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Abstract. Real-time systems have been used in many different areas such as 

medicine, multimedia and mechatronics. For such systems, it is important to 

meet both logical and timing requirements, since a malfunction may have 

undesired consequences. In this paper, we developed a simulation tool in 

MATLAB® environment to deal with fault-tolerant real-time scheduling under 

Rate Monotonic scheduling policy, so that errors consequences can be 

envisioned, before system is put on operation. 
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1 Introduction 

Over the past decades computer designers focused their attention on developing what 

they considered a perfect computer project: computers had to be small, fast and cheap 

[12].  Indeed, their effort in reaching more performance at low cost and minimum size 

contributed remarkably for recent technological advances, especially those related to 

hardware improvements. The remarkable growth of electronic devices and computing 

systems in our daily activities has been boosting mechatronics, as a subarea of 

automation due to its ability of integrating electronic components and systems [4, 7]. 

The main elements of a mechatronic system can be observed in Figure 1. 

 
Fig. 1. Components of a mechatronic system [10]. 
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The user is the entity responsible for monitoring, super visioning and controlling 

the controlled object, which may be an airplane board control or an industrial plant, 

for example. Controlled objects are usually manipulated through human-machine 

interface (HMI), which is the element responsible for (i) translating control 

information to the user and (ii) allowing an interface between users and controlled 

objects. The control system is an interactive computer system that enables monitoring 

and changing the state of a controlled object, which is done through sensors and 

actuators [8]. 

The evolution of computer systems also allowed systems designers to focus on 

modeling, designing and implementation aspects of such systems aiming at 

developing applications with differentiated performance skills. At the same time, 

miniaturization of electronic components allowed computers to evolve from simply 

terminals to host control systems. For some of these applications correctness were not 

only associated with logical, but also with timing requirements. Indeed, systems in 

which correctness is associated not only with producing logically correct results, but 

also with the time at which such results are produced (timeliness) are known as real-

time systems [2,5]. 

Real-time systems are present in many different areas such as medicine, avionics, 

multimedia and mechatronics [13].  For some of them, when timing requirements are 

not accomplished, the system may not achieve the expected level of Quality of 

Service (QoS). This is what happens, for example, in a video transmission 

(multimedia application). In worst cases, missing timing requirements may have 

undesired consequences as for example, if we consider an automobile ABS control, in 

which human life may be at risk [3]. This evidenced that different applications may 

have different criticality levels. Indeed, for "soft" real-time systems missing deadlines 

may not have more serious consequences, while for "hard" real-time systems missing 

deadlines may cause injuries for human beings and/or environment [2, 9, 11]. 

Since temporal requirements play an important role for real-time systems, it is 

crucial to have means of guaranteeing such requirements. In fact, both scheduling 

policies and schedulability analysis are responsible for ensuring timeliness for such 

applications. To do so, system tasks are ordered according to a specific scheduling 

policy and a subsequent schedulability analysis is performed to assess timeliness of 

each task. We detail such aspects in Section 2. 

Ensuring reliability is an important goal to be achieved for real-time systems. 

However, in terms of computational applications, the only certainty we have is that all 

of them may potentially fail [1]. In fact, system correctness relies on its dependability, 

a concept which discussed in Section 3. Also, since faults cannot be avoided and are 

difficult to predict [9, 11], taking such events into consideration is almost an 

obligation, if someone needs to guarantee QoS for real-time applications or even 

avoid more serious consequences.  

In this paper we investigate the impact of errors in real-time applications 

considering a specific scheduling policy. To do so, we defined a simulation 

environment, presented in Section 4 and developed a simulation tool, detailed in 

Section 5, which aims at measuring fault resilience for a particular set of real-time 

systems. Last, in Section 6, some conclusions and future works are drawn. 
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2 Real-Time System Overview 

A real-time system is a computer system in which both timing and logical 

requirements must be respected. Thus, the correct behavior of such a system depends 

not only on the integrity of produced logical results (also known as "correctness"), but 

also on the time at which they are produced ("timeliness") [2]. Examples of real-time 

systems include current control laboratory experiments, vehicle control, nuclear plants 

and flight control systems [13]. 

Usually, real-time systems are structured as a set of n periodic tasks Г = {τ1, τ2, … 

τn}. A given task τi represents a function, routine (or subroutine) or any code snippet. 

Each task τi has attributes such as an execution cost Ci, a deadline Di, an activation 

period Ti and a recovery execution cost Ci. Thus, a periodic task can be described as 

an ordered tuple τi = (Ci, Ti, Di, Ci). 

Tasks are executed in a specific order called execution scale. Such a scale is 

defined based on some heuristics, known as scheduling policy. Several scheduling 

policies have been addressed in literature and most of them are priority oriented [3, 9, 

10], which means that tasks are ordered according to its priority.  

A well-known priority oriented scheduling policy is Rate Monotonic (RM), 

according to which tasks with shortest periods have higher priority. Clearly, this is a 

fixed-priority policy, since tasks period are defined offline and do not change during 

system execution. 

After a scheduling policy is chosen for a given task set Г is it important to assess if 

any task τi ϵ Г may miss its deadline. To do so, we perform some tests, also known as 

schedulability analysis, which aims at determining if a given task set is feasible. In 

other words, such tests determine if any task τi ϵ Г misses its deadline. Clearly, 

schedulability analysis is strongly linked with the chosen scheduling policy. In this 

paper we address the analysis based on Processor Utilization Analysis, which is 

discussed in Section 2.1. 

2.1   Processor Utilization Analysis 

According to this approach, the schedulability of a given task set is assessed based on 

processor use. Indeed, processor utilization U, for a given task set Г composed of n a 

periodic and independent real-time task is given by: 

 

(1) 

Regarding Rate Monotonic, if we assume a periodic task set Г in which tasks period 

are equal to their deadlines, we state that Г is schedulable if: 

 
(2) 
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For RM, Processor Utilization Analysis is a sufficient schedulability test, which 

means that it is not able to ensure schedulability for all task sets. In fact, it has been 

proven that [6] if: 

 (3) 

 

The task set is schedulable with RM. Otherwise the analysis does not guarantee 

schedulability. Also, Rate Monotonic is considered an optimal algorithm for systems 

in which tasks period are equal to their deadlines (Ti = Di) [6]. 

3 Fault-Tolerant Real-Time Systems 

Faults are random events that cannot be predicted or avoided. Actually, the only 

certainty we have is that all computational applications potentially fail [1]. Indeed, a 

fault may be caused by several different events, as for example cosmic radiation, 

hardware fatigue or malfunctioning, specification and/or implementation aspects. 

A system is said to fail when there is a transition from an expected correct 

behaviour to an incorrect and unexpected behaviour. In other words, a fail represents 

a deviation from specification. The error is the state that leads the system to fail and 

faults are the causes of an error, which may be physical or algorithmic [1]. Indeed, 

applications must provide confidence in the expected operations, a concept usually 

addressed as dependability, which is related to some attributes such as availability, 

reliability, safety and maintainability [1, 14]. 

In terms of real-time system there is a concern about fault tolerance aspects, since a 

fault may affect the system schedulability, or in other words, may prevent tasks to 

meet their deadlines. For this reason, faults are considered as a threat to dependability. 

Thus, techniques must be implemented to deal adequately with faults, so that 

applications keep their correctness even in the presence of such events [1, 14]. 

Faults are more commonly classified based on the persistence criterion, according 

to which they can be transient, intermittent or permanent.  Transient faults occur only 

for a given time and then disappear. An example could be electromagnetic 

interference. When a transient fault occurs repeatedly it is called intermittent, as for 

example a loose contact on a connector. Both transient and intermittent faults are 

difficult to diagnose. Last, permanent fault is one that continues to exist until the 

faulty component is repaired, as for example a lack of connectivity between two 

nodes in a network [10, 14]. 

In this paper we investigate the effects of transient faults focusing on techniques 

that can be used to deal with such faults, which are based on temporal redundancy. 

This consists of repeating the computation in time, or in terms of scheduling can be 

understood as re-executing a task (see Figure 2) or executing an alternative task (see 

Figure 3) until the system is put on a safe state [9,11]. 
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Fig. 2. Recovery based on re-execution of Task 1 under RM} 

Figures 2 and 3 presents a periodic task set being scheduled, where Г = {τ1 = (1,2), 

τ2 = (1,5)}. Observe that in Figure 2 an error occurred at t = 3 (red arrow), which 

affect Task 1. The faulty task re-executed immediately since there were no other 

higher priority task to execute. On the other hand, in Figure 3, an error affected Task 

2 at t = 6 (red arrow), but it only could recover at time t = 7, since Task 1 was already 

released for execution and has a higher priority than Task 2. 

 

 

Fig. 3. Recovery based on the execution of an alternative version of Task 2 under RM. 

In the following sections we present the developed tool which focus on measuring 

the resilience of hard real-time systems scheduled according to RM scheduling policy. 

 

4 Simulation Environment 

4.1   System Model 

 

The assumed system model considers a task set Г composed of n independent and 

periodic real-time tasks Г = {τ1, τ2, … τn}. Each task τi is represented by a tuple τi = 

(Ci, Ti) where Ci is the constant worst-case execution time (wcet) of each task and Ti 
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is the activation period. Also, we assume that the deadline for each task is the same as 

its period (Ti =  Di). 

Tasks are scheduled according to Rate Monotonic, since this algorithm deals with 

fixed priority tasks and is widely used for embedded critical applications. Also, 

schedulability analysis is performed with Processor Utilization Analysis. 

4.2   Fault Model 

Assuming a specific fault model is a difficult task since faults are random and 

cannot be predicted. We consider that the system is subject to multiple transient faults 

which can occur at any time instant. 

Also, we represent the fault resilience of a given system through the maximum 

number of errors the system can handle and keep its correct behavior. To do so, we 

use a random function in MATLAB® to generate the number of errors that will affect 

each system. Also, the time instant in which errors occur is also determined through a 

random procedure. 

We discard errors that occur at time instants in which no task is executing, since 

such errors will not affect system behavior. We assume that fault detection occurs 

implicitly, at the end of each task execution, since the focus of the work is not the 

detection procedure, but system behavior after recovery strategies. 

4.3   Recovery Model 

The recovery model describes the strategy used to put the system in a safe state. 

Indeed, we consider two possible actions: (i) faulty task re-execution or (ii) execution 

of an alternative task. Both strategies are defined offline, before running the system, 

and are performed in idle time instants available in execution scale. 

5 Simulation Tool 

The general overview of the developed tool can be seen in Figure 4. The tool was 

developed in MATLAB
®
, due to its versatility on numerical analysis, encapsulated 

functions and graphics.  

 
Fig. 4. Framework of Simulation Environment 
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The first step to use this tool is to input a schedulable task set. In case the user has 

no previously generated task set, it is possible to generate a random one inside 

developed environment. To so, the user only has to choose the number of tasks to be 

generated. In case the tool generates the task set, it also tests if it is schedulable, 

through processor utilization analysis. 

After, the user has to generate the number of errors that will affect the task set. As 

mentioned before, such a number is randomly generated by the tool. The user only 

defines a lower and upper bound, which will represent the interval in which the 

number of errors will be in. Based on the number of errors, the tool generates random 

time instants in which errors will occur. The screen of MATLAB
®
 running the 

simulator can be seen in Figure 5. 

 
Fig. 5. Screen shot of MATLAB

®
 running simulator. 

 

The simulation environment will generate an execution scale, which takes into 

consideration Rate Monotonic, as scheduling policy, the defined recovery scheme (re-

execution or alternative task code) and the time instants in which errors occur. Based 

on those values, the system resilience is defined and results can be graphically 

checked.  

Briefly, the simulator executes the following steps, given the inputs described in 

Figure 4: 

• Identify tasks affected by errors; 

• Identify idle time after each faulty task, which can be used for recovery; 

• Verify the possibility of re-executing the faulty task or executing an alternative 

code, respecting tasks priority (including the simultaneous verification of 

space for recovery and maximum execution time); 

• Graphically analyze the resilience of the system, through graphically 

generated execution scale. 

• Inform the number of errors and time instant which makes the system 

unschedulable. 
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To make things clear let us consider the following example: 

 

Example 5.1. Assume a task set Г = {τ1, τ2} composed of two independent and 

periodic tasks where C = (3, 3) and D = T = (8, 12). Tasks are scheduled according to 

RM and in case of faults, tasks are re-executed. In other words, Ci = Ci. 

 

Fig. 6. Execution Scale for Example 5.1. 

The system is simulated during the hyperperiod h = lcm(8, 12) = 241 to ensure that 

all system execution will be considered.  

 

Fig. 7. Idle processor time for Example 5.1, graphically represented in tool. 

The first chart presented in Figure 6 presents the execution scale for the given task 

set. The random number of faults that this task set is subject to is nf = 2 and the 

random time instants in which they occur was tf = (3, 18). This is shown by a red 

mark in the chart. Detected errors are indicated by green circles.  

Figure 7 evidences the idle processor time, which are represented in blue. Finally, 

Figure 8 presents the fault-tolerant real-time schedule. 

 

Fig. 8. Fault Tolerant Scheduling for Example 5.1 assuming errors at tf = (3, 18). 

                                                           
1 lcm(x, y) is the function which calculates the least common multiple of input parameters ,in 

this case, x and y. Usually systems are simulated during the hyperperiod, since it contains all 

system behavior. 
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It is important to mention that depending on the time instant that errors occur, the 

system may not be schedulable, even if it is subject to the same number of errors. 

Observe Figure 9, which presents the same task set described in Example 5.1 subject 

to two errors that happens at tf = (2, 3). 

 
Fig. 9. Execution Scale for Example 5.1 assuming errors at tf = (2, 3). 

Observe that in this case, recovery of both faulty tasks is not possible, since the 

available idle time (same as presented in Figure 7) is not enough for recovering tasks 

τ1 and τ2. before their respective deadlines. The graphic presented by simulator is 

according to Figure 10, confirming that the fault-tolerant scheduling is not feasible. 

 
Fig. 10. Fault Tolerant Scheduling for Example 5.1 assuming errors at tf = (2, 3). 

6 Conclusions and Future Work 

Real-time systems have been used in a wide range area, as for example to control 

industrial processes. For most of these applications, missing timing requirements 

imply in a loss of Quality of Service or in worst cases may cause social, economic 

and/or environmental injuries. In this context, it is extremely necessary to deal with 

unpredictable and random events, such as faults, so that they interfere minimally in 

systems operation. In this paper we developed a simulation tool in MATLAB
®
 

environment to deal with fault-tolerant real-time scheduling, so that errors 

consequences can be envisioned, before system is put on operation.  

One of our goals is to have an approximation between theoretical and practical 

models. This will enable more detailed studies and previous use of simulations before 

the applications are put into production. As future work we aim at simulating more 

robust systems, to evaluate better our preliminary results. Also, we focus on extending 

scheduling policies, so that EDF [6] is also considered. 
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