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Abstract. This work reviews the experience of implementing different versions of the SSPR rank-one update operation
of the BLAS library. The main objective was to contrast CPU versus GPU implementation effort and complexity of an
optimized BLAS routine, not considering performance. This work contributes with a sample procedure to compare
BLAS kernel implementations, how to start using GPU libraries and offloading, how to analyze their performance and
the issues faced and how they were solved.
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1 Introduction

With the growth of the application of general-purpose GPU techniques to compute intensive problems [1], there will be lots
of domain experts trying to implement an specific math kernel operation both in CPU and GPU, applying optimizations
and finally doing a performance comparison to double check if gains are relevant due the invested effort [2].

It is non trivial to identify the outcome. While CPUs are designed for general purpose, GPUs are designed for specific
purposes; specific problems are well suited to GPU architecture and can be solved faster than using CPUs, but they
usually need to be represented in a way parallelism is explicitly exposed. Picking the right approach will contribute to
faster, more detailed problem solving in domain specific problems. It is expected that the procedure of reviewing an
specific kernel implementations will be done on each release of new CPU and GPU architecture by people doing problem
solving simulations. From that point of view this work contributes with a similar analysis experience. Related work is
included as part of the results as a validation proof.

The rest of the document is structured as follows: this section is completed with information on the operation and
system being used for the comparison, plus a quick discussion on the GPU programming model. Section 2 include details
on which algorithms were executed after reviewing well-known implementations. Section 3 provide details on how the
performance was contrasted, including results and related work validating our results.

1.1 Single-precision Symmetric Packed Rank-one update

The Single-precision Symmetric Packed Rank-one update (SSPR) operation computes a rank-1 update of a symmetric
matrix of single precision floating point numbers. SSPR performs the symmetric rank 1 operation show in Equation 1,
where α is a real scalar, x is an n element vector and A is an n by n symmetric matrix, supplied in packed form.

A := α× x× xT +A (1)

A graphical representation of the operation is shown in Figure 1.

Fig. 1. Graphical representation of rank 1-update
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The SSPR operation belongs to level 2 BLAS (Basic Linear Algebra Subprograms) [3] [4], as it runs over a matrix-
vector combination. Matrix-vector multiplication hasO(N2) complexity on the size of the matrix [5]. However, the matrix
is required to be represented as a vector which contains only half of the symmetric matrix triangular, packed sequentially
per column. Represented by Equation 2. In particular, the vector has a size of (n × (n + 1)/2). This approach avoids
redundancy and saves device memory for bigger input.

AP (i+ (j × (j − 1)/2) = Aij(∀j ≥ i) (2)

Operation signature in the Fortran language is defined in Listing 1 and clarified in Table 1 below. Towards generality
of the function, UPLO specifies if the packed triangular matrix is the upper or the lower part of the original data. INCX
is the required increment to reference the vector elements in the provided vector reference. This is useful to iterate over a
vector which is part of a matrix, avoiding extra buffer copies.

Listing 1. SSPR Fortran Signature
1 SUBROUTINE SSPR (UPLO, N, ALPHA, X, INCX , AP)
2 . . S c a l a r Arguments . .
3 REAL ALPHA
4 INTEGER INCX ,N
5 CHARACTER UPLO
6 . .
7 . . Array Arguments . .
8 REAL AP(∗ ) ,X(∗ )

Table 1. SSPR Arguments Description

Argument Description
UPLO Specifies whereas upper/lower triangular part of A is supplied in array
N Specifies the order of the matrix A
ALPHA Specifies the scalar alpha
X Array of dimension at least (1 + (n− 1) ∗ abs(INCX))

INCX Specifies the increment for the elements of X
AP Array of dimension at least ((n ∗ (n+ 1))/2)

1.2 Testbed

The system used for experiments was an HP Mobile Workstation EliteBook 8530w, having integrated an Intel CPU model
T9600 3 plus a Quadro FX 770m GPU 4. Although the system is a little bit outdated and it is not state-of-the-art, the
computing devices were integrated at the same time-frame and hence provide a valid point of comparison.

The relevant information from their hardware specifications are shown below. The CPU information was taken from
/proc/cpuinfo and a custom program to access GPU attributes not yet exposed thru standard kernel interfaces.

cpu family: 6
model: 23
model name: Intel(R) Core(TM) 2 Duo CPU T9600 @ 2.80GHz
stepping: 10
cpu MHz: 2793
cache size: 6144 KB
fpu: yes
cpuid level: 13
flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr
pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2
ss ht tm pbe pni dtes64 monitor ds_cpl vmx smx est tm2
ssse3 cx16 xtpr pdcm sse4_1 xsave osxsave lahf_lm
TLB size: 0 4K pages

3 T9600 CPU specifications
4 Quadro FX 770m GPU specifications
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The GPU card has built-in 512MB memory, meaning that in average during executions there is about 462 MB of
global memory available for computation.

capabilities.name = Quadro FX 770M
capabilities.totalGlobalMem = 512.00 MB
capabilities.sharedMemPerBlock = 16.00 KB
capabilities.regsPerBlock = 8192
capabilities.warpSize = 32
capabilities.memPitch = 2097152.00 KB
capabilities.maxThreadsPerBlock = 512
capabilities.maxThreadsDim = 512 512 64
capabilities.maxGridSize = 65535 65535 1
capabilities.totalConstMem = 64.00 KB
capabilities.major = 1
capabilities.minor = 1
capabilities.clockRate = 1220.70 MHz
capabilities.textureAlignment = 256
capabilities.deviceOverlap = 1
capabilities.multiProcessorCount = 4
cudaMemGetInfo.free = 462 MB

As depicted in Figure 2, the different in single-precision (real) floating point operations is significant. It might be
expected results that choose GPUs as the winner, which will be a different assumption if the operation was using double
precision floating point operations.

Fig. 2. FLOPs and Bandwidth Comparison between CPUs and GPUs [6]

1.3 CUDA Programming

The Compute Unified Device Architecture (CUDA) is a high performance computing architecture and programming
model created by NVIDIA. The CUDA programming model gives access to GPUs instruction set to be used for general
purpose computing, providing both low level and high level interfaces to simplify application.

The programming model assumes that the host system will execute kernels by asynchronous offloading to a GPU
device. Memory allocation and transfer are also controlled by the developer. The programming model relies on a hierarchy
of thread groups that can access per-group shared memory and can synchronize between them. An extension to the
C language allows the inclusion of compute kernels that run in the GPU device. Hardware threads are part of an N-
dimensional block with N=1,2,3.

All threads on a block are expected to share (faster than global) memory resources and to synchronize with each other.
Blocks per-se are also organized in sets called grids, similar to blocks. Thread blocks perform independent computation.
Each block memory hierarchy consists of local, global, shared, constant and texture memory; the latter having special
addressing to better fit graphical rendering. All but shared memory is persistent across kernel executions.

GPU hardware and software capabilities are evolving fast, not only instructions per cycle have increased. Support
for native arithmetic instructions have expanded the set of atomic operations and the provided math functions. The usual
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printf capability has been recently made available, the runtime uses a special device buffer that it is transferred together
with the device memory. It is worth noting that IEEE 754-2008 binary floating-point arithmetic has deviations from
standard by default. Enabling strict support imposes a performance penalty.

2 Algorithms

As part of the work 4 different versions of SSPR functions were exercised, using well-known implementations as a
reference. The following subsections contains details on how the versions were implemented that can be reused for any
other BLAS kernel. In order to streamline analysis only support for upper matrices with 1 increments were incorporated.

2.1 CPU Sequential

Using both the original BLAS implementation 5 and the GNU Scientific Library version 6 an initial CPU sequential
version was implemented as shown in Listing 2. It is worth to note that any BLAS kernel can be reviewed also on this two
implementations. A naive implementation of the mathematical definition was not used as proper speedup computation
requires best known sequential algorithm [7], shown in Listing 3.

Listing 2. Naive SSPR CPU Implementation

1 k =0;
2 f o r ( j =0 ; j <n ; j ++)
3 f o r ( i =0 ; i <= j ; i ++) {
4 ap [ k ] += a l p h a∗x [ i ]∗x [ j ] ;
5 k ++;
6 }

Listing 3. Optimized SSPR CPU Implementation

1 f o r ( i = 0 ; i < n ; i ++) {
2 c o n s t f l o a t tmp = a l p h a ∗ x [ i ] ;
3
4 f o r ( j = 0 ; j <= i ; j ++)
5 ap [ ( ( i ∗ ( i +1) ) / 2+ j ) ] += x [ j ] ∗ tmp ;
6 }

Here it can be estimated that the required computation per data quantity is not enough to justify accelerator offload
time. It is expected then that a GPU version of it is not going to have huge performance increments for small data.

2.2 GPU cuBLAS

This implementation was done directly reusing CUDA source code. NVIDIA CUDA [6] provides its own version of BLAS
routines, which are heavily optimized to their architecture. Using the cuBLAS [8] library requires one call, an example is
shown in Listing 4.

Listing 4. cuBLAS SSPR GPU Implementation

1 r e t = c u b l a s S s p r ( hand le , mode , n , &a lpha , cx , incx , cap ) ;
2 i f ( r e t != CUBLAS_STATUS_SUCCESS)
3 e r r ( " c u b l a s S s p r : %d (%s ) " , r e t , c u b l a s 2 s t r [ r e t ] ) ;

This highly optimized code can be found in the package available to registered developers, inside sspr.cu and
sspr.h files. The main routine is cublasSspr(). This implementation first loads into device shared memory elements
reused during computation, then computes several matrix elements for hardware thread. It also uses cheap left bit-shifting
instructions instead of expensive division-by-2 to locate elements inside the packed matrix.

The library documentation recommends the use of on utilities like: cublasCreate(), cublasSetVector(),
cublasGetVector(), cublasDestroy(). They provide easier allocation of memory on the GPU device. The
library also defines opaque data-types for parameters and error handling such as: cudaError_t, cublasHandle_t,
cublasStatus_t, cublasFillMode_t.

5 BLAS SSPR implementation.
6 GSL SSPR implementation.
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2.3 GPU Naive

A naive GPU implementation is useful to have a worst-estimate to be compared against potential optimizations. A direct
translation to GPU using one thread per vector element to computing the result in parallel is shown in Listing 5. Here it is
assumed that the number of elements in x it is close to the number of GPU threads.

Listing 5. Naive SSPR GPU Implementation
1 _ _ g l o b a l _ _ void s s p r _ n a i v e _ k e r n e l ( i n t uplo , i n t n , f l o a t a lpha , c o n s t f l o a t ∗x , i n t incx , f l o a t ∗ap ) {
2 i n t i = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;
3 i f ( i < n ) {
4 c o n s t f l o a t tmp = a l p h a ∗ x [ i ] ;
5 i n t j = 0 ;
6 f o r ( j = 0 ; j <= i ; j ++)
7 ap [ ( ( i ∗( i +1) ) / 2 + j ) ] += x [ j ] ∗ tmp ;
8 }
9 }

How to execute the kernel is shown in Listing 6. CUDA will run a preprocessor transforming the code before perform-
ing actual compilation.

Listing 6. GPU Kernel execution
1 i n t t h r e a d s = c a p a b i l i t i e s . maxThreadsPerBlock ;
2 s s p r _ n a i v e _ k e r n e l <<< ( n / t h r e a d s ) , ( t h r e a d s ) >>> ( uplo , n , a lpha , cx , incx , cap ) ;

2.4 GPU using shared-memory

The recommended approach to start optimizing GPU code is to use shared memory to reduce access time to data. Every
thread on the same thread block loads in shared memory one element of the vector, this work is done in parallel and a
barrier is used to synchronize. During computation, elements are then gathered from faster shared memory when possible,
slower global memory is used otherwise. The implementation is shown in Listing 7.

Listing 7. Optimized SSPR GPU Implementation
1 _ _ g l o b a l _ _ void s s p r _ o p t i m i z e d _ k e r n e l ( i n t uplo , i n t n , f l o a t a lpha , c o n s t f l o a t ∗x , i n t incx , f l o a t ∗ap ) {
2 i n t i = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;
3 i f ( i < n ) {
4 i n t t i d = t h r e a d I d x . x ;
5 e x t er n _ _ s h a r e d _ _ f l o a t cache [ ] ;
6 f l o a t ∗x i = ( f l o a t ∗) cache ;
7 x i [ t i d ] = x [ i ] ;
8 _ _ s y n c t h r e a d s ( ) ;
9 c o n s t f l o a t tmp = a l p h a ∗ x [ i ] ;

10 i n t j = 0 ;
11 f o r ( j = 0 ; j <= i ; j ++) {
12 i f ( b l o c k I d x . x ∗ blockDim . x < j && b l o c k I d x . x ∗ blockDim . x + 1 > j )
13 ap [ ( ( i ∗( i +1) ) / 2 + j ) ] += x i [ j ] ∗ tmp ;
14 e l s e
15 ap [ ( ( i ∗( i +1) ) / 2 + j ) ] += x [ j ] ∗ tmp ;
16 }
17 }
18 }

However, this method does not take into account any other potential optimization, it is included here to show that
naive optimizations are not preferred and it is more useful to build upon CUDA implementation source code.

3 Performance Analysis

This section includes details on how the performance of the different implementations were conducted. The tools and
procedure can be reused for any other BLAS kernel without major modifications.

3.1 GPU Registers

The CUDA nvcc compiler can be configured to show extra information about the number of registers used during
execution. With this option the code can be optimized so register usage metric is minimal.

ptxas info: Compiling entry function ’sspr_naive’ for ’sm_13’
ptxas info: Used 7 registers, 48+16 bytes smem, 4 bytes cmem[1]
ptxas info: Compiling entry function ’sspr_optimized’ for ’sm_13’
ptxas info: Used 10 registers, 48+16 bytes smem, 4 bytes cmem[1]
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It was discovered that running with the -arch=compute_11 option did not included this output, but using -arch=sm_13
instead solved the issue. The first one uses the compute capability version to specify the hardware target, while the second
uses the hardware architecture generation.

3.2 Nvidia Visual Profiler

The nvvp tool depicts a visual execution profile of the program, useful when trying to understand where the computation
is spending execution time. On our case, even with cuBLAS implementation the tool identified:

– there is no overlap between data transfer and computation

– the data transfer action does not fully saturate available memory bandwidth

– the computation does not fully load processing cores capacity

The affected GPU device does not have enough internal memory to run an interesting enough problem, the required
computation per transfered bytes does not justify GPU offloading.

Fig. 3. GPU Profiler

3.3 Results

Figure 4 shows wall clock times in seconds with varying matrix sizes. 7 Here it can be seen that the CPU optimized
version is taking the least time on all of the matrix sizes. On the other hand we double check that the GPU naive and
shared-memory optimized versions are not a match against the CUDA one provided by cuBLAS. Here it can be clearly
confirmed that the introduced shared memory optimization do not positively impact execution time, so cuBLAS strategy
is hence superior.

7 Times are the geometric mean of 32 executions in order to reduce measurement noise. To validate results the output matrix was
reduced to a single figure being the common global sum of the elements.

240



Fig. 4. Execution Time Speedup

3.4 Speedups

To measure speedups the input size was selected as big as possible to fit inside the available memory in GPU. This is
always recommended to maximize computation per transfered byte. The time taken to transfer the data to the GPU is
included on the measurements, the goal was to contrast the complete operation execution from start to end.

SSPR_N = 14848 floats (packed 110238976 floats)
SSPR_ALPHA = 3.141593
memory = 420 MB
cudaMemGetInfo.free = 462 MB

Most interesting speedup comparisons are shown in Table 2. The optimized CPU version has nearly 4x of cuBLAS
version, and close to 8x of our naive implementations using GPU. It is interesting to note that cuBLAS optimization got
2x speedup when matched against our naive optimization with shared memory.

Table 2. Speedup comparisons

cublas (1.4995 seg) cpu (0.389625 seg) 3.85x
naive (3.090625 seg) cpu (0.389625 seg) 7.93x
optimized (2.97325 seg) cpu (0.389625 seg) 7.63x
naive (3.090625 seg) cublas (1.4995 seg) 2.06x
optimized (2.97325 seg) cublas (1.4995 seg) 1.98x
optimized (2.97325 seg) naive (3.090625 seg) 0.95x

3.5 Related Work

There is a related study conducted by Microsoft Research [9], that performed benchmarking of BLAS Level 2 routines
in FPGA, CPU and GPU. Their findings in Figure 5 validates the results obtained as part of this work. An an optimized
implementation in CPU is better than an optimized GPU implementation. Note that Intel Math Kernel library version is
still far better than an optimized CPU version, as it uses advanced knowledge of the architecture of computing units inside
the CPU.

It is worth to note that state-of-the-art GPU devices have increased their internal memory to cope with this limitation,
up to 4GB in latest 2012 boards. If ECC is enabled to verify contents then this quantity is decreased 10%. A detailed
analysis on how to better exploit GPU performance is reviewed in [10] using a complete application as case study.
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Fig. 5. Independent measurement of matrix-vector kernels (extract from [9])

4 Conclusions

This works provides a sample procedure to contrast BLAS kernel implementations after a experience with the SSPR
operation. Source code pointers details are provided that guides through well-known implementation, also include perfor-
mance analysis tools and their application example. In order to gather performance figures, it is always recommended to
review the optimized code of BLAS instead of doing naive implementations. It is also worth to note that efficient GPU
offload requires significant amounts of required computation per transfered byte. In this case, matrix-vector kernel com-
putation showed that CPUs provide better results than GPUs; even when using highly optimized implementations of the
kernel operation.

Regarding the experience with CUDA, the cuBLAS library documentation and interface properly support develop-
ment, although they can still be improved. Some utility calls like cublasAlloc() are deprecated but still referenced
by cudaSspr() and others, confusing the reader. The library does not provide a wrapper call that goes over the complete
offload cycle: initialization, data transference to and from accelerator, explicit computation, etc. Using the documented
primitives plus required error checking implies nearly 60 lines of code, just to offload one BLAS routine. cuBLAS also
lacks an error formatter function to translate error codes to text representations (similar to strerr()). If it is required to
support both Linux and Windows environments, the usual time keeping routines are not portable so a gettimeofday()
stub was coded that could have been provided by the CUDA runtime instead.

Regarding further work, developing a framework to quickly benchmark compute kernels on different processing de-
vices will be of value to domain experts researching what type of hardware to acquire. Ideally, including support for
state-of-the-art BLAS implementations to provide figures from optimized algorithms. Also extending the comparison
will be a good initial step, including other parallel programming techniques and technologies like OpenMP and MPI.
Including results from other devices like FPGAs and co-processors would be another interesting option. There are other
GPU optimizations that although require advanced knowledge (i.e. overlapping communication and computation, using
texture memories) may result in better performance figures. Upcoming GPU architectures having more memory or new
hardware-assisted features (i.e. zero-copy data replication) may also show different results.
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