks 

where the same theory can be applied. 

Social interaction have grown steadily in complexity over the course of human 

history, due to technologicaladvances facilitating distant travel, global 

communication, and digital interaction as mentioned by Kadushin (2012).  

These networks can be seen as graphs with nodes (the individuals participating in 

the network) connected by links as shown in Figure 1. 
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Understanding any one piece of information in this environment depends on 

understandingthe way it is endorsed by, and refers to, other pieces of information 

within a large network oflinks. 

Fig.1.A representation of a social network based on email communications 
(Image from http://www.personal.umich.edu/ladamic/img/hplabsemailhierarchy.jpg) 

 

We represent social networks as graphs because a graph is a way of specifying 

relationships among a collectionof items. A graph consists of a set of objects, called 

nodes, with certain pairs of theseobjects connected by links called edges. 

Graphs are defined as directed if they consist of a set of nodes together with a set 

of directed edges each directed edge is a link from one node to another, with the 

direction being important. Directed graphs are generally drawn as in with edges 

represented by arrows. When we want to emphasize that a graph is not directed, we 

can refer to it as an undirected graph. 

Random graph algorithms 

From the initial work done by Erdös and Renyi(1959) to the present, several 

algorithms have been developed in order to generate social network graphs (or graphs 

in general) and study their evolution over different epochs (a way to call the 

parameter to measure passing time). The simplest algorithm was one of complete 

randomness where the probability of two nodes connecting (or contacting) each other 

was the same for every pair of nodes belonging to the network. 

Of course, this approach is too simple and no real life network will behave that 

way, more likely the nodes involved within the network will connect with other nodes 

based on preferences, similarities, recommendations from others but they hardly will 

connect in a random fashion. 

There are also other kinds of social networks like the ones based onsmall-world 

phenomenon in which the applied logic states that any two individuals in the network 

are likely to be connected through a short sequence of intermediate acquaintances. 

This has been proved to be truth by several previous investigations being the 

oneconducted by Milgram(1967) the most popular, but we also have reviewed the 

work from Mathias and Gopal (2000), as theyall reveal that often we meet a stranger 

and discover that we have an acquaintance in common. Recent work has suggested 
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that the phenomenon is also existent in networks arising in nature and technology, and 

a fundamental ingredient in the structural evolution of the World Wide Web. We 

explore if the “fractal” network as we call it, exhibits also a sort of small-world 

phenomenon in its behavior. 

What are fractals? 

First of all, and before getting to the point of a definition of a fractal let’s take a 

moment to imagine what we currently denote as chaos, or chaotic behaviorusually 

related to some unpredicted pattern that cannot be formalized in any way,as studied 

by Shroeder (1991),. The difficulty of working with such behavior is, of course, the 

inability to adjust it to any existent law that could rule it and help to the job at hand. 

Fractals are self-similarity structures that can explain this behavior and bring 

certainty and predictability whereas there was chaos and misinterpretation beforeThe 

trick is to understand the structure itself and how it evolves and grows from the basic 

initial unit. 

Fractals are useful in modeling and explaining natural complex patterns that can’t 

be explained by Euclidean geometry. In these irregular and fragmented patterns, we 

can see how nature expresses itself in leaves, mountains, turbulences and also inside 

of us in our blood vessels or pulmonary systems. They are all examples of shapes that 

can be built by scaling up a base structure over and over, which implies a certain 

degree of irregularity, but in an unusual regular way at all scales.Barnsley (1988) in 

his work compiled different fractals existent in nature like forests, mountains and 

landscapes in different parts of the world, and also reviewed the theory behind their 

existence. 

To understand that, we need to find the fractal dimension and the basic structure 

that the fractal is built upon and later grow it from there. 

Defining the fractal dimension. 

Fractal Dimension. 

The concept of fractals started to take form when Benoit Mandelbrot vocalized his 

idea of a continuous escalating structure found in nature in different organic and 

inorganic systems. 

The fractal dimension is a measure that will indicate the relationship between the 

size of the individual smallest structure that comprises the fractal and the total size. 

The formula is as: 

 D=log N(r)/log (1/r) (1) 

Where  

D: Fractal (or Hausdorff) Dimension 

N: number of base parts 

r: similarity ratio 

There are a few examples that can help us illustrate this definition in a way that 

clearly enlightens our knowledge and understanding of it. One example is the Koch 
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coastline shown in Figure 2.Every line the triangle is made of is added another pair of 

lines in the middle and the pattern is repeated over and over in every side finally 

getting the Koch triangle  in black below the main structure. 

 

Fig.2. Triad Koch coastline Fractal Dimension 

 

Box Dimension. 

There is another way to measure the fractal dimension and it is by sizing the 

smallest squared box that will include the base structure and counting the amount of 

those boxes that fit in the whole fractal structure. The number of boxes is N(r) where r 

is the size of the side of the square used as box dimension. Then we can calculate the 

fractal dimension using (1). 

Multi-fractal Dimension. 

As with the normal fractals defined above, there exists also a category of fractals 

that donot have one only fractal dimension and because of their nature, since they 

were built from, say, bricks of different sizes, they can be called multi-fractals. 

Hence, the trick with multi-fractals is to identify the base “bricks” they are made 

of. Examples of multi-fractal structures are the diffusion-limited aggregations (DLA) 

like the ones generated by the colloids where the structure grows one molecule at a 

time. An image of a multi-fractal is shown below in Figure 3. 

Fig.3.An example  showing a multi-fractal  
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Are all social networks fractals? 

After reviewing the information provided above, we can start to think that social 

networks seem to behave like multi-fractal structures. We cannot at this point of our 

investigation ascertain which would be the fractal dimension of them and more 

experimentation is needed for us to be able to provide such metrics. 

For now, let’s just hypothesize about how the behavior and the way they get 

generated seem to be compliant with that of multi-fractals. 

3 The Fractal social network model  

3.1 The model. 

First of all, it has been observed during the initial investigations that the 

introduction of a new node v in the network is always through the knowledge of at 

least one pre-existent node w and as that happens, even if the new node has been 

introduced into the whole network, only a relative small region is available to it. 

Nobody expects the newcomer to start interacting with every community in the 

network right away, and for that interaction to start, time is of essence. We call that 

amount of time T0the “introduction time” which is a grace period allowed to the new 

node before it gets the first contact with other nodes existent in a network and that is 

different than its sponsor in the immediate network (or community). The introduction 

time depends on the size of the community where node w exists, and of course the ties 

between v and w which are unknown and different to every case, so this is another 

parameter to take into account at the time of the on-boarding of the new node. 

Once node v starts its interaction with the nodes in w’s community, there will be 

only a certain amount of time T1 in which it will start to reach out to nodes belonging 

to the neighborhood in a way that will be proportional to the amount of connections 

its newly acquired community has with the outside communities. This means that, if 

node w community C0 has connections with three other communities C1, C2 and C3 

but the connectedness between them is, say n1, n2 and n3 in which n1>> n2>> n3 then 

the interactions between v and the nodes in said communities will start before with C1 

than with C2 or C3. 

Now, the next item to take into consideration is the kind of node v will become 

within time, meaning if it will be a popular node or the opposite, more like a shy 

node. That will depend on the willingness it has to share and activate new connections 

with the rest of the network. In other words, if v is already a popular and well known 

individual when it gets in the network, there is a great possibility that it will “attract” 

the attention of the other nodes and they will reach out to it to connect and become 

popular as well. But if v is an individual that got in the network for a specific task and 

nothing else, it is improbable that its connections will increase beyond what is 

expected from it and so its degree of connectedness will be very small. 

Fromthe adjacency matrix and the fractal dimension we get the minimum structure 

to be replicated in order to get what becomes the node evolution and future 
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participation in the network. This can be done in several iterations and with different 

nodes in order to get the final base structures of the network. 

We are talking about base structures because we consider the social network to be 

a multi-fractal and as such, it is built upon several box dimensions. We describe in 

detail this procedure in the next subsection. 

There is a pre-condition to be taken into account in this algorithm, which is that a 

network should exist prior to the application of this algorithm. This way, the new 

incoming nodes can have the base layers of the existent network and they canreplicate 

similar pre-existent structures as theyactivate their new connections.This is key to 

ensure self-similarity patterns. 

3.2 The fractal connection algorithms 

We present the GetBox algorithm which will get the box dimension specific to a node 

in a certain community. It finds all the nodes the given node is likely to connect in 

order to keep the self-similarity structure in the network and its current connections. 

Algorithm:GetBox(N,Adj[N,N],v,Cm[N]) 

Returns Bv list with nodes for potential connections 

For each v in Adj[N,N] 

Oudg[v]:=outdegreet(v,Cm(v))--the outdegree of v within its 

communities of interest 

End For 

Freq:=Frequency(Oudg(v))  --we calculate the frequency 

distribution of all nodes’ outdegreeconnections 

Freq=Rnd(Fr)   --we select randomly one of the existent 

Frequencies in the network to be the box dimension for i at t+dt 

Create Empty List(Bv) 

i=v 

for each j in Adjt[N,N] 

If Adjt[i,j]=1or j in Cm[i] and Cardinality(Bv)<Freq--the 

frequency is a measure of the box dimension, since there are several 

boxes we use one of the available options randomly 

Then Add j to B
v  --

B
v
will contain all the nodes v should be 

connected to in t+dt 

End For 

End. 
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The ApplyBox algorithm will use the Box dimension obtained by the GetBox 

algorithm in order to apply those new connections to the given node (and keep the 

existent ones) 

Algorithm:ApplyBox(v,Adjt[N,N],wf,Bv) 

We assume v has been in the network since time t 

Begin 

i:=v    --we search in row corresponding to v node 

For each jin Adjt+dt[N,N] 

If Adjt+dt[i,j]=0 

ifj in Bv and wf(j)>0.6  --the higher the wf the more 

willing to connect and the longer will be Bv list 

Adjt+dt[i,j]=1 

End For 

End. 

 

List of variables 

Willingness Factor: wf (used to distinguish nodes with interest of acquiring new 

connections from others not that interested in any interaction) 

Size of the network: N  (number of nodes in the network) 

Introduction time: t (the time at which the new node is included in the network) 

Adjacency matrix: Adj [N,N] (a matrix which describes a graph by representing 

which vertices are adjacent to which other vertices) 

Cm array: community [N] (we don’t know at first how many communities exist, at 

a maximum it can be the same as the amount of nodes) 

Box dimension list: Bv(list with nodes that will likely get connected to the new 

node in order to preserve self-similarity in the network) 

4 Experimentation: A simple example and findings 

To experiment our theory we have a Facebook network of 484 nodes and 33272 links 

where we are able to see interactions between two timeframes.  

We collected the network and classified the nodes with more activity, the new 

nodes and the nodes that left the network between timeframes t and t+dt. The network 

is shown below in figure 4. 

Below are listed the key findings during our experimentation: 

• The willingness is a very important parameter to be considered in the existent 

nodes as well as in the newcomers. It has relevance in the connections growth 

because if the nodes are not interested in connecting with other existent nodes 
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they will not attempt any new interactions, even if they have the best 

opportunities by being linked to the most popular nodes and communities.  

• The frequency distribution of outbound connections (we are for now interested 

in the outbound) seems to be related to the different fractal dimensions of the 

boxes. 

• There were several nodes observed at t with sponsors among the nodes with 

more connectedness and they still didn’t increase their degree of connection at 

t+dt. We believe that these nodes weren’t interested in new connections. 

• One of the nodes with highest degree of connections didn’t increase its 

connectedness in the new timeframe which contradicts the “rich get richer” 

principle. This behavior can also be explained by the willingness factor in a 

way of saying that there were no interesting things out there for this node to 

grow to. 

• There are also some nodes that shrunk during the timeframe considered in our 

study, which is not a surprise as due to the network dynamics it’s expected a 

certain level of change in both ways for the nodes degree of connections. This 

fact is still worth mentioned and something to be investigated and expanded in 

the future as well. 

• The nodes with more growth grew beyond their community of origin and we 

can infer that they are then more mature in a way that they can reach and 

interact with new communities. It is expected that in the future they will 

continue to grow in this same way. The new communities were known from 

the most popular communities in the list of the pre-existent linked nodes. This 

is exactly what we are taking into consideration while developing theGetBox 

and ApplyBox algorithms. 

Fig. 4. The network used in the experimentation phase (notice the new small  

community at the top left of the graph) 
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5 Conclusions and future work 

This is a work in progress and in the following paragraphs we are presenting the first 

results of this research. 

We have come to understand from our work during the experimentation phase and the 

theoretical background that some of the interactions in social networks can’t be taken 

as random and more so, the people making the present social networks act some times 

in ways that seem to be mimicking other people behavior. Hence our self-similarity 

approach seems to be more suitable for them than randomness. 

We have also uncovered the existence of several parameters to be taken into 

account when modeling social network. 

We are leaving for future work and enhancements of the model, the task of testingthe 

algorithms presented in this work in a more global social network, also the 

formalization of rules to prevent starvation of network components in order to ensure 

that all the components are added to the fractal structure while the evolution happens 

as well as how we explain the dynamics of the shrinking patterns in the nodes 

connections. 
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