
Multi-criteria Argumentation-Based Decision
Making within a BDI Agent

Cecilia Sosa Toranzo, Marcelo Errecalde, and Edgardo Ferretti

Laboratorio de Investigación y Desarrollo en Inteligencia Computacional
Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis - Argentina

e-mails:{csosatoranzo, merreca, ferretti}@unsl.edu.ar

Abstract. The BDI model, as a practical reasoning architecture aims
at making decisions about what to do based on cognitives notions as
beliefs, desires and intentions. However, during the decision making pro-
cess, BDI agents also have to make background decisions like choosing
what intention to achieve next from a set of possibly conflicting desires;
which plan to execute from among the plans that satisfy a given inten-
tion; and whether is necessary or not to reconsider current intentions.
With this aim, in this work, we present an abstract framework which
integrates a Possibilistic Defeasible Logic Programming [1] approach to
decision making in the inner decision processes within BDI agents.

Keywords: Agreement Technologies, Multi-criteria Decision Making,
BDI, Argumentation, Possibilistic Defeasible Logic Programming

1 Introduction

The BDI model is a particular decision making model based on cognitive notions,
namely: Belief, Desires and Intentions. This model is very relevant because of
its similarity with human reasoning, the theoretical underpinning it has [2, 3],
as well as its applicability to solve real-world problems [4, 5].

BDI architecture is inspired from Bratman’s work on practical reasoning [2].
Practical reasoning (PR) aims at deciding what to do in a given situation and
thus is directed towards action. However, besides deciding which action perform
next, BDI agents also have to decide: (a) from a set of possibly conflicting desires
which intention to achieve, (b) which plan execute from among the plans that
satisfy the chosen intention, and (c) whether is necessary or not to reconsider
current intentions. That is, BDI model also implies making background decisions.

Some of the issues mentioned above have been tackled in previous works.
Casali et al. [6] present a general framework to define graded BDI agent archi-
tectures, where degrees in BDI models are used to set different levels of pref-
erences or rejections on desires and preferences at intentions level to model the
cost/benefit trade-off of reaching a goal. In [7], ideas from argumentation are
combined with desire and planning rules, to give a formal account on how con-
sistent sets of intentions can be obtained from a conflicting set of desires. A
general framework for practical reasoning based on an abstract argumentative

31



2 Multi-criteria Argumentation-Based Decision Making within a BDI Agent

machinery is presented in [8]. To the best of our knowledge, at present, there are
no proposals which clearly formulate how these choices are made in BDI agent’s
inner decision processes. In this way, the main goal of this paper aims at incor-
porating in a generic way, multi-criteria decision making in BDI agent’s inner
decision processes. In particular, an argumentation-based approach to multi-
criteria decision making is used [9]. In this respect, some proposals exist [10, 11],
aiming at incorporating argumentation-based approaches within BDI agents.

The rest of the paper is organized as follows. Sect. 2 briefly introduces the
BDI model to provide the background concepts underlying the proposed abstract
framework (Sect. 3), which integrates multi-criteria argumentation-based deci-
sion making in the inner decision processes of the BDI architecture. Then, this
framework is exemplified in the Tileworld domain (Sect. 4). Finally, Sect. 5
draws the conclusions and briefly describes possible future work.

2 BDI Model

Belief-Desires-Intentions models (BDI) have been inspired from the philosophi-
cal tradition on understanding practical reasoning and were originally proposed
by Bratman et al. [2]. This kind of reasoning can be conceived as the process
of deciding what action perform next to accomplish a certain goal. Practical
reasoning involves two important processes, namely: deciding what states of the
world to achieve and how to do it. The first process is known as deliberation
and its result is a set of intentions. The second process, so-called means-ends
reasoning involves generating actions sequences to achieve intentions.

The mental attitudes of a BDI agent on its beliefs, desires and intentions, rep-
resent its informational state, motivational state and decision state, respectively.
The BDI architecture defines its cognitive notions as follows:

– Beliefs: Partial knowledge the agent has about the world.
– Desires: The states of the world that the agent would ideally like to achieve.
– Intentions: Desires (states of the world) that the agent has committed

(dedicated resources) to achieve.

These cognitive notions are implemented as data structures in the BDI archi-
tecture, which also has an interpreter in charge of manipulating them to select
the most appropriate actions to be performed by the agent. This interpreter per-
forms the deliberation and means-ends reasoning processes aforementioned, and
its simpler version is shown in Algorithm 1, as proposed in [12].

A usual problem in designing practical reasoning agents lies in getting a good
balance among deliberation, means-ends reasoning and actions execution. It is
clear that, in some point of time, an agent should drop some of its intentions, be-
cause they were already achieved, they are impossible to be achieved or makes no
sense to do it, etc. Likewise, when opportunities arise to achieve new desires, the
agent should generate intentions aiming at accomplishing them. Thus, as men-
tioned above it is important for an agent to reconsider its intentions. However,
intentions reconsideration is costly in terms of time and computational resources.

32



Multi-criteria Argumentation-Based Decision Making within a BDI Agent 3

Algorithm 1 Agent control loop (version 1)

1: while true do
2: observe the world;
3: update internal world model;
4: deliberate about what intention to achieve next;
5: use means-ends reasoning to get a plan for the intention;
6: execute the plan;
7: end while

Moreover, it can happen that some of the actions from the executing plan might
fail in achieving the intended results, hence replanning capabilities should be
provided. Both replanning and intentions reconsideration (if performed) must
be carried out during the execution phase of the chosen actions.

3 Integration Framework

As mentioned above, the BDI model uses the cognitive notions of beliefs, de-
sires and intentions to decide what to do, but also, inner decisions exist re-
lated to these high-level decisions which, in our view, have not been clearly de-
tailed in previous works. That is why, in this section we propose an abstract
framework which integrates multi-criteria argumentation-based decision making
to solve inner decision making in a BDI agent.

In Sect. 2 it was referred that a BDI agent comprises two fundamental pro-
cesses, namely, deliberation and means-ends reasoning, which are followed by a
plan execution stage. Within these processes (deliberation, means-ends reasoning
and execution) the following inner decisions can be made:

– Choice among conflicting desires: deliberation requires to commit to
an intention from among conflicting desires.

– Choice between plans: during means-ends reasoning it might be neces-
sary to choose from among plans which achieve the same intention, that is,
deciding which action perform to achieve a particular intention.

– Intentions reconsideration: during the execution process (of only one
plan or a mega-plan involving all the plans the agent has committed to)
decisions should be made with respect to whether reconsider or not cur-
rent intentions based on the dynamics of the environment, and if so, if new
intentions should be adopted or current intentions should be dropped.

All in all, our BDI architecture will incorporate an Inner Decision Making
Component (IDMC) which will make inner decisions with respect to the differ-
ent alternatives and the multiple criteria provided to the agent. In our proposal,
to select the best alternative from a given set of alternatives, the agent will
have the select(·, ·, ·) function that will return the choice made by IDMC. This
function will be used (within this framework) in all the inner decision processes
a BDI agent has. It will receive as input parameters: (1) a set B of candidate

33



4 Multi-criteria Argumentation-Based Decision Making within a BDI Agent

alternatives, (2) the set C containing the criteria that will be used to compare
alternatives among each other, and (3) the preferences P, composed by a pref-
erence order among criteria and a preference order among the possible values
an alternative can take for each particular criterion. To select an alternative,
this function implements the argumentation-based decision framework proposed
in [9]. Therefore, next section briefly describes this framework and a pseudo-code
of the select(·, ·, ·) function is presented.

3.1 The Argumentation-Based Decision Framework

The argumentation-based decision framework described in this section is for-
mally related to the choice-based approach (CBA) to decision making, as stated
in [9]. The CBA takes as primitive object the choice behaviour of the individual,
which is represented by means of a choice structure (B, C(·)) consisting of two
elements:

– B is a set of subsets of X (the set containing all the available alternatives to
the decision maker). Each set B ∈ B, represents a set of alternatives (or
choice experiment) that can be conceivably posed to the decision maker.

– C(·) is a choice rule which basically assigns to each set of alternatives B ∈ B
a non-empty set that represents the alternatives that the decision maker
might choose when presented the alternatives in B. (C(B) ⊆ B for every
B ∈ B). When C(B) contains a single element, this element represents the
individual’s choice among the alternatives in B. The set C(B) might, how-
ever, contain more than one element and in this case they would represent
the acceptable alternatives in B for the decision maker.

This decision framework is conceptually composed by three components. The
first component is set X. The second component, the epistemic component, rep-
resents the agent’s knowledge and preferences, and the third one is the decision
component. Formally, the argumentation-based decision framework is a triple
⟨X,K, Γ ⟩ where:

– X is the set of all the possible alternatives that can be presented to the
decision maker.

– K is the epistemic component of the decision maker (see Definition 4.5
from [9]). Formally, K is a 5-tuple, K = ⟨C, >C , ACC,Π,∆⟩ where:
* C is a set of comparison literals representing the preference criteria that

the decision maker will use to compare the elements in X. Let C =
{C1, . . . , Cn} (n > 0) be the set of preference criteria that will be used
to compare the elements in X, each criterion Ci has associated a com-
parision literal ci(·, ·) that states the preference between two alternatives
of X, based on their attribute values. Then, C= {c1(·, ·), . . . , cn(·, ·)}.

* >C is a strict total order over the elements of C. (Definition 4.2 from [9]).
* ACC is a user-specified aggregation function that aggregate necessity

degrees. ACC must satisfy specific properties (see [9]) and function f+
Φ (·)

is defined from it. Here we will use:

34



Multi-criteria Argumentation-Based Decision Making within a BDI Agent 5

ACC(α1, ..., αn) = [1−
n∏

i=1

(1− αi)] + kmax(α1, ..., αn)

n∏
i=1

(1− αi) (1)

with k ∈ (0, 1), which has been shown in [9] to satisfy the desired prop-
erties to apply the framework.

* Π is a set of certain clauses.
* ∆ is a set of uncertain clauses.

P (Π,∆) is a conformant P-DeLP program (see Definition 4.3 from [9]).
– Γ is the decision component. It is a set with two decision rules:1

Γ =

{
DR1 : {W} B⇐ {bt(W,Y )}, not{bt(Z,W )}
DR2 : {W,Y } B⇐ {sp(W,Y )}, not{bt(Z,W )}

}
with B ⊆ X.

Rule DR1 states that an alternative W ∈ B will be chosen, if W is better
than another alternative Y and there is not a better alternative Z than W .
Besides, rule DR2 says that two alternatives W , Y ∈ B with the same
properties will be chosen if there is not a better alternative Z than W and Y .

Let B ∈ B be a set of alternatives posed to the agent and ⟨X,K, Γ ⟩ be
the agent’s decision framework. Let {Di

B⇐ Pi, not Ti}i=1...n ⊆ Γ be the set of
applicable decision rules with respect to K. The set of acceptable alternatives of
the agent will be ΩB =

∪n
i=1 Di.

In Algorithm 2, a general algorithm which implements a choice rule C(·) is
presented. As it can be observed function µ has as input parameter a choice
experiment (B). A choice experiment is a set containing at least one element,
hence, this function returns failure if receives as argument an empty set (step 1).
If the choice experiment has one element, then it is thus returned as solution
since there is only one trivial choice to be made (step 2). Then, if a non-empty
set was received as parameter, the resulting set sol is initialized (step 3) and a
local copy (ch) of the original choice experiment is made (step 4). The computing
process to determine the set of acceptable alternatives ends when ch becomes
empty (step 6), thus exiting the main loop (step 5) returning the computed set
of acceptable alternatives sol (step 13). While there are alternatives in ch, an
alternative is removed from this set and is assigned to h (step 7). If there is not a
better alternative than h in the choice experiment (step 9) and h is better than
any other alternative in the choice experiment (step 8), then h is added to the
resulting set sol (step 10), otherwise is discarded (step 9). Besides, if h is not
better than any other alternative in the choice experiment (step 8), but there
is no other alternative (let us denoted it as h′) in the choice experiment better
than h (step 11), then it holds that h and h′ have the same properties, and they
are the best, therefore h is added to the resulting set sol (step 12). It is worth
mentioning, that in turn (when selected in step 7) h′ will also be added to sol.

Based on the above-mentioned framework, function select(·, ·, ·) executes the
steps shown in Algorithm 3 to choose from among the alternatives in B.

1 Due to space constraints, the literals better(·, ·) and same prop(·, ·) in [9], will be
referred in this paper as bt(·, ·) and sp(·, ·), respectively.

35



6 Multi-criteria Argumentation-Based Decision Making within a BDI Agent

Algorithm 2 Compute Acceptable Alternatives

function µ(choice-experiment) returns non-empty-set-of-alternatives, or failure
1: if Empty?(choice-experiment) then return failure
2: if Singleton?(choice-experiment) then return choice-experiment
3: sol← ∅
4: ch← choice-experiment
5: loop do
6: if Empty?(ch) then exit
7: h← Remove-Element(ch)
8: if Is-h-Better-Than-Any-Other?(choice-experiment) then
9: if Any-Better-Than-h?(choice-experiment) then discard h
10: else Add-Element(sol,h)
else
11: if Any-Better-Than-h?(choice-experiment) then discard h
12: else Add-Element(sol,h)
13: return sol

Algorithm 3 Computation for alternatives selection

function select(alternatives B, criteria C, preferences P) returns non-empty-set-of-
alternatives, or failure

1: Define the comparison literal for each Ci ∈ C
2: Define >C according to the preferences of each criterion in P
3: Build a conformant program P (Π,∆) (as defined in [9])
4: return Evaluation of function µ(B)

4 Example: The Tileworld

The Tileworld experimental domain [13] is a grid environment containing
agents, tiles, holes and obstacles. The agent’s objective consists of scoring as
many points as possible by pushing the tiles into the holes to fill them in. The
agent is able to move up, down, left, or right, one cell at a time, having as only
restriction that obstacles must be avoided. This environment is dynamic, so that
holes and tiles may randomly appear and disappear in accordance to a series of
world parameters, which can be varied by the experimenter.

A BDI agent for the Tileworld can be implemented as follows: the agent’s
beliefs consist of its perceptions about the objects locations, as well as the score
and time-out time for all the holes. Desires are the holes to be filled in, and the
current intention (IH) aims at filling a particular hole right now. The means-end
reasoner basically is a special-purpose route planner, which guides the agent to
a particular tile that must be pushed into the hole to be filled in. Figure 1 shows
a hypothetical scene in which the framework proposed in Sect. 3 will be used.

The agent gets its perception and updates its beliefs, in order to deliberate
about what intention to achieve next. During deliberation it gets its reachable
holes (options), i.e., those which are not surrounded by obstacles and their time-
out times are higher or equal to the distances from the agent to the holes. Then,

36



Multi-criteria Argumentation-Based Decision Making within a BDI Agent 7

filtering stage takes place where one of the reachable holes is selected and be-
comes IH. In this case, all options are conflicting each other, since it is not pos-
sible to fill in more than one hole at a time. Hence, all reachable holes will serve
as input to selec(·, ·, ·) function. In this way, B = {h3, h4, h5}, C = {C1 = score,
C2 = timeout, C3 = distAgent, C4 = tileAvail (distance to the nearest tile)}
and >C= {(distAgent, timeout), (distAgent, tileAvail), (timeout, tileAvail),
(score, distAgent), (score, timeout), (score, tileAvail)}.

Figure 2 presents preference for each criterion. Table 1 shows the alternatives
and their respective values for each criterion. Likewise, following the approach
from [9], a conformant P-DeLP program would be:

∆ =



(score(h4, h3), 0.92) (bt(W,Y )← score(W,Y ), 0.99)
(score(h4, h5), 0.83) (∼ bt(W,Y )← score(Y,W ), 0.99)
(score(h5, h3), 0.83) (bt(W,Y )← distAgent(W,Y ), 0.74)
(distAgent(h3, h5), 0.62) (∼ bt(W,Y )← distAgent(Y,W ), 0.74)
(distAgent(h3, h4), 0.67) (bt(W,Y )← timeout(W,Y ), 0.49)
(distAgent(h5, h4), 0.54) (∼ bt(W,Y )← timeout(Y,W ), 0.49)
(timeout(h5, h3), 0.37) (bt(W,Y )← tileAvail(W,Y ), 0.24)
(timeout(h5, h4), 0.38) (∼ bt(W,Y )← tileAvail(Y,W ), 0.24)
(timeout(h3, h4), 0.26)
(tileAvail(h3, h5), 0.08)
(tileAvail(h4, h5), 0.08)


Π =

{
(∼ bt(W,Y )← sp(W,Y ), 1) (∼ bt(W,Y )← sp(Y,W ), 1)

}
In the particular program presented above, the necessity degrees of the

clauses belonging to (Π,∆) were calculated as follows:

1. Normalize the alternatives’ attribute values to interval [0, 1] for all of the
preference criteria (see Table 1).

2. Compare the alternatives among each other with respect to the normalized
preference criteria (see first column of Table 2). The necessity degree of the
clause is calculated as the absolute value of the remainder of their normalized
attribute values.

3. Divide the necessity degrees obtained in previous step by the number of
preference criteria provided to the decision maker, i.e., by 4 in this case (see
second column of Table 2).

4. Map the necessity degrees obtained in previous step to the subinterval as-
signed to the comparison literal in the clause (see third column of Table 2).

5. For each clause (φ, α) such that φ is a rule of the kind bt(W,Y )← ci(W,Y )
or ∼ bt(W,Y )← ci(Y,W ), set α to the upper bound value of the subinterval
assigned to ci(·, ·).

Alternatives C1 C2 C3 C4 C1[0,1] C2[0,1] C3[0,1] C4[0,1]

h3 3 8 2 2 0.33 0.53 0.33 0.67
h4 9 7 6 2 1 0.47 1 0.67
h5 6 15 5 3 0.67 1 0.83 1

Table 1. Alternatives values for each criterion

37



8 Multi-criteria Argumentation-Based Decision Making within a BDI Agent

Fig. 1. Tileworld scene

Criteria Comparison literal Subinterval

C1 score(·, ·) [0.75, 1)
C2 timeout(·, ·) [0.25, 0.5)
C3 distAgent(·, ·) [0.50, 0.75)
C4 tileAvail(·, ·) [0, 0.25)

Fig. 2. Preferences per criterion

(score(h4, h3), 0.67) (score(h4, h3), 0.17) (score(h4, h3), 0.92)
(score(h4, h5), 0.33) (score(h4, h5), 0.08) (score(h4, h5), 0.83)
(score(h5, h3), 0.34) (score(h5, h3), 0.08) (score(h5, h3), 0.83)
(distAgent(h3, h5), 0.5) (distAgent(h3, h5), 0.12) (distAgent(h3, h5), 0.62)
(distAgent(h3, h4), 0.67) (distAgent(h3, h4), 0.17) (distAgent(h3, h4), 0.67)
(distAgent(h5, h4), 0.17) (distAgent(h5, h4), 0.04) (distAgent(h5, h4), 0.54)
(timeout(h5, h3), 0.47) (timeout(h5, h3), 0.12) (timeout(h5, h3), 0.37)
(timeout(h5, h4), 0.53) (timeout(h5, h4), 0.13) (timeout(h5, h4), 0.38)
(timeout(h3, h4), 0.06) (timeout(h3, h4), 0.01) (timeout(h3, h4), 0.26)
(tileAvail(h3, h5), 0.33) (tileAvail(h3, h5), 0.08) (tileAvail(h3, h5), 0.08)
(tileAvail(h4, h5), 0.33) (tileAvail(h4, h5), 0.08) (tileAvail(h4, h5), 0.08)

Table 2. Alternatives comparison

The following arguments are built from the above P-DeLP conformant program:2

A1 = {(bt(h4, h3)← score(h4, h3), 0.99), (score(h4, h3), 0.92)}
A2 = {(∼ bt(h3, h4)← score(h4, h3), 0.99), (score(h4, h3), 0.92)}
A3 = {(bt(h4, h5)← score(h4, h5), 0.99), (score(h4, h5), 0.83)}
A4 = {(∼ bt(h5, h4)← score(h4, h5), 0.99), (score(h4, h5), 0.83)}
A5 = {(bt(h5, h3)← score(h5, h3), 0.99), (score(h5, h3), 0.83)}
A6 = {(∼ bt(h3, h5)← score(h5, h3), 0.99), (score(h5, h3), 0.83)}
A7 = {(bt(h3, h5)← distAgent(h3, h5), 0.74), (distAgent(h3, h5)), 0.62)}
A8 = {(∼ bt(h5, h3)← distAgent(h3, h5), 0.74), (distAgent(h3, h5)), 0.62)}
A9 = {(bt(h3, h4)← distAgent(h3, h4), 0.74), (distAgent(h3, h4), 0.67)}
A10 = {(∼ bt(h4, h3)← distAgent(h3, h4), 0.74), (distAgent(h3, h4), 0.67)}
A11 = {(bt(h5, h4)← distAgent(h5, h4), 0.74), (distAgent(h5, h4), 0.54)}
A12 = {(∼ bt(h4, h5)← distAgent(h5, h4), 0.74), (distAgent(h5, h4), 0.54)}
A13 = {(bt(h5, h3)← timeout(h5, h3), 0.49), (timeout(h5, h3), 0.37)}
A14 = {(∼ bt(h3, h5)← timeout(h5, h3), 0.49), (timeout(h5, h3), 0.37)}
A15 = {(bt(h5, h4)← timeout(h5, h4), 0.49), (timeout(h5, h4), 0.38)}
A16 = {(∼ bt(h4, h5)← timeout(h5, h4), 0.49), (timeout(h5, h4), 0.38)}

2 To simplify notation, given an argument ⟨A, h, α⟩, only the set A of uncertain clauses
will be given since the conclusion h and its necessity degree α can be obtained from it.

38



Multi-criteria Argumentation-Based Decision Making within a BDI Agent 9

A17 = {(bt(h3, h4)← timeout(h3, h4), 0.49), (timeout(h3, h4), 0.26)}
A18 = {(∼ bt(h4, h3)← timeout(h3, h4), 0.49), (timeout(h3, h4), 0.26)}
A19 = {(bt(h3, h5)← tileAvail(h3, h5), 0.24), (tileAvail(h3, h5), 0.08)}
A20 = {(∼ bt(h5, h3)← tileAvail(h3, h5), 0.24), (tileAvail(h3, h5), 0.08)}
A21 = {(bt(h4, h5)← tileAvail(h4, h5), 0.24), (tileAvail(h4, h5), 0.08)}
A22 = {(∼ bt(h5, h4)← tileAvail(h4, h5), 0.24), (tileAvail(h4, h5), 0.08)}

To calculate the accrued structures for these arguments, it will be used the
ACC function defined below, with K = 0.1:3

ACC(α1, . . . , αn) = [1−
∏n

i=1(1− αi)] +Kmax(α1, . . . , αn)
∏n

i=1(1− αi)

As it can be observed, twelve a-structures can be built to support the reasons
by which an alternative should be deemed better than another one.

[Φ1, bt(h3, h5), 0.67], [Φ′1,∼ bt(h3,h5),0.90],Φ1 = A7 ∪ A19, Φ′1 = A6 ∪ A14;
[Φ2,∼ bt(h5, h3), 0.67], [Φ

′
2,bt(h5,h3),0.90], Φ2 = A8 ∪ A20, Φ′2 = A5 ∪ A13;

[Φ3, bt(h3, h4), 0.78], [Φ′3,∼ bt(h3,h4),0.93],Φ3 = A9 ∪ A17, Φ′3 = A2;
[Φ4,∼ bt(h4, h3), 0.78], [Φ

′
4,bt(h4,h3),0.93], Φ4 = A10 ∪ A18,Φ

′
4 = A1;

[Φ5, bt(h5, h4), 0.73], [Φ′5,∼ bt(h5,h4),0.85],Φ5 = A11 ∪ A15,Φ
′
5 = A4 ∪ A22;

[Φ6,∼ bt(h4, h5), 0.73], [Φ
′
6,bt(h4,h5),0.85], Φ6 = A12 ∪ A16,Φ

′
6 = A3 ∪ A21;

Those a-structures warranted from the dialectical process (shown in bold),
will be used by Algorithm 2 to compute the set of acceptable alternatives. In
this particular case, only decision rule DR1 can be applied. For alternative h4,
precondition of DR1 can be warranted and like there is no warranted a-structure
supporting a conclusion of the kind bt(Z, h4) to warrant DR1’s restriction, h4

becomes the acceptable alternative. Finally, hole h4 becomes IH.
Once a hole has been selected to fill in, plans to achieve this intention are

selected. The criteria set provided for plan selection could be C = {C1 = length,
C2 = cost, C3 = timeoutTile}. Criterion C1 is the number of action within the
plan. C2 represents the plan cost which is calculated as the sum of its actions
costs, which depend on the agent’s orientation. Finally, C3 is the time-out time
of the tile selected in the plan to fill in the hole.

On the other hand, the fact that holes appear and disappear causes the agent
to change its intentions. For example, when the set of holes dot not change while
the agent is executing a plan, then there is no need to deliberate; but if the set
of holes do change, this might mean that IH has disappeared or that a closer
hole has appeared; thus, intentions reconsideration is necessary. To achieve this
behaviour, it is important to consider appropriate criteria to determine whether
these changes have occurred or not. Means-ends reasoning and intention re-
consideration also use the argumentation-based decision framework (as in the
filtering stage), in order to choose a plan to execute or to reconsider intentions,
while the plan is under execution. Due to space constraints, how this framework
is applied in these stages, will not be developed in this paper.
3 This function is a variant of the One-Complement accrual function used in [14] where
K aims at weighting the importance given to the highest priority preference criterion.

39



10 Multi-criteria Argumentation-Based Decision Making within a BDI Agent

5 Conclusions

In this work, we presented an abstract framework that integrates argumentation-
based decision making from a multi-criteria approach, within the inner decision
processes of a BDI agent. In this way, the contribution of this work is twofold.
On one hand, it was specified how to perform concrete implementations of inner
decision making processes within a BDI agent. On the other hand, different
criteria and preferences were aggregated to get a solution to a multi-criteria
decision problem as an instantiation of argumentation-based decision making.

In order to get a better understanding and provide feedback to the abstrac-
tion process carried out to propose this present framework, as future work, fol-
lowing the idea proposed in [15], new instantiations of the framework will be done
with other methods belonging to the research field of Agreement Technologies.

References

1. Alsinet, T., Chesñevar, C.I., Godo, L., Simari, G.: A logic programming framework
for possibilistic argumentation: formalization and logical properties. Fuzzy Sets and
Systems 159(10) (2008) 1208–1228

2. Bratman, M., Israel, D., Pollack, M.: Plans and resource bounded reasoning. Com-
putational Intelligence 4(4) (1988) 349–355

3. Dennett, D.C.: Intentional systems. Journal of Philosophy 68 (1971) 87–106
4. Evertsz, R., Fletcher, M., Jones, R., Jarvis, J., Brusey, J., Dance, S.: Implement-

ing Industrial Multi-agent Systems Using JACK. In: Programming Multi-Agent
Systems. Springer (2004)

5. Benfield, S.S., Hendrickson, J., Galanti, D.: Making a strong business case for
multiagent technology. In: 5th AAMAS. (2006)

6. Casali, A., Godo, L., Sierra, C.: A graded BDI agent model to represent and reason
about preferences. Artifical Intelligence 175(7-8) (2011) 1468–1478

7. Amgoud, L.: A formal framework for handling conflicting desires. In Nielsen,
T.D., Zhang, N.L., eds.: ECSQARU. Volume 2711 of Lecture Notes in Computer
Science., Springer (2003) 552–563

8. Amgoud, L., Prade, H.: Formalizing practical reasoning under uncertainty: An
argumentation-based approach. In: IAT, IEEE Computer Society (2007) 189–195

9. Ferretti, E., Errecalde, M., Garćıa, A., Simari, G.: A possibilistic defea-
sible logic programming approach to argumentation-based decision mak-
ing. Manuscript ID: TETA-2012-0093.R1. Under Review process in JETAI .
https://sites.google.com/site/edgardoferretti/TETA-2012-0093.R1.pdf?

attredirects=0&d=1.
10. Rotstein, N.D., Garćıa, A.J., Simari, G.R.: Reasoning from desires to intentions:

A dialectical framework. In: AAAI, AAAI Press (2007) 136–141
11. Schlesinger, F., Ferretti, E., Errecalde, M., Aguirre, G.: An argumentation-based

BDI personal assistant. In: IEA/AIE. Volume 6069 of LNAI., Springer (2010)
12. Wooldridge, M.: Reasoning about Rational Agents. The MIT Press (2000)
13. Pollack, M.E., Ringuette, M.: Introducing the tileworld: Experimentally evaluating

agent architectures. In: 8th AAAI. (1990) 183–189
14. Gómez, M., Chesñevar, C., Simari, G.: Modelling argument accrual in possibilistic

defeasible logic programming. In: ECSQARU. LNCS, Springer (2009) 131–143
15. Sosa-Toranzo, C., Schlesinger, F., Ferretti, E., Errecalde, M.: Integrating a voting

protocol within an argumentation-based BDI system. In: XVI CACIC. (2010)

40




