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Abstract. We are studying different alternatives to obtain a version of
the Differential Evolution (DE) algorithm that improves the solutions
quality properties. One of the parallel alternatives, named Island Model,
follows a Master/Worker scheme. With this model, multiple instances of
DE are executed in parallel on various computing nodes or islands, each
of them considering a different population of individuals. Each worker
makes the search process, and communicates with each other to exchange
information with certain frequency. This model significantly promote the
exploration of a larger search space, which leads to good solutions quality.
The aim of this paper is to analyse the behaviour of this model, when
setting each island with different input parameters. We apply some input
configuration tests for the islands, in order to analyse the impact in
the solutions quality and the execution time, taking into account the
crossover probability and mutation factor, and the crossing type. These
parameters are crucial to guide the search towards certain areas of the
search space.

1 Introduction

The interest in solving combinatorial optimization problems has gained pop-
ularity between the scientific and industrial community [15] [4]. Between the
strategies developed to solve these problems we find specific heuristics and meta-
heuristics as popular techniques. The specific heuristics are problem dependent
and are designed in a particular way to solve a given problem. Meanwhile, meta-
heuritics represent a more general set of solutions that can be applied to a large
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number of problems. Metaheuristics try to solve instances of the problem, ex-
ploring the wide space of solutions that those instances can admit [10]. Usually,
these solutions are called optimum, in reference to the better or best values
found for the optimization problem involved, leading to local (better solutions)
or global (the best solution) optimum. Although obtaining the global optimum is
desirable, sometimes the function to optimize is sufficiently complex to find the
desired value within a reasonable time. For this reason, obtaining good quality
“local optima” becomes a valid alternative.

The Differential Evolution (DE) algorithm is a population based metaheuris-
tic, capable of working reliably in nonlinear and multimodal environments [9]. Tt
starts to explore the search space by initializing multiple, randomly chosen initial
points distributed in D-dimentional vectors that represent the individuals of the
population. The algorithm presents two operators responsible for the creation
of new solutions. First, the mutation operation creates a trial vector as a linear
combination of some members of the population, then the crossover operation
combines the parameter values of the trial vector with those of another member
of the population, resulting in the target vector.

The classic version of DE follows a sequential processing scheme. However,
the Differential Evolution algorithm (and in general metaheuristics) are naturally
prone to parallelism, because most variation operations can be undertaken in
parallel [1]. There are several studies that incorporate parallelism to DE, in order
to improve the quality of the solutions obtained and/or diminish the execution
time. In this work we follow the first objective. With the aim of improving
the quality of solutions by exploring a larger sample domain, we focus on the
Island Model [10]. Even though the execution time is similar to the sequential
one, each island in the model is responsible for the evolution of the population
that manages, and may use different parameter values and different strategies
for any search component such as selection, replacement, variation operators
(mutation, crossover), and encodings. An appropriate choice for its values may
achieve quality and/or performance improvements.

In this work we present a study on the calibration for some parameters of
the parallel Island Model, through the experimental study with various input
configurations for each island of the model. The aim is to analyse the impact
produced by these configurations, taking into account the quality of the solutions
and the execution time of the parallel algorithm. Specifically, we focus on three of
the most important input parameters of DE. They are the crossover probability
and mutation factor, and the crossover type. It is known that the choice of their
optimal values is an application dependent task. For two optimization benchmark
problems under study, we want to get an overview about the behaviour of this
model applied to solve them, considering different scenarios.

The paper is organized as follows: Section 2 describes the main characteristics
of DE. Section 3 present a complete description of the Island Model used in this
work, including its main features and its processing scheme. Section 4 shows
the experiments carried out and the analysis of results. Finally, we present the
conclusions and future work.
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2 Classical Differential Evolution

The Differential Evolution algorithm has emerged as a popular choice for solv-
ing global optimization problems . Using a few parameters, it exhibits an over-
all excellent performance for a wide range of benchmark as well as real-world
application problems [2]. Each individual belongs to a generation g, i.e., let
Xig= (:z:}’g, ey zfg) an individual of the population, with : = 1,...,N where the
index 7 denotes i-th population individual and N is the total number of individ-
uals in the population. Following, we explain the three classic main operators
of DE. In section 3 we also introduce the migration operator, which is typically
used in parallel versions of metaheuristics.

Mutation: After initialization, DE mutates and recombines the current pop-
ulation to produce another one constituted by N individuals. The mutation pro-
cess begins in each generation selecting random individuals X,, 4, X;, 4. The i-th
individual is perturbed using the strategy of the formula (1), where the indexes
1, r1 and ro are integers numbers different from each other, randomly generated
in the range [1, NJ.

“DE/best/l” : V;;,g+1 = Xbest,g + (XT‘1q97XT2’9)F (1)

The constant F' represents a scaling factor and controls the difference amplifi-
cation between individuals 1 and ro. It is used to avoid stagnation in the search
process. Xpest,g is the best individual, i.e., it has the best value of the objective
function evaluation among all individuals of current generation g. The notation
“DE/best/1” represents that the base vector chosen is the best individual, and
“1” vector difference is added to it.

Crossover: After the mutation phase, each perturbed individual V; 441 =

1 D . o . _ 1 D . .
(Vi g15 -+ Vigy1) and the individual X;, = (z; ,,...,7;)) are involved in the
. . . 1 D
crossover operation, generating a new vector Uj g1 = (U g 15y Ujgq1), de-

nominated “trial vector”, and obtained using the expression (2).

Ui,g+1 = 2 (2)

2,9

j vig+1 if rand; <Crorj=k
in other case

where j =1,...,D, and k € {1, ..., D}. The latter is a randomly generated index
chosen for each individual. This index is used to ensure that the trial vector is not
exactly equal to its source vector X; 4, then a vector component at position k is
taken from the mutated vector. The constant Cr, denominated crossover factor,
is a parameter of the algorithm defined by the user. Cr belongs to the range [0, 1]
and is used to control the values fraction that are copied from the mutant vector
V. rand; is the output of an uniformly distributed random number generator,
and is generated for each component Uf g+1 of the trial vector.

There are two crossing operators that can be applied: binomial or exponen-
tial. Both types use the expression (2), but differ in the way it is applied. The
binomial crossover operator iterates over all the components of the individual,
copying the jth parameter value from the mutant vector V; 41 to the corre-
sponding element in the trial vector U; 411 if rand; < Cr or j = k. Otherwise,
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it is copied from the corresponding target (or parent) vector X, 4. Instead, the
exponential crossover operator inherits the parameters of trial vector U; 441 from
the corresponding mutant vector V; 4 starting from a randomly chosen parame-
ter index, until the jth parameter value satisfying rand; > Cr. The remaining
parameters of the trial vector U; 441 are copied from the corresponding target
vector X 4.

Selection: This phase determines which element will be part of the next
generation. The objective function of each trial vector U; 441 is evaluated and
compared with the objective function value for its counterpart X; ; in the current
population. If the trial vector has less or equal objective function target value
(for minimization problems) it will replace the vector X; 4 in the next generation.
The scheme followed is presented in the expression (3).

Uigr1 1 f(Uig1) < f(Xig)
KXigt1 = {Xii in othei case ! (3)
The three stages mentioned above are repeated from generation to genera-
tion until the specified termination criterion is satisfied. This criterion could be
finding a predefined minimal error or reaching a certain number of iterations.
Due to the potentialities provided by DE numerous variations and methods
have been proposed with the aim of improving the performance of the classic
technique. Among them are those trying to adapt the parameters of the algo-
rithm, such as self-adjusting [14], [12], [3]; others using different mechanisms to
optimize the individuals selection for the mutation and crossover phases [4], and
some combining both methods [15]. In the next section we briefly mention some
related works on parallel DE; and we present the details of our parallel proposal.

3 Island Parallel Model for Differential Evolution

Researchers have proposed different approaches to parallelize population-based
metaheuristics, depending on the purpose to be achieved. In [16] is presented a
proposal for solving the Pareto front problem. An individual in the population
can be migrated with a certain probability to a random position in a random
subpopulation. In [11], the model uses a ring interconnection topology and ran-
dom migration rate controlled by a parameter of the algorithm. The aim of that
work is to study the implications of a controlled migration constant. In [5], a
parallel DE version is proposed and applied to solve biological systems. It also
follows a ring interconnection topology. The analysis was done with different
migration rates and they conclude by identifying the best of them. A critical
issue of the last three approaches, is the consideration of the population size.
The ability of the algorithm to find a solution depends on the tasks size and
is related to the amount of individuals per node, making significant local and
global evolution. Then, it is relevant to make experiments that encompass these
scenarios. For all these reasons arises the need to perform a comparative study
to test with large enough cases.
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Following, we will describe the Island Parallel Model. 1t follows a Master-
Worker [6] scheme. Multiple instances of DE are executed in parallel on different
computing nodes, each one considering a different population of individuals (Pop.
0, ..., Pop. n). We call each computing node “an island”. A master process is in
charge of monitoring the system as a whole, and each worker process is dedicated
to compute all the generations in that island. Figure 1 represents this model. As
can be seen, the master process is located in an exclusive computing node, so as
to coordinate the system and to avoid delaying the response to the workers.

 Initial communication | ————— .
= Communication to H D Coordinates tasks

proceed or finalize

Migration of individuals % population

a individual

Fig.1: Island Model: independent or cooperating self-contained metaheuristics.

Every certain number of generations, and considering a certain topology,
begins a migration phase. The amount of individuals that migrate is a certain
percentage of the whole population, calculated from the number of individuals
in the island. This migration phase represents another operator for parallel DE,
and its importance lies in the need to exchange information between the islands
to keep global information.

After a migration phase and replacement process, the workers inform to the
master which is the best individual found. The master receives this information
and temporarily stores the best individual of all those who have been sent by the
workers. Then, if the termination condition is met, the master sends a message
to workers indicating the end of the process. Otherwise, the master informs
to continue with their evolutionary process. In our proposal, the finalization
condition was defined as reaching a certain number of generations.

We recall that the Island Model significantly promote the exploration of a
larger search space, because the workers explore different search spaces, since
each population is initialized with a different seed. This leads to better solutions
quality, although the execution time is generally higher than that of the sequen-
tial version. This parallelism technique, where multiple instances of an algorithm
are launched in parallel and interrelated is useful when the aim is to deepen the
search, with no particular requirements for reducing the execution time.

The following section will describe some experiments made with the aim of
analysing the solutions quality and the execution time when introducing certain
configurations for each island. The goal of this calibration is to adjust the effec-
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tiveness of the model, considering each population with different configurations
for the mutation factor and crossover probability, and the crossing type. These
parameters are crucial to guide the search towards certain areas of whole search
space. If these parameters are set in an inappropriate manner, it may happen
that the algorithm get stagnated in a local optimum, or the solutions quality
obtained may be non optimal.

4 Test cases and analysis of results

In the following, we describe the experiments carried out in order to test the
Island Model with different configurations. In the experiments, the performance
of the algorithm was tested with a set of scalable functions, obtained from [13].
For each of them, 30 executions were carried out with different seeds. The sizes
of the problems considered have dimensions 100, 500 and 1000. The population
was made up with 100 and 400 individuals. The function used for the test where
Shifted Sphere (unimodal, search range in [-100,100], bias value of -450), and
Shifted Rosenbrock (multimodal, search range in [-100,100], bias value of 390).

The average error is defined as the difference between the current value of
the global optimum and the value obtained by the algorithm. If the error is
zero indicates that it has been found the global optimum. For the problems
considered, the best results are those that are closer to zero error.

Preliminary experiments carried out on the model conduced to a definition for
the exchange rate value. In all the tests the individuals were exchanged among
the islands at a migration rate of 15% every 500 iterations. It is known from
literature [4], [15], [14] that the values F'=0.5 and Cr=0.3 may guide the search
towards good solutions. We validated and established those values in the tests.

Four experiments were carried out; some of them are associated to the crossover
probability and mutation factor, and others are related to the crossover type.
Although there exists a wide range of combinations and possibilities of variation
on these parameters, carrying out the test and processing the results are time-
consuming actions. Our test are performed with large enough dimensions, to
contemplate complex optimization problems. This is an important feature, that
differentiates our case of analysis regard to those cases treated in other similar
studies (such as those referenced before).

Following, we provide a brief description of the test cases:

- Case 1: This experiment consisted in the configuration of all the islands
with the same input parameters (i.e. just varying the initial seed for each island).
The goal is to explore the space more thoroughly. All islands try to solve the
whole optimization problem searching in a different area of the search space,
having the same configuration for the rest of the parameters.

- Case 2: This experiment consisted in setting the half of the islands in the
model with random values for the mutation and crossover probabilities, and the
other half of the islands used the fixed constant values for F' and Cr.

- Case 3: The third experiment was performed with the aim of represent
an independent behaviour of the islands, setting the input probabilities with
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random values for each island in the model. This randomized configuration may
reproduce a realistic scenario when the model observed is similar to a concrete
natural system, where each population have its own working method. In this
sense, the complete problem is solved by different entities, having their own
search space and a unique search configuration.

- Case 4: The last experiment involved the crossover type. All the islands
were setted with the constant values for F' and Cr. In this experiment we changed
the crossover type to exponential crossover. With this case, we test the behaviour
of the islands when the crossover type is distinct from the classic binomial one,
verifying if it may conduct the search process towards other areas. This experi-
ment can be contrasted against the Case 1.

The cases 1, 2 and 3, were performed using a binomial crossover type. Also,
we can notice that the case 2 is middle point test between case 1 and case 3,
trying to produce an hybrid scenario.

The islands follows a ring intercommunication topology, so that each island
receives individuals from its predecessor in the topological order, and sends their
own individuals to its successor in that order. The individuals to be migrated
are the best member of the island plus other individuals randomly selected, and
the received individuals will replace the worst members of the target population.

Shifted Sphere - 100 individuals - Dim 100  Shifted Rosenbrock - 400 individuals - Dim 100

1.40e+02
1.20e+02
1.00e+02 ]
8.00e+01 L“
6.00e+01
4.00e+01
2.00e+01 [*

Mean error
Mean error

- 0.00e+00 - . Sec. 400 ind.
1 2 4 8 16 32 12 4 8 16

Processors Processors

Fig. 2: Mean error of Shifted Sphere and Shifted Rosenbrock functions. Dimension 100.

In order to test scalability, all experiments included 2, 4, 8, 16 and 32 proces-
sors dedicated to the worker processes, and a separate processor for the master
process. All tests were made on a cluster with 36 CPUs distributed between 9
nodes. They have 64 bits with Intel Q9550 Quad Core 2.83GHz processors and
RAM memory of 4GB DDR3 1333Mz. All the nodes are connected together by
Ethernet segments and switch Linksys SLM2048 of 1Gb. Base software on the
cluster includes a 64 bits Debian 5 Lenny Operating System. In the codification
we use the MPICH library [7] for message passing communication between par-
ticipating nodes. Our algorithmic version of the Island Model is based on the
sequential version of DE, obtained from [9)].

Table 1 shows the average computing time, discriminating the tests accord-
ing to the dimension and case analysed. The graphs of the figures 2, 3 and 4
show the mean errors obtained in the different experiments performed. In the
graphs, each color represents one of the experiments mentioned above. In order
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Fig. 3: Mean error of Shifted Sphere and Shifted Rosenbrock functions. Dimension 500.
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Fig. 4: Mean error of Shifted Sphere and Shifted Rosenbrock functions. Dimension 1000.

Table 1: Shifted Shpere and Shifted Rosenbrock average computing time (in seconds),
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ﬁ Bigger magnitud
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= Case 2
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Shifted Sphere 100 ind.

Shifted Rosenbrock 400 ind.

Testcase] 2 | 4 | 8 | 16 | 32 || Testcase] 2 | 4 | 8 | 16 | 32
Dim 100 Sequential time:=2.08 Dim 100 Sequential time:=12.82
Case 1 2,68 | 2,71 | 2,83 | 2,91 | 4,27 || Case 1 12,71 | 13,00 | 13,35 | 13,77 | 19,02
Case 2 2,78 | 2,73 | 3,00 | 3,05 | 3,09 Case 2 12,81 | 13,34 | 14,11 | 14,02 | 14,20
Case 3 2,81 | 3,01 | 3,04 | 3,04 | 3,11 Case 3 13,35 | 14,33 | 14,29 | 14,45 | 14,56
Case 4 0,41 | 0,42 | 0,42 | 0,48 | 0,57 || Case 4 3,64 | 3,66 | 5,43 | 7,83 | 10,00
Dim 500 Sequential time:=11.06 Dim 500 Sequential time:=63.24
Case 1 | 12,98 | 13,23 | 13,60 | 14,66 | 19,30 || Case 1 64,39 | 82,11 | 84,42 | 91,83 |109,11
Case 2 | 13,50 | 13,88 | 14,48 | 14,56 | 15,13 || Case 2 69,44 | 84,61 | 92,98 | 95,07 | 99,47
Case 3 | 13,42 | 14,52 | 14,44 | 14,48 | 14,83 || Case 3 74,75 | 87,86 | 84,23 | 98,77 | 97,46
Case 4 1,44 | 1,46 | 1,53 | 1,64 | 2,03 Case 4 18,84 | 23,17 | 22,80 | 26,40 | 32,78
Dim 1000 Sequential time:=22.57 Dim 1000 Sequential time:=128.64
Case 1 | 26,03 | 26,85 | 28,18 | 29,37 | 40,10 || Case 1 |132,89]181,16|186,64|200,62|207,92
Case 2 | 27,08 | 28,47 | 29,11 | 30,08 | 39,48 || Case 2 |191,09|180,70|209,80|207,78(292,29
Case 3 | 28,61 | 30,60 | 30,67 | 34,01 | 32,77 || Case 3 |189,47|172,69|188,78(196,14|212,53
Case 4 3,12 | 3,25 | 3,63 | 5,17 | 7,69 Case 4 65,68 | 67,56 | 61,32 | 62,92 | 74,05
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to contrast with the parallel experiments, the graphs also include two columns
that represents the mean error for the sequential version. Some bar columns of
the graphics have a colored arrow at top, representing that the column bar has a
bigger magnitude that the maximum scale in the graphic. Moreover, we include
some small labeled black arrows with the purpose of explicitly indicate the value
of those big columns or to highlight some interesting value.

In first place we compare the results obtained for cases 1, 2 and 3. As can
be seen, the execution time for them are similar. The test that obtains better
quality results is the Case 1, i.e. the test in which all the islands are configured
with the same values. When all the islands operate with the same diversification
factors, the search is done in a better way. By contrast, when each island has a
particular mutation and crossover probabilities, the results are not the best that
can be achieved by the model. In second place, we compare cases 1 and 4. The
case 4 obtains a significant reduction of the execution time. We recall that this
case used the exponential crossover.

This type of crossover inherits the parameters of trial vector from the corre-
sponding mutant vector, starting from a randomly chosen parameter index, until
the jth parameter value satisfying rand; > Cr. It is clear from this crossover
type that when the condition rand; > Cr is met, the crossover iteration stops, so
-in general- for each individual of the population, this action is less time consum-
ing than the binomial crossover used in the rest of the experiments, in which all
the vector components are involved. Frequently, this particularity leads to lower
execution times in the overall process, but the quality of the solutions achieved
is not the optimal. This can be one of the reasons because this crossover type
is less used than the binomial one. But in some circumstances, it can be desir-
able to achieve less execution time relegating in some orders of magnitude the
solutions quality. In such cases, the use of the exponential crossover can achieve
that result. Then, in general terms, for these particular problems, setting both
probabilities to constant values at model level and the crossover as the binomial
one leads to better quality results.

5 Conclusions

In this paper we describe the Island Model used to obtain a parallel version
for the Differential Evolution algorithm. Different experimental tests were car-
ried out with the aim of analyse the behaviour of the model when each island
is configured with different parameters. Our interest was on the crossover type
and on the crossover and mutation probabilities, applied to solve the Shifted
Sphere and Shifted Rosenbrock optimization problems. When using the expo-
nential crossover type, the quality of the obtained solutions was not optimal.
However this experiment achieved a significant reduction in execution time, be-
cause the crossover type characteristics. For this reason, the use of the exponen-
tial crossover may be useful when what is desired is a reduction in the execution
time, relegating in some order of magnitude the solutions quality. Through the
results analysis from the test cases made on the mutation and crossover prob-
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abilities, it was found that the same configuration in all islands achieves better
quality in the solutions. For the functions involved in the experiments, it was
found that if all islands have the same diversification factors, the search leads to
better quality of solutions.

This information is a preliminary experimental basis for other type of static
and dynamic calibration experiments, in order to develop a self-adaptable envi-
ronment for solving hard optimization problems.
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